用户名: 密码: 验证码:
三倍体毛白杨纸浆林地力维持理论及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开展速生纸浆林长期立地生产力维持理论及关键技术的研究,不仅丰富我国森林长期立地生产力研究的内容,促进相关学科的发展,具有一定的理论意义,而且对提高我国纸浆林生产力,确保我国纸浆原料的可持续生产,保障我国制浆、造纸工业的产业安全具有十分重要的实践意义。本文采取时序研究法,以3a、5a、6a、7a共4个不同年龄的三倍体毛白杨纸浆林为对象,研究了地上凋落物、细根周转、湿沉降在林分N、P营养元素循环中的作用及不同年龄林分N、P营养元素循环的特征,以评价三倍体毛白杨纸浆林长期立地生产力的变化;采取网袋法研究了不同因素对落叶、树皮、树枝分解的影响,以确定加快其分解、促进养分释放的措施:同时研究了不同间作物对林地影响、林木与间作物之间关系,以选择能维持立地生产力的合适的间作物种类等内容,得到以下结论:
     (1)随着年龄的增加,三倍体毛白杨地上凋落物的数量从3a的216.03±59.7gm~(-2)增加到7a的482.38±101.3gm~(-2),通过凋落物归还的N分别为:3a时为18.38±2.46kg.hm~(-2)a~(-1),5a时为21.63±2.25kg.hm~(-2)a~(-1),6a时为39.51±4.61kg.hm~(-2)a~(-1),7a时为38.89±4.89kg.hm~(-2)a~(-1),归还的P分别为:3a时为5.80±0.62kg.hm~(-2)a~(-1),5a时为8.16±0.94kg.hm~(-2)a~(-1),6a时为11.31±1.33kg.hm~(-2)a~(-1),7a时为11.76±1.37kg.hm~(-2)a~(-1);随着年龄的增加,通过细根周转归还的养分也在增加,归还的N分别为:3a时3.85±0.41kghm~(-2)a~(-1),5a时5.22±0.63kghm~(-2)a~(-1),6a时7.62±0.89kghm~(-2)a~(-1),7a时9.17±1.22kghm~(-2)a~(-1);归还的P分别为:3a时0.73±0.07kghm~(-2)a~(-1),5a时1.69±0.09kghm~(-2)a~(-1),6a时1.92±0.31kghm~(-2)a~(-1),7a时1.96±0.21kghm~(-2)a~(-1);从地上凋落物、细根周转、湿沉降三种不同途径归还林地养分所占的比例来看,地上凋落物中的落叶是归还养分主要途径,年龄在3a、5a、6a、7a时,通过落叶归还的N所占比例分别为74.84%、71.96%、78.58%和75.03%,归还的P所占比例分别为85.93%、80.31%、83.04%和83.23%。因此,在维持和提高三倍体毛白杨纸浆林林地长期立地生产力的过程中应加强对落叶的保护和利用,充分发挥落叶在林地自肥中的作用。
     (2)三倍体毛白杨纸浆林存留的N从3a的212.00kghm~(-2)增加到7a时的775.6lkghm~(-2),存留的P从3a时的109.61kghm~(-2)增加到7a时的407.15kghm~(-2),归还的N从3a的24.56kghm~(-2)到7a的51.83kghm~(-2),在3a、5a、6a、7a4个不同年龄时归还率分别为34.75%、45.85%、48.81%、46.78%,但土壤的N为亏损状态,从3a时亏损0.54%到7a时的1.92%;在3a、5a、6a、7a4个不同年龄时P的归还率则分别为18.47%、29.66%、26.75%、24.29%,土壤的P也为亏损状态,从3a时亏损0.35%到7a时0.52%,无论是N还是P的亏损均表现出增加的趋势;N的周转时间从3a的345.6年缩短到7a的163.8年,P的周转时间从3a的1625.0年缩短到7a的596.1年。因此从N、P养分的变化趋势来看,三倍体毛白杨纸浆林经营可能导致养分缺乏,威胁到长期立地生产力的维持。
     (3)不同因素在落叶、树皮、枯枝的分解过程中所起的作用不同,林带内与林带间的不同环境、不同年龄对落叶的分解没有产生显著性差异。与棉花叶混合后促进了三倍体毛白杨落叶的分解,混合叶分解50%的天数比三倍体毛白杨落叶少254天,分解95%的天数比三倍体毛白杨落叶少1076天,年分解率比三倍体毛白杨落叶高15.43%。与地表相比,地下环境对不同年龄的落叶、枝条和树皮的分解均产生了显著的促进作用,2a林分的落叶分解50%的时间从地表的499天缩短到地下的291天,4a林分的落叶则从777天缩短到304天,6a林分的落叶从1036天缩短到393天,枝条从771天缩短到338天,树皮从710天缩短到304天;分解95%的时间同样也显著缩短,2a林分的落叶从1853天缩短到1114天,4a林分的落叶从3080天缩短到1157天,6a林分的落叶从4326天缩短到1544天,枝条从3073天缩短到1223天,树皮则从2803天缩短到1072天。因此在生产中如果能对落叶、树枝、树皮进行掩埋可以加快落叶分解,提高养分归还林地的速率。
     (4)从室内添加不同氮源的结果来看,外加氮源对三倍体毛白杨落叶分解有一定的促进作用,不同氮源之间差异显著,添加铵态氮能显著促进落叶的分解,年分解率可以达到75.28%,而添加硝态氮和混合氮的年分解率分别为55.90%和55.14%,对照为51.14%。
     (5)从间作1年的结果来看,不同间作物对林地土壤的理化性质产生了不同的影响,间作棉花显著改善了土壤容重,有机质、速效N也有所增加。不同间作物对林木高生长没有产生显著差异,但对胸径生长的影响达到了显著性差异水平,间作棉花在第一年促进了三倍体毛白杨胸径的生长。从不同间作物在造林第一年的产量来看,林木没有对间作物的生长产生影响,各间作物的RCI值均在0附近。因此,综合来看,在造林的第一年,选择棉花作为间作物较为适宜。
Carrying out the study on key techniques and theory to maintenance the long-term-site productivity of fast-growth pulp plantation is very important. Not only had it theoretical meanings to enrich contents of the long-term-site productivity study, to promote the development of related disciplines. But also it had practical significance to raise the pulp plantation productivity, to ensure the pulpwood sustainable production, to guarantee our country pulp and paper industry security. In order to assess the change of triploid populus tomentoza pulp plantation long-term-site productivity, The paper studied on effects of aboveground litterfall, fine root turnover and wet dust precipitation in nutrient(N、P) cycling of triploid populus tomentoza pulp plantations at different ages,namely 2a、4a、5a、6a.It studied influence of different factors on decomposition of leaf、tree bark and twig of triploid populus tomentoza to select the operations to accelerate the decomposition and nutrient release. Finally, it studied influence of different intercrops on plantation site productivity and the relationship of intercrops and triploid populus tomentoza to select suitable intercrops. The main results as follows:
     (1)The aboveground litterfall of triploid populus tomentoza increased along with age from 216.03±59.7gm~(-2) at 3a to 482.38±101.3gm~(-2) at 7a, The N returned by litterfall wasl8.38±2.46kg.hm~(-2)a~(-1);21.63±2.25kg.hm~(-2)a~(-1);39.51±4.61kg.hm~(-2)a~(-1);38.89±4.89kg.hm~(-2)a~(-1) at 3a、5a、6a、7a respectively. The P returned by litterfall was 5.80±0.62kg.hm~(-2)a~(-1)、8.16±0.94kg.hm~(-2)a~(-1), 11.31±1.33kg.hm~(-2)a~(-1)、11.76±1.37kg.hm~(-2)a~(-1) at 3a、5a、6a、7a respectively. The nutrient returned by fine root turnover increased along with age, too. The N returned by fine root turnover was 3.85±0.41kghm~(-2)a~(-1)、5.22±0.63kghm~(-2)a~(-1),7.62±0.89kghm~(-2)a~(-1),9.17±1.22kghm~(-2)a~(-1) at 3a、5a、6a、7a respectively. The P returned by fine root turnover was 0.73±0.07kghm~(-2)a~(-1)、1.69±0.09kghm~(-2) a~(-1)、1.92±0.31kghm~(-2)a~(-1)、1.96±0.21kghm~(-2)a~(-1) at 3a、5a、6a、7a respectively. The leaf was the principal pathway to return nutrient(N、P) to soil among litterfall, fine root turnover and wet dust precipitation. The proportion of returned N by leaf was 74.84%、71.96%、78.58%、75.03% at 3a、5a、6a、7a respectively,The proportion of returned P by leaf was 85.93%、80.31%、83.04%、83.23% at 3a、5a、6a、7a respectively. Therefore, it is important to protect and utilize the leaf in order to maintenance and enhance the long-term-site productivity of triploid populus tomentoza pulp plantation.
     (2)The remained N of triploid populus tomentoza pulp plantation increased from 212.00kghm~(-2) at 3a to 775.61kghm~(-2) at 7a, the remained P increased from 109.61kghm~(-2) at 3a to 407.15kghm~(-2) at 7a. The returned N increased from 24.56kghm~(-2) at 3a to 51.83kghm~(-2) at 7a. The ratio of returned N to absorbed was 34.75%、45.85%、48.81%、46.78% at 3a、5a、6a、7a respectively. But the total N in soil decreased from 0.54% at 3a to 1.92% at 7a. The ratio of returned P to absorbed was 18.47%、29.66%、26.75%、24.29% at 3a、5a、6a、7a respectively, but the total P in soil decreased from 0.35% at 3a to 0.52% at 7a. The turnaround time of N was shortened from 345.6 years at 3a to 163.8 years at 7a, The turnaround time of P was shortened from 1625.0 years at 3a to 596.1 years at 7a. Thus the management of triploid populus tomentoza pulp plantation might cause soil nutrient(N、P) deficiency and threaten site productivity maintenance.
     (3)The influence of different factors on decomposition of leaf, twig and tree bark was defferent. Neither the circumstance between interior-intermediate of plantation belt nor the leaf brought out by different age's trees had significance difference. The decomposition of leaf of triploid populus tomentoza was accelerated by mixed with cotton leaf in 1:1 mass ratio. The time of 50% leaf decomposed was shortened 254 days compared to pure triploid populus tomentoza leaf. The time of 95% leaf decomposed was shortened 1076 days compared to pure triploid populus tomentoza leaf. The decomposition ratio at 1 year increased 15.43% compared to pure leaf. The circumstance of underground 10cm promoted decomposition of leaf、twig and tree bark significance. Compared to soilsurface, The time of 50% leaf decomposed under ground 10cm was shortened from 499 days to 291 days of 2a plantation, from 777 days to 304 days of 4a plantation, from 1036 days to 393 days of 6a plantation respectively. The time of 95% leaf decomposed was shortened from 1853 days to 1114 days of 2a plantation, from 3080 days to 1157 days of 4a plantation, from 4326 days to 1544 days of 6a plantation respectively; The time of 50% twig decomposed was shortened from 771 days to 338 days, the time of 95% twig decomposed was shortened from 3073 days to 1223 days. The time of 50% tree bark decomposed was shortened from 710 days to 304 days and the time of 95% tree bark decomposed was shortened from 2803 days to 1072 days. Thus it could accelerate decomposition of leaf、twig and tree bark if they were buried under surface soil during operations such as cultivation、weed eradication.
     (4)From the result of laboratory experiment, the difference of decomposition rate among different N-resource was significance. The leaf decomposition was accelerated by added ammonium nitrogen, The half leaf decomposition needed 175d by added ammonium nitrogen compared to 301d、316d or 348d by added nitrate nitrogen、mixed N or control respectively. The 95% leaf decomposition needed 781d by added ammonium nitrogen compared to 1397d、1238d or 1627d by added nitrate nitrogen、mixed N or control respectively. The decomposition ratio of one year was 75.28% by added ammonium nitrogen, compared to 55.90%, 55.14% and 51.14% by added nitrate nitrogen, mixed N or control respectively.
     (5)The different intercrops had different effects on soil physic-chemical characteristics. Soil bulk density、soil organic matter and soil available nitrogen were improved significance by intercropped cotton. There were no significance influence on tree height growth by different intercrops, but tree diameter at breast height was increased significance by intercropped cotton.the yield of different intercrops were not influenced by tree at first year. The RCI(relative competition index) were 0 almostly.Therefore the whole, cotton was suitable intercrop at first year.
引文
[1] 曹帮华,巩其亮,齐清.三倍体毛白杨苗期不同配方施肥效应的研究[J].山东农业大学学报,2004,35(4):512-516.
    [2] 曹群根,傅懋毅,李正才.毛竹林凋落叶分解失重及养分累积归还模式[J].林业科学研究,1997,10(3):303-308.
    [3] 陈德旺.木麻黄大叶相思混交林生长效果、防护功能和土壤肥力研究[J].防护林科技,2003(3):13-15.
    [4] 陈光水.杉木观光木混交林细根生态学研究[D].南平:福建农林火学,2001:9.
    [5] 陈少雄,周国福,林义辉.尾巨桉纸浆材人工林轮伐期研究[J].林业科学研究,2002,15(4):29-33.
    [6] 陈伟,薛立.人工林施肥研究进展综述[J].广东林业科技,2004,(1):63-68.
    [7] 陈永瑞.千叶洲试验区马尾松人工林凋落叶及其营养元素的数量动态[J].江西科学,2000,18(1):19-23.
    [8] 崔长占,黄传林,于国民,等.小黑杨扦插苗生长规律的研究[J].高师理科学刊,1999,19(2):37-39.
    [9] 崔浪军,梁宗锁,韩蕊莲.沙棘杨树混交林提高杨树生产力的研究进展[J].西北林学院学报,2002,17(1):24-28.
    [10] 代静玉,秦淑平,周江敏.水杉凋落叶分解过程中溶解性有机质的分组组成变化[J].生态环境,2004,13(2):207-210.
    [11] 邓玉林,陈治谏,刘绍权,等.果牧结合生态农业模式的综合效益试验研究[J].水土保持学报,2003,17(2):24-27.
    [12] 丁贵杰.马尾松人工纸浆材林采伐年龄初步研究[J].林业科学,2000,36(1):17-22.
    [13] 杜广云,卜长春,周海燕,等.中林46#杨秋冬造林与春季造林效果的对比实验[J].林业科技,2003,28(4):6-7.
    [14] 范冰,李贤伟,张健,等.三倍体毛白杨-黑麦草复合生态系统林木细根与草根的分解及养分动态[J].应用生态学报,2005,16(11):2030-2034.
    [15] 方精云.全球生态学:气候变化和生态响应[M].北京:高等教育出版社,2000:11.
    [16] 方升佐,曹福亮.杨树短轮伐期经营的现状和前景[J].南京林业大学学报,1993(17)(增刊):50-55.
    [17] 方升佐.经营措施对辐射松及杨树人工林长期立地生产力的影响[D].南京:南京林业人学,1999:13-21.
    [18] 房用,慕宗昭,张淑萍等.杨树工业用材生物量的研究[J].水土保持研究,2004,11(3):322-325.
    [19] 房用,蹇兆忠,房(?).杨树生物量结构与模型的研究[J].辽宁林业科技,2002(5):5-7,22.
    [20] 冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999:23.
    [21] 郭剑芬,杨玉盛,陈光水,等.森林凋落物分解研究现状[J].林业科学,2006,42(4):93-100.
    [22] 郭继勋,祝廷成.羊草草原枯枝落叶分解的研究[J].生态学报,1992,12(4):295-301.
    [23] 郭树花.三倍体毛白杨叶片元素含量与林木生长的关系[D].北京:北京林业大学,2007:17-19.
    [24] 何秀伟.三倍体毛白杨引种育苗试验研究[J].湖南环境生物职业技术学院学报,2002,8(2):93-97
    [25] 何宗明,陈光水,王巧珍,等.33a生福建柏人工林群落能量的研究[J].应用与环境生物学报,2003,9(6):569-573.
    [26] 侯学煜.中国150种植物化学成分及其分析方法[M].北京:高等教育出版社,1959.
    [27] 胡发成.种植苜蓿改良培肥地力的研究初报[J].草业科学,2005,22(8):47-49.
    [28] 胡晓丽.三倍体毛白杨纸浆材新品种产业化应用关键技术研究[D].北京:北京林业大学,2006:17.
    [29] 胡肄慧,陈灵芝,孔繁志,等.两种中国特有树种的枯叶分解速率[J].植物生态学与地植物学学报,1986,10(1):35-43.
    [30] 胡肄慧,陈灵芝,陈清明,等.几种树木的枯叶分解速率的试验研究[J].植物生态学与地植物学学报,1987,11(2):124-132.
    [31] 黄保灵,吕成群,蒙钰钗,张连芬.尾叶桉人工林种群密度的研究[J].应用生态学报,2000,11(1):30-32.
    [32] 黄光霖,周志春.马尾松纸浆林培育中存在的问题及对策[J].福建林学院学报,1999,19(2):11-12,14.
    [33] 黄钰辉,官丽莉,周国逸,等.西双版纳热带季雨林和哀牢山中山湿性常绿阔叶林优势植物及地表凋落物层的热值[J].植物生态学报,2007,31(3):457-463.
    [34] 贾黎明,翟明普,胡延杰,等.杨树刺槐混交林养分状况[A].见:沈国舫、翟明普.混交林研究[M].北京:中国林业出版社,1997:35-41.
    [35] 贾黎明,方陆明,胡延杰.杨树刺槐混交林及纯林枯落叶分解[J].应用生态学报,1998,9(5):463-467.
    [36] 江泽慧,范少辉,冯慧想,等.华北沙地小黑杨人工林生物量及其分配规律[J].林业科学,2007,43(11):60-66
    [37] 姜志林.森林生态系统的生产力(Ⅰ)[J].生态学杂志,1985,14(4):74-77.
    [38] 蒋智林,刘万学,万方浩,李正跃.植物竞争能力测度方法及其应用评价[J].生态学杂志,2008,27(6):985-992.
    [39] 康向阳,朱之悌,张志毅.毛白杨异源三倍体形态和减数分类观察[J].北京林业大报,1999(1):5-9.
    [40] 康向阳,张平东,高鹏,赵芳.秋水仙碱诱导白杨三倍体新途径的发现[J].北京林业大学学报,2004,26(1):5-8.
    [41] 孔样生,徐鑫,张妙霞.三倍体毛白杨组培快繁技术[J].福建林学院学报,2003,23(1):18-20.
    [42] 李博.植物竞争----作物与杂草相互作用的实验研究[M].北京:高等教育出版社,2001:34.
    [43] 李光友,徐建民,陆钊华,等.尾叶桉短轮伐期经营林分生长研究[J].广东林业科技,2004,20(1):12-15.
    [44] 李建华,李春静,彭世揆.杨树人工林生物量估计方法与应用[J].南京林业大学学报,2007,31(4):37-40.
    [45] 李凌浩,林鹏,邢雪荣.武夷山甜槠林细根生物量和生长量研究[J].应用生态学报,1998,9(4):337-340.
    [46] 李庆云,万猛,樊巍,等.黄淮海平原农区杨树人工林生物量和生产力研究[J].河南科学,2008,26(2):434-437.
    [47] 李贤伟,张健,陈文德,等.三倍体毛白杨-黑麦草复合模式细根和草根分布与生长特征[J].草业学报,2005,14(6):73-78.
    [48] 李雪峰,张岩,牛丽军,等.长白山白桦(Betula platyphlla)纯林和白桦山杨(Populus davidiana)混交 林凋落物的分解[J].生态学报,2007,27(5):1782-1790.
    [49] 李志辉.巨尾桉人工林营养元素积累、分布和循环的研究[J].中南林学院学报,2000,20(3):11-19.
    [50] 梁宏温,黄承标,胡承彪.广西宜山县不同林型人工林凋落物与土壤肥力的研究[J].生态学报,1993,13(3):233-242.
    [51] 廖利平.杉木、火力楠纯林及其混交林细根分布、分解与养分归还[J].生态学报,1999,19(3):342-346.
    [52] 廖晓初.氮源对外生菌根生长、氮吸收和硝酸还原酶活性的影响[D].重庆:西南大学,2006:28.
    [53] 林德喜,刘开汉.尾叶桉养分动态和循环分析[J].应用生态学报,2002,8(2):148-153.
    [54] 林开敏,俞新妥.杉木人工林地力衰退与可持续经营[J].中国生态农业学报,2001,9(4):39-42.
    [55] 林鹏,邵成.福建和溪亚热带雨林凋落物能流的研究[J].厦门大学学报(自然科学版),1995,34(6):987-991.
    [56] 林鹏,林光辉.几种中国海湾植物的热值和灰分含量的研究[J].植物生态学与地植物学学报,1990(115):114-120.
    [57] 林鹏,卢昌义,王恭礼,等.海南岛河港海莲红树林凋落物动态的研究[J].植物生态学与地植物学学报,1990,14(1):69-73.
    [58] 林盛.福建省沿海防护林不同相思树种生物量及其分配的探讨[J].安徽农学通报,2008,14(14):100-101,123.
    [59] 林益明,林鹏,李振基,等.福建武夷山甜储群落能量的研究[J].植物学报,1996,38(12):989-994.
    [60] 林益明,林鹏,王通.几种海湾木本植物热值和灰分含量[J].应用生态学报,2000(11):181-184.
    [61] 林仲桂,张仁福,钟福生,等.危害三倍体毛白杨的害虫种类、发生与防治研究[J].湖南环境生物职业技术学院学报,2006,12(1):1-4.
    [62] 刘广全,土小宁,赵士洞,等.秦岭松栎林带生物量及其营养元素分布特征[J].林业科学,2001,37(1):28-36.
    [63] 刘建军,王得祥,雷瑞德,等.秦岭林区天然油松、锐齿栎林细根周转过程与能态变化[J].林业科学,2002,38(4):1-6.
    [64] 刘克林,孙向阳,赵铁蕊,等.三倍体毛白杨不同无性系叶片营养元素质量分数差异[J].浙江林学院学报,2007,24(3):297-301.
    [65] 刘金郎.三倍体毛白杨嫩枝扦插育苗技术[J].林业科技,2003,28(6):10-11.
    [66] 刘强,彭少麟,毕华,等.热带亚热带森林凋落物交互分解的养分动态[J].北京林业大学学报,2005,27(1):24-32.
    [67] 刘增文,潘开文.Olson枯落物分解模型存在的问题与修正[J].西北农林科技大学学报,2005,23(1):69-70.
    [68] 刘增文,高文俊,潘开文,等.枯落物分解研究方法和模型讨论[J].生态学报,2006,26(6):1993-2000.
    [69] 罗世家,艾训儒,彭诚.黄山松人工林材积生长规律的研究[J].林业科技2002,27(6):4-6.
    [70] 孟平,张劲松,尹昌君,等.太行山丘陵区果-草复合系统生态经济效益的研究[J].中国生态农业学报,2003,11(3):12-15.
    [71] 莫江明,布郎.鼎湖山生物圈保护区马尾松凋落物的分解及其营养动态研究[J],植物生态学报,1996,20(6):535-542.
    [72] 聂道平,沈国舫,翟明普.油松人工林养分循环的研究(III):养分元素生物循环和林分养分平衡[J].北京林业大学学报,1986(2):8-13.
    [73] 聂道平.森林生态系统营养元素的生物循环[J].林业科学研究,1991,4(4):436-440.
    [74] 彭少麟,刘强.森林凋落物动态及其对全球变暖的响应[J].生态学报,2002,22(9):1534-1544.
    [75] 蒲俊文,宋君龙,姚春丽.三倍体毛白杨纤维形态变异的研究[J].北京林业大学学报,2002,24(2):68-72.
    [76] 秦光华,姜岳忠,乔玉玲,等.美洲黑杨S307-26和PE-19-66引种造林实验[J].江苏林业科技,2003,30(4):3-8.
    [77] 邱尔发,陈卓梅,郑郁善,等.麻竹山地笋用林凋落物发生、分解及养分归还动态[J].应用生态学报,2005,16(5):811-814.
    [78] 山东林业科学研究院.杨树速生丰产人工林生物量和养分含量的研究[J].山东林业科技,1990(2):1-7.
    [79] 沈海龙,丁宝永,沈国舫,陈爱民.樟子松人工林下针阔叶凋落物分解动态[J].林业科学,1996,32(5):393-402.
    [80] 沈国舫,翟明普.油松人工林养分循环的研究(Ⅰ):营养元素的含量及分布[J].北京林业大学学报,1985(4):1-14.
    [81] 盛炜彤,杨承栋.关于杉木林下植被对改良土壤性质效用的研究[J].生态学报,1997,17(4):377-385.
    [82] 盛炜彤,范少辉.人工林长期立地生产力保持机制研究的背景、现状和趋势[J].林业科学研究,2004,17(1):106-115.
    [83] 施家月.天童常绿阔叶林次生演替过程中细根的周转和养分动态[D].上海:华东师范大学,2005:36.
    [84] 时明芝.鲁西黄河故道杨树林间间作效益的研究[J].林业科技,2003,28(1):16-18.
    [85] 时明芝.黄河故道沙地杨树人工林不同间作方式的比较[J].林业科学,2003,39(4):173-176.
    [86] 孙翠玲,郭玉文,郭泉水.日本落叶松人工林重茬林地土壤养分含量变化及其对林木生长的影响[J].林业科学研究,1997,10(3):321-324.
    [87] 孙国夫,郑志明,王兆骞.水稻热值的动态[J].生态学杂志,1993,12(1):1-4.
    [88] 邰宪武,吴景云,张秀艳,等.沙地杨树防护林造林试验[J].防护林科技,2004(2):13-14.
    [89] 万福绪,陈平,王严星.苏北林粮间作地土壤理化性质分析[J].南京林业大学学报,2003,27(6):27-30.
    [90] 王力,邵明安,侯庆春.水、氮、磷对杨树生物量的耦合效应[J].北京林业大学学报,2000,22(5):19-22.
    [91] 王斌瑞,孙立达.西吉黄土丘陵区落叶松沙打旺间作试验研究[J].林业科技通讯,1987(1):4-8.
    [92] 王希华,黄建军,闫思荣.天童国家森林公园常见植物凋落叶分解的研究[J].植物生态学报,2004,28(4):457-46.
    [93] 王永福,周荣.杨树速生丰产林施肥方案初探[J].内蒙古林学院学报,1996,18(1):34-37.
    [94] 温达志,魏平,孔国辉,等.鼎湖山南亚热带森林细根生产力与周转[J].植物生态学报,1999,23(4):361-369.
    [95]吴承祯,洪伟,姜志林,等.我国森林凋落物研究进展[J].江西农业大学学报,2000,22(3):405-410.
    [96]吴惠仙,唐新民,文二华.施肥对杨树后期生长及养分的影响[J].中南林业调查规划,2000,19(3):61-62.
    [97]吴庆标,王效科,欧阳志云.活性有机碳含量在凋落物分解中的作用[J].生态环境,2006,15(6):1295-1299.
    [98]吴泽民,孙启祥,陈美工.安徽长江滩地杨树人工林生物量和养分积累[J].应用生态学报,2001,12(6):806-810.
    [99]肖慈英,黄青春,阮宏华.松、栎纯林及混交林凋落物分解特性研究[J],土壤学报,2002,39(5):763-767.
    [100]项文化,闫文德,田大伦,等.外加氮源及与林下植物叶混合对杉木林针叶分解和养分释放的影响[J].林业科学,2005,41(6):1-6.
    [101]许风,陈嘉川.三倍体毛白杨木素微区分布的研究[J].Paper Science & Technology,2003,22(1):1-4.
    [102]徐孝庆,陈之端.毛白杨人工林生物量的初步研究[J].南京林业大学学报,1987(1):130-136.
    [103]薛睿,贺斌,薛文瑞.甘肃干旱荒漠区纸浆林三倍体毛白杨营建试验[J].陕西林业科技2006(2):12-16,36.
    [104]闫德仁,刘永军,张幼军.落叶松人工林土壤养分动态[J].东北林业大学学报,2003,31(3):16-18.
    [105]阎海平,李涛.西山林场风景林抚育剩余物处理的初步研究[J].林业资源管理,2005(4):62-65.
    [106]杨伟东,钟罗生,杨国清,等.桉树人工林地力衰退防治研究[J].热带亚热带土壤科学,1998,7(3):179-183.
    [107]杨玉盛,邹双全,刘爱琴,李振向.格氏栲天然林水源涵养功能的研究[J].自然资源学报,1992,7(3):217-223.
    [108]杨玉盛,陈光水.杉木-观光木混交林N、P养分循环的研究[J].植物生态学报,2002,26(4):473-480.
    [109]杨玉盛,陈银秀,何宗明,等.福建柏和杉木人工林凋落物性质的比较[J].林业科学,2004,40(1):2-10.
    [110]杨玉盛,郭剑芬,陈银秀,等.福建柏和杉木人工林凋落物分解及养分动态的比较[J].林业科学,2004,40(3):19-25.
    [111]姚春丽,浦俊文.三倍体毛白杨化学组分纤维形态及纸浆性能的研究[J].北京林业大学学报,1998,20(5):22-25.
    [112]姚瑞玲,丁贵杰,王胤.不同密度马尾松人工林凋落物及养分归还量的年变化特征[J].南京林业大学学报,2006,30(5):83-86.
    [113]于连家,蹇兆忠,王涛,等.造林密度对杨树生长的影响[J].山东林业科技,2006(2):33-34.
    [114]余雪标,莫晓勇,龙腾,杨伟东.不同连载代次桉树林枯落物及其养分组成的研究[J].海南大学学报,1999,17(2):140-144.
    [115]曾天勋.雷州短轮伐期桉树生态系统的研究[M].北京:中国林业出版社,1995:129-138.
    [116]翟明普,贾黎明,沈国舫.杨树刺槐混交林及树种间作用机制的研究[A].见:沈国舫、翟明普.混交林研究[M].北京:中国林业出版社,1997:3-10.
    [117]翟明普.北京西山地区油松元宝枫混交林生物量和营养元素循环的研究[J].北京林学院学 报,1982(4):67-78.
    [118]翟明普,蒋三乃,贾黎明.沙地杨树刺槐混交林细根动态[J].北京林业大学学报,2002,24(5/6):39-44.
    [119]张昌顺,李昆.人工林养分循环研究现状与进展[J].世界林业研究,2005,18(4):35-39.
    [120]张鼎华,翟明普,林平,等.杨树刺槐混交林枯落物分解速率的研究[J].中国生态农业学报,2004,12(3):24-26.
    [121]张丰江,刘涛,王生,李静.复合林带及其效益的评价[J].防护林科技,2004(4):38-39.
    [122]张久海,安树青,李国旗,等.林牧复合生态系统研究评述[J].中国草地,1999,(4):52-60.
    [123]张淑改,姚延祷,张芸香,薛俊杰.三种杨树人工林生长效应的比较[J].林业科技通讯,1999(3):22-23.
    [124]张小全,吴可红,Murach D.树木细根生产与周转研究方法评述[J].生态学报,2000,20(5):875-883.
    [125]张雪萍,黄初龙,李景科.赤子爱胜蚓对森林凋落物的分解效率[J].生态学报,2005,5(9):2427-2033.
    [126]张翼,汪有科,吴钦孝.黄土高原几种主要森林类型的凋落及其过程的比较研究[J].水土保持学报,2001,15(5):91-94.
    [127]章志琴,林开敏,邹双全,等.不同调控措施对杉木枯落物分解的影响[J].浙江林学院学报,2006,23(1):65-69.
    [128]张志毅,于雪松,朱之悌.三倍体毛白杨无性系有性生殖能力的研究[J].北京林业大学学报,2000,22(6):5-8.
    [129]赵兴征,卢剑波.农林系统研究进展[J].生态学杂志,2004,23(2):127-132.
    [130]钟哲科,高智慧.杨树水杉林带枯落物对土壤微生物CN的影响[J].林业科学,2003,39(2):153-157.
    [131]周志翔,李国怀,徐永荣.果园生态栽培及其生理生态效应研究进展[J].生态学杂志,197,16(1):45-52.
    [132]朱光权,江波,顾炳贤,等.意杨苏柳营养特点与需肥规律研究[J].浙江林业科技,1995,15(4):7-12.
    [133]朱之悌,林惠斌,康向阳.毛白杨异源三倍体B301等无性系选育的研究[J].林业科学,1995,31(6):499-505.
    [134]邹碧,李志安,丁永祯,等.南亚热带4种人工林凋落物动态特征[J].生态学报,2006,26(3):715-721.
    [135]Aber J. D., J. M. Melillo, K. J. Nadelhoffer, et al.Fine root turnover in forest ecosystems in relation to quatity and form of nitrogen availability: a comparison of two methods[J].Oecologia,1985(66):317-321.
    [136]Adrien C. F., S. A. Andrew, H. D. Evan, et al.Forest litter production, chemistry, and decomposition following two years of free-air CO_2 enrichment[J]. Ecology, 2001,82(2):470-484.
    [137]Aerts R.Climate, leaf chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship[J]. Oikes,1997,79 (3):439-449.
    [138]Aerts R, H. D. Caluwe.Nutritional and plant mediated controls on leaf litter decomposition of Carexspecies[J].Ecology,1997,78(1):244-260.
    [139]A..Haraguchi, Hasegawa. Chiaki, Hirayama. Akiko, et al.Decomposition activity of peat soils in geogenous mires in Sasakami,Central Japan[J].European journal of soil biology,2003,39(4):191-196.
    [140]Alfaia S.S.,GA.Ribeiro,A.D.Nobre,et al.Evaluation of soil fertility in small holder agroforestry systems and pastures in western Amazonia[J].Agriculture,ecosystem&environment,2004,102(3):409-414.
    [141]Alicia S.Moretto.Roberto A.Distel.Decomposition of and nutrient dynamics in leaf litter and roots of Poa ligularis and Stipa gyneriodes[J]Journal of arid environments,2003,55(3):503-514.
    [142]Alwyn Sowerby,Herbert Blum,Andrew S.Ball.,.Elevated atmospheric CO_2 affects the turnover of nitrogen in a European grassland[J].Applied soil ecology,2005,28(1):37-46.
    [143]Anne-Marie Kurka,Michael Starr.Relationship between decomposition of cellulose in the soil and tree stand characteristics in natural boreal forests[J].Plant and soil,1997,195(2):273-281.
    [144]Ali T.Ayoub.Fertilizers and the environment[J].Nutrient cycling in agroecosystems,1999(55):117-121.
    [145]Bai G.Y.,Wang S.Z.,Leng X.T.,et al.Bioenvironmentalmechanism of herbaceous peat forming[J].Acta geographica sinica,1999,54(3):247-254.
    [146]Bajrang Singh.Biomass production and nutrient dynamics in three clones of Populus deltoides planted on Indogangetic plains[J].Plant and soil,1998(203):15-26.
    [147]Berg B.Nutrient release from litter and humus in coniferous forest soils—A mini review[J].Scandinavian journal of forest research,1986(1):359-369.
    [148]Berg B.,C.O.Tamn.Decomposition and nutrient dynamics of litter in long-term optimum nutrition experiments(I):Organic matter decomposition in Picea abies needle litter[J].Scandanavian journal of forest reserch,1991(6):305-321.
    [149]Berg B,M.P.Berg,P.Bottner,et al.Litter mass loss rates in pine forests of Europe and Eastern United States:Some relationships with climate and litter quality[J].Biogeochemistry,1993(20):127-159.
    [150]Berg B.,E.Matzner.EfFect of N deposition on decomposition of plant litter and soil organic matter in forest systems[J].Environmental reviews,1997(5):1-25.
    [151]Berg M.P.,J.P.Kniese,R.Zoomer,H.A.Verhoef.Long-term decomposition of successive organic strata in a nitrogen saturated Scots pine forest soil[J].Forest ecology and management,1998,107(1-3):159-172.
    [152]Berg B.Litter decomposition and organic matter turnover in northern forest soils[J].Forest ecology and management,2000,133(1-2):13-22.
    [153]Berish C.W.,J.J.Ewel.Root development in simple and complex tropical successional ecosystems[J].Plant and soil,1988(106):73-84.
    [154]Binkley,D.,R.Senock,S.Bird,T.G.Cole.Twenty years of stand development in pure and mixed stands of Eucalyptus saligna and nitrogenfixing Falcataria moluccana[J].Forest ecology management,2003,182(1-3):93-102.
    [155]Blair J.M.,R.W.Parmalee,M.H.Beare.Decay rates,nitrogen fluxes.and decomposer communities of single-and mixed-species foliar litter[J].Ecology,1990,71(5):1976-1985.
    [156]Bliss L.C.Caloric and lipid content in alpine tundra plants[J].Ecology,1962,43(4):753-757.
    [157]Bormann F. H., G E. Likens.Pattern and process in a forest ecosystem[M].NewYork: Springer-verlas,1979:289.
    [158]Boulton A. J., P. I. Boon.A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over an old leaf?[J].Australian journal of marine and freshwater research,1991,42(1):1-43.
    [159]Boyer E. W., R. W. Howarth, J. N. Galloway, et al.Nitrogen inputs to world regions[M]. In:Mosier A. R., K.J. Syers,and Freney J. R.(eds), Agriculture and Nitrogen Cycle, The Scientific Commmittee on Problems of the environment(SCOPE). Island Press, Covelo, California,USA,2004:221-230.
    [160]Briones M. J. I., P. Ineson.Decomposition of eucalyptus leaves in litter mixtures[J].Soil biology and biochemistry, 1996,28(10-11): 1381-1388.
    [161]Cahyono Agus,Oka Karyanto, Satoshi Kita,et al.Sustainable site productivity and nutrient management in a short rotation plantation of Gmelina arborea in East Kalimantan, Indonesia[J].New forest,2004(28):277-285.
    [162]Campbell B. D., J. P. Grime.An experimental test of plant strategy theory[J].Ecology,1992,73(1):15-29.
    [163]Carreiro M. M., K.Howe, D. F. Parkhurst, R. V. Pouyat.Variation in quality and decomposability of red oak leaf litter along an ueban-rural gradient[J].Biology and fertility of soils,1999(30):258-268.
    [164]Chintul R., A.R. Zaharah, A.K. Wan Rasidah.Decomposition and nitrogen release patterns of Paraserianthes falcataria tree residues under controlled incubation[J].Agroforestry systems,2004(63):45-52.
    [165]Clive welham,Ken Van Rees,Brad Seely,Hamish Kimmins.Projected long-term productivity in Saskatchewan hybrid poplar plantations:weed competition and fertilizer effects[J].Canadian journal of forest research,2007,37(2):356-371.
    [166]Criquet S., S. Tagger, G. Vogt, et al.Laccase activity of forest litter[J].Soil biology and biochemisrty,1999,31(9):1239-1244.
    [167]Cole D. W.Soil nutrient supply in natural and managed forests[J].Plant and soil,1995(168-169):43-53.
    [168]CoUteaux,M. M., P. Bottner, B. Berg.Litter decomposition, climate and litter quality[J].Trends in ecology and evolution,1995,10(2):63-66.
    [169]Deforest J. L., D. R. Zak, K.S. Pregitzer, A. J. Burton.Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest[J].Soil biology and biochemistry,2004,36(6):965-971.
    [170]Driessche R. van den.First year growth response of four Populus trichocarpa ×Populus deltoides clones to fertilizer placement and level[J].Canadian journal of forest research,1999,29(5):554-562.
    [171]Douglas G B., A. S. Walcroft,S.E.Hurst,et al.Interactions between widely spaced young poplars (Populus spp.) and introduced pasture mixtures[J].Agroforestry systems,2006,66(2):165-178.
    [172]Dyck, W. G, D. W.Cole, N. B. Comerford.Impacts of Forest Harvesting on Long-term Site Productivity[M].Chapman & Hall,1994:36.
    [173]Edgard Campinhos JR.Sustaniable plantations of high-yield Eucalyptus trees for production of fiber:the Aracruz case[J].New forests,1999(17):129-143.
    [174]Edmonds R.L.,T.B.Thomas.Decomposition and nutrient release from green needles of western hemlock and pacific silver fir in an old-growth temperate rain forests,Olympic National Park Washington[J].Canadian journal of forest research,1995,25(7):1049-1057.
    [175]Elena Orme(?)o,Virginie Baldy,Christine Ballini,et al.Effects of environmental factors and leaf chemistry on leaf litter colonization by fungi in a Mediterranean shrubland[J].Pedobiologia,2006,50(1):1-10.
    [176]Eva S.L(?)pez,Isabel Pardo,Nuria Felpeto.Seasonal differences in green leaf breakdown and nutrient content of deciduous and evergreen tree species and grass in a granitic headwater stream[J].Hydrobiologia,2001,464(15):51-61.
    [177]Evans J.A.Future report on second rotation productivity in the Usutu Forest,Swaziland results of the 1977 reassessment[J].Commonwealth forestry review,1978(57):253-261.
    [178]Evans J.Long-term productivity of forest plantation-status in 1990[C].19~(th)world congress,1990(1):165-174.
    [179]Ewel J.Natural systems as models for the design of sustainable systems of land use[J].Agroecosystems,1999,45(1-3):1-21.
    [180]Felipe G.Sanchez,Emily A.Carter,Zakiya H.Leggett.Loblolly pine growth and soil nutrient stocks eight years after forest slash incorporation[J].Forest ecology and management,2009,257(5):1413-1419.
    [181]Fog K.The effect of added nitrogen on the rate of decomposition of organic matter[J].Biological reviews of Cambridge philosophical society,1988,63(3):433-462.
    [182]Folster H.,P.K.Khanna.Dynamics of nutrient supply in plantations soils[M].In:Nambiar E.K.S.,Brown A.G(eds.),Management of soil,Nutrients and water in tropical plantation,Australia,Canberra,1997:338-378.
    [183]Forrester D.I.,J.Bauhus,A.L.Cowie.On the success and failure of mixed-species tree plantations:lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii[J].Forest ecology and management,2005,209(l-2):147-155.
    [184]Forrester D.I.,J.Bauhus,A.L.Cowie,J.K.Vanclay.Mixed-species plantations of Eucalyptus with nitrogen-fixing trees:a review[J].Forest ecology and managemennt,2006,233(2-3):211-230.
    [185]France R.,H.Culbert,C.Freeborough,et al.Leaching and early mass loss of boreal leaves and wood in oligotrophic water[J].Hydrobiologia,1997,345(2-3):209-214.
    [186]Freeman C,N.J.Ostle,N.Fenner,et al.A regulatory role for phenol oxidase during decomposition in peatlands[J].Soil biology and biochemistry,2004,36(10):1663-1667.
    [187]Frey S.D.,K.Melissa,L.P.Jeri,T.S.Rodney.Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood.pine forests[J].Forest ecology and management,2004,196(1):159-171.
    [188]Fyles J. W., I. H. Fyles.Interaction of Douglas-fir with red alder and salal foliage litter during decomposition[J].Canadian journal of forest research,1993(23):358-361.
    [189]Gallardo J. F., A.Martin, R. I. Santa.Nutrient cycling in deciduous forest ecosystems of the Sierra de Gata mountains: above ground litter production and potential nutrient return[J].Annales-des-Sciences-Forestieres,1998,55(7):749-760.
    [190]Gallo M, R. Amonette, C.Lauber, et al.Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils[J].Microbial ecology,2004,48(2):218-229.
    [191]Gholz H. L., R. F. Fisher.Nutrient dynamics in slash pine plantation ecosystems[J].Ecology,1985,66(3):647-659.
    [192]Gilchrist A.N., J. R. deZ Hall, A.G Foote, B.T.Bulloch.Pasture growth around broad-leaved trees planted for grassland stability. In: Session56: Silvilpastrol Systems, Proceedings of the ⅩⅦ International Grassland Congress, 18-21 February 1993 Rockhampton, Australia. Volume Ⅲ pp 1993:2062-2063.
    [193]Grier C. C, K.A.Vogt, M. R. Keyes, et al.Biomass distribution and above- and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades[J].Canadian journal of forest research,1981(11):155-167.
    [194]Grigg A. H., D. R. Mulligan.Litterfall from two eucalypt woodlands in central Queensland[J].Australian journal of ecology, 1999,24(6):662-664.
    [195]Hansen E. A., R. A.McLaughlin, P. E. Pope.Biomass and nitrogen dynamics of hybrid poplar on two different soils: implications for fertilization strategy[J].Canadian journal of forest research,1988(18):223-230.
    [196]Hansen R. A., D. C. Coleman.Litter compexity and composition are determinants of the species composition of orabatid mites(Acari:Oribatida)in littterbags[J].Applied soil ecology,1998,9(1-3):17-23.
    [197]Hansen,R. A.Red oak litter promotes a microarthropod functional group that accelerates its decomposition[J].Plant and soil,1999,209(1):37-45.
    [198]Harrison P G, K.H. Mann.Detritus formation from eelgrass(Zostera m arina L.): the relative effects of fragmentation, leaching and decay[J].Limnology Oceanogr,1975(20):924-934.
    [199]Hector A., A. J. Beale,A. Minns, et al.Consequences of the reduction of plant diversity for litter decomposition:effects through litter quality and microenvironment[J].Oikos,2000(90):357-371.
    [200]Hendrick R. L.. K.S. Pregitzer.Temporal and depth-related patterns of fine root dynamics in Northern hardwood forest[J].Ecology, 1996(84): 167-176.
    [201]Hogervorst R. F., M. A. J. Digkhuis, M. A. Schaar, et al.Indication for the tracking of elevated nitrogen levels through the fungal route in a soil food web[J].Environmental pollution,2003(126):257-266.
    [202]Hopmans P., H. T. L. Stewart, D. W. Flinn.Impacts of harvesting on nutrients in a eucalypt ecosystem in southeastern Australia[J].Forest ecology management,1993(59):29-51.
    [203]Holland E. A., F. J. Dentener, B. H. Braswell, et al.Contemporary and pre2industrial global reactive nitrogen budgets[J].Biogeochemistry,1999(46):7-43.
    [204]Hu S.J.,K.F.Mary,C.F.Stuart.Soil microbial feedbacks to atmospheric CO_2 enrichment[J].Trees,1999(14):433-437.
    [205]Huang Y.,Shen Y.,Zhou M.,et al.Decomposition of plant residue as influenced by its lignin and nitrogen[J].Acta phytoecologica sinica,2003,27(2):183-188.
    [206]Iacazio G.,C.Pe'rissol,O.Faure.A new tannase substrate for spectrophotometnc assay[J].Journal microbiology methods,2000(3):209-214.
    [207]Ingestad T.New concepts on soil fertility and plant nutrition as illustrated by research on forest trees and stands[J].Geoderma,1987(40):237-252.
    [208]Insam H.Are the soil microbial biomass and basal respiration governed by the climatic regime?[J].Soil biology and biochemistry,1990(22):525-532.
    [209]Isidorov V.,M.Jdanova.Volatile organic compounds from leaves litter[J].Chemosphere,2002(48):975-979.
    [210]Jackson R.B.,H.A.Mooney,E.D.SchulzcA globe budget for fine root biomass,surface area,and nutrient contens[J].Proceedings of national academy of sciences USA,1997(94):7362-7366.
    [211]Jordan D.F.Productivity of a tropical forest and its relation to a world pattern of energy storage[J].Ecology,1971(59):425-433.
    [212]Jorgensen J.R.,C.G Wells,L.J.Metz.The nutrient cycle--Key to continuous forest production[J]Journal of forestry,1975(73):400-403.
    [213]Kaneko N.,E.F.Salamanca.Mixed leaf litter effects on decomposition rates and soil microarthropod communities in an oak-pine stand in Japan[J].Ecological research,1999(14):131-138.
    [214]Kawadias V.A.,D.Alifragis,A.Tsiontsis,et al.Litterfall,litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece[J].Forest ecology and management,2001(144):l 13-127.
    [215]Koukoura Z.,A.P.Mamolos,K.L.Kalburtji.Decomposition of dominant plant species litter in a semi-arid grassland[J].Applied.soil ecology,2003(23):13-23.
    [216]Liang wan jun,Hu hai qing,Liu fu jin,Zhang da ming.Research advance of biomass and carbon storage of poplar in China[J].Journal of forestry research,2006,17(1):75-79.
    [217]Liu C.J.,C.J.Westman,B.Berg,et al.Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia[J].Global ecology and biogeography,2004(13):105-114.
    [218]Liu L.L.,J.S.King,C.P.Giardina.Effects of elevated atmospheric CO_2 and tropospheric O_3 on nutrient dynamics:decomposition of leaf litter in trembling aspen and paper birch communities[J].Plant soil,2007(299):65-82.
    [219]Lisa C,D.B.Richard,P Ineson,K.A.John.Relationships between enchytraeid worms(Oligochaeta),climate change,and the release of dissolved organic carbon from blanket peat in Northern England[J].Soil biology and biochemistry,2002(34):599-607.
    [220]Liza M.Zabek.Nutrition and fertilization response:a case study using hybrid poplar[D].Canada:the university of Columbia,2001:54.
    [221]Lousier J.D.,D Parkinson.Chemical element dynamics in decomposing leaf litter[J].Canadian journal botany.1978(56):2795-2812.
    [222]Marshall J. D., R. H. Waring.Predicting fine root production and turnover by monitoring root starch and soil temperature[J].Canadian journal of forest research,1985(15):791-800.
    [223]Maryann W, B Y. Joseph.Early stages of decay of Lythrum salicaria L. and Typha latifolia L. in a standing-dead position[J].Aquatic botany,2003,75(l):45-57.
    [224]Matthew David Wallenstein.Effects of increased nitrogen deposition on forest soil nitrogen cycling and microbial community structure[D].USA:Duke university,2004:1.
    [225]McArthur J. V., J. M. Aho,R. B. Rader, G. L. Mills.Interspecific leaf interactions during decomposition in aquatic and floodplain ecosystems[J].Journal of the north american benthological society,1994(13):57-67.
    [226]McClaugherty C. A., J. D.Aber, J. M. Melillo.The role of fine root in the organic matter and nitrogen budgets of two forested ecosystems[J].Ecology,1982,63(5):1481-1490.
    [227]McTiernan K.B., P.Ineson, P. A. Coward.Respiration and nutrient releae from tree leaf litter mixtures[J].Oikos,1997(78):527-538.
    [228]Meentemeyer V. Macroclimate and lignin control of litter decomposition rates[J].Ecology,1978(59):465-472
    [229]Meentemeyer V.,E.O.Box, R.Thompson.World patterns and amounts of terrestrial plant litter production[J].Bioscience,1982,32(2):125-128.
    [230]Melillo J. M.Will increases in atmospheric CO_2 affect decay processes[M].Ecosystem Center Annual Report, Marine Biological Laboratory, Woods Hole, MA, USA,1983:10-11.
    [231]Merier C. E., C. C. Grier, D. W. Cole.Below- and above ground N and P use by Abies amabilis standst[J].Ecology,1985(66):1928-1942.
    [232]Michael N. W., P S. Joshua.Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in Arctic Tundra soils[J].Ecosystems,2003(6): 129-143.
    [233]Montagnini F., E. Gonzalez, R. Rheingans.Mixed and pure forest plantations in the humid neotropics: a comparison of early growth, pest damage and establishment costs[J].Common wealth forest review,1995,74(4):306-314.
    [234]Morris L. A., R. E. Miller.Evidence for long-term production changes as provided by field trials[M]. In. Dyck W. J., D. W. Cole(eds.), Impacts of forest harvesting on long-term-site production,Londun:Champan&Hall,1994:41-80.
    [235]Mu(?)oz F., J. Beer.Fine root dynamics of shaded cacao plantations in Costa Rica[J].Agroforestry systems, 2001(51):19-130.
    [236]Nilsson M. C, D. A. Wardle, A. Dahlberg.Effects of plant litter species composition and diversity on the boreal forest plant-soil system[J].Oikos,1999(86):16-26.
    [237]Norby R. J.Issues and perspectives for investigation root responses to elevated atmospheric carbon dioxide[J].Plant and soil,1994(165):345-349.
    [238]Norgrove L., S. Hauser.Leaf properties, litterfall, and nutrient inputs of Terminalia ivorensis at different tree stand densities in a tropical timber-food crop multistrata system[J].Canadian journal of forest research,2000,30(9):1400-1409.
    [239]Ouyang,Hua.Nitrogen cycling and availability of two forest ecosystems in the Upper Peninusula of Michigen[D].USA:Michigen technological university,1997:1.
    [240]Owensby C.E.Nitrogen and phosphorus dynamics of a tall grass prairie ecosystem exposed to elevated carbon dioxide[J].Plant cell and environment,1993(16):843-850.
    [241]Papatheodorou E.M.,P.S.George,G.Anna.Response of soil chemical and biological variables to small and large scale changes in climatic factors[J].Pedobiologia,2004(48):329-338.
    [242]Paris P.,F.Cannata,G.Olimpieri.Influence of alfalfa(Medicago sativa L.)intercropping and polyethylene mulching on early growth of walnut(Juglans spp.)in central Italy[J].Agroforestry systems,1995(31):169-180.
    [243]Pausas J.G.,P.Casals,J.Romanya.Litter decomposition and faunal activity in Mediterranean forest soils:effects of N content and the moss layer[J].Soil biology and biochemistry,2004(36):989-997.
    [244]Pearson J.,G.R.Stewart.The deposition of atmospheric ammonia and its effects on plants[J].New phytologist,1993(125):283-305.
    [245]Pedersen L.B.,J.B.Hansen.A comparison of litterfall and element fluxes in even aged Norway spruce,Sitka spruce and beech stands in Denmark[J].Forest ecology management,1999(114):55-70.
    [246]Prescott C.E.Does nitrogen availability control rates of litter decomposition in forests?[J].Plant andsoil,1995(168-169):83-88.
    [247]Prescott C.E.,L.M.Zabek,C.L.Staley,R.Kabzems.Decomposition of broadleaf and needle litter in forests of British Columbia:influences of litter type,forest type and litter mixtures[J].Canadian journal forest research,2000(30):1742-1750.
    [248]Preston C.M.,J.A.Trofymow,C.I.D.E.W.Group.Variability in litter quality and its relationship to litter decay in Canadian forests[J].Canadian journal of botany,2000(78):1269-1287.
    [249]Raich J.W.,W.H.Schlesinger.The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J].Tellus,1992(44B):81-99.
    [250]Raich J.W.,K.J.Nadelhoffer.Below ground carbon allocation in forest ecosystems:global trends[J].Ecology,1989,70(5):1346-1354.
    [25 l]Ritter E.Litter decomposition and nitrogenmineralization in newly formed gaps in a Danish beech(Fagus sylvatica)forest[J].Soil Biology and Biochemistry,2005(37):1-11.
    [252]Robert F.Powers.Long-Term Soil Productivity:genesis of the concept and principles behind the program[J].Canadian journal of forest research,2006(36):519-528.
    [253]Rustad L.E.,C.S.Cronan.Element loss and retention during litter decay in a red spruce stand in Maine[J].Canadian journal of forest research,1988(18):947-953.
    [254]Ruess R.W.,R.L.Hendrick,J.P.Bryant.Regulation of fine root dynamics by Mammalian browsers in early successional Alaskan Taiga forests[J].Ecology,1998(76):2706-2720.
    [255]Salamanca E.F.,N.Kaneko,S.Katagiri.Effects of leaf litter mixtures on the decomposition of Quercus serrata and Pinus densiflora using field and laboratory microcosm methods[J].Ecological engineering,1998(10):53-73.
    [256]Sariyildiz T.,J.M.Anderson.Interactionsbetween litter quality,decomposition and soil fertility:a laboratory study[J].Soil biology and biochemistry,2003(35):391-399.
    [257]Skinner M.R,G.Murphy,E.D.Robertson,J.R.Firth.Deleterious effects of soil disturbance on soil properties and the subsequent early growth of second rotation radiata pine(C).IEA/BE A3 Report No.8.Forest Research Institute.New Zealand,FRI Bulletin 1989,152:201-211.
    [258]Sinsabaugh R.L.,A.EXinkins.Statistical modeling of litter decomposition from integrated cellulose activity[J].Ecology,1993,74(5):1594-1597.
    [259]Sinsabaugh R.L.,R.K.Antibus,A.E.Linkins.An enzymic approach to the analysis of microbial activity during plant litter decomposition[J].Agricrlture ecosystems and environment,1991(34):43-54.
    [260]Smith J.L.,J.M.Norton,E.A.Paul,et al.Decomposition of 14C~2 and 15N~2labled organisms in soil under anaerobic conditions[J].Plant and soil,1989(116):115-118
    [261]Sommerville D.,R.Bradley,D.Mailly.Leaf litter quality and decomposition rates of yellow birch and sugar maple seedlings grown in monoculture and mixed-culture pots at three soil fertility levels[J].Trees,2004(l 8):608-613.
    [262]Staaf H.Influence of chemical composition,addition of raspberry leaves.and nitrogen supply on decomposition rate and dynamics of nitrogen and phosphorus in beech leaf lirter[J].Oikos,1980(35):55-62.
    [263]Swift M.J.,O.W.Heal,J.M.Anderson.Decomposition in Terrestrial Ecosystems[M].University of California Press,Berkeley,California,1979
    [264]Swift M.J.,J.M.Anderson.Decomposition Lieth H.Ecosystems of the World,14B.Tropical rain forest ecosystems;biogeographical and ecological studies[M].Amsterdam:Elsevier,1989:547-561.
    [265]Taylor B.R.,D.Parkinson,W.F.J.Parsons.Nitrogen and lignin content as predictors of litter decay rates:a microcosm test[J].Ecology,1989,70(1):97-104.
    [266]Taylor B.R.,W.R J.Parsons,D.Parkinson.Decomposition of Populus tremuloides leaf litter accelerated by addition of Alnus crispa litter[J].Canadian journal of forest research,1989(19):674-679.
    [267]Thevathasan N.V.,A.M.Gordon.Moisture and fertility interactions in a potted poplar-barley intercropping[J].Agroforestry systems,1995(29):275-283.
    [268]Tian G.,L.Brussaard,B.T.Kang.Breakdown of plant residues with contrasting chemical compositions:Effect of earthworms and millipedes[J].Soil biology and biochemistry,1995(27):277-280.
    [269]Trofymow J.A.,T.R.Moore,B.Titus,et al.Rates of litter decomposition over 6 year in Canadian forests:influence of litter quality and climate[J].Canadian journal of forest research,2002(32):789-804.
    [270]Van den Driessche,R.First-year growth response of four Populus trichocarpaxPooulus deltoids clones to fertilizer placement and level[J].Canadian journal of forest research,1999(29):554-562.
    [271]Vitousek P.M.Litterfall,nutrient cycling and nutrient limitation in tropical forests[J].Ecology,1984,65(1):285-298.
    [272]Vitousek P.M.,D.R.Turnet,W.J.Parton,et al.Litter decomposition on theMauna Loa environmentalmatrix,Hawaii:patterns,mechanisms and models[J].Ecology,1994,75(2):418-429.
    [273]Vitousek P.M.,J.D.Aber,R.W.Howarth,et al.Human alteration of the global nitrogen cycle: sources and consequences[J].Ecology application,1997(7):737-750.
    [274]Vogt K.A..C.C.Grier,D.J.Vogt.Production,turn over and nutrient dynamics of above-and below-ground detritus of world forests[J].Advanced ecology research,1986(15):303-377.
    [275]Vogt K.A,D.J Vogt,P.A.Palmiotto,et al.,Review of root dynamics in forest ecosystems grouped by climatic forest type and species[J].Plant and soil,1996(187):159-219.
    [276]Waldrop M.P.,J.G Mccoll,R.F.Powers.Effects of forest postharvest management practices on enzyme activities in decomposing litter[J].Soil science sociaty america journal,2003(23):1250-1256
    [277]Wardle D.A.,K.I.Bonner,K.S.Nicholson.Biodiversity and plant littenexperimental evidence which does not support the view that enhanced species richness improves ecosystem function[J].Oikos,1997(79):247-258.
    [278]Wardle D.A.Communities and ecosystems:linking the aboveground and belowground components[M].USA:Princeton Univesity press,2002:47.
    [279]Weswmael B.V.Litter decomposition and nutrient distribution in humus profiles in some Mediterranean forests in southern Tuscany[J].Forest ecology and management,1993(57):99-114.
    [280]Webster J.R.,E.F.Benfield.Vascular plant breakdown in freshwater ecosystems[J].Annual review of ecology and systematics,1986(17):567-594.
    [281]Yin R,W.F.Hyde.Trees as an agriculture sustaining activity:the case of Northern China[J].Agroforestry systems,2001,50(2):179-194.
    [282]Yoshiyuki Inagaki,Atsushi Sakai,Shigeo Kuramoto,et al.Inter-annual variations of leaf-fall phenology and leaf-litter nitrogen concentration in a hinoki cypress(Chamaecyparis obtusa Endlicher)stand[J].Ecologyresearch,2008(23):965-972.
    [283]Zabek L.M.Nutrition and fertilization response:A case study using hybrid poplar[D].Canada:The University of British Columbia,2001:298..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700