用户名: 密码: 验证码:
河北小五台山森林生态系统主要因子间量化关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河北省小五台山国家级自然保护区的森林植被是暖温带森林生态系统的典型代表,对其主要因子间量化研究结果可以为今后对此气候带森林生态系统的管理提供重要依据。本研究对小五台山华北落叶松林、油松林、白桦林、山杨林、白桦落叶松混交林以及其它阔叶混交林等典型森林生态系统进行了调查,在对其土壤理化性质、物种多样性、林木生长状况等因子进行了分析,并对各因子间的相关性进行了分析研究,在此基础上对小五台山森林生态系统健康管理措施提出了部分建议。研究的主要结论:
     (1)森林土壤特征研究表明:①不同森林群落的土壤颗粒多以0.25~2mm粒级和≥2mm粒级为主,并且随着土层的深度,≥2mm粒级含量会随之增多。②土壤容重均表现出随土层深度增加而呈上升的趋势,不同林分间各土层土壤容重差别并不大,平均值在0.78~1.08g/cm~3之间,土壤均属于较疏松的状态。③土壤含水量均随土壤深度增加先增加后减少,在不同土层不同林分中土壤含水量存在不同的差异④森林土壤的N素较缺乏,不同林分土壤碱解N含量均随土层增加呈下降的趋势;速效P含量较稳定,均在0.01g/kg和0.02g/kg之间;不同森林群落的土壤速效K均随土层深度的增加而减少,从林分类型来说,针叶林的土壤速效K含量大于阔叶林的;土壤有机质的分布均随着土层的加深而下降,且下降幅度很大,落叶松群落有机质含量最高;整体上属于酸性和中性土壤,随着土层加深pH值增大。
     (2)林分结构及林木生长:①林分的直径结构接近于正态分布。高海拔林分的直径分布结构为截尾正态分布;针叶林高海拔林分直径结构基本服从正态分布;针叶低海拔林分直径结构为右偏。②结果表明,低海拔阔叶林的林分高要高于高海拔的阔叶林;而低海拔针叶林的林分平均高低于高海拔的针叶林
     (3)植物物种多样性研究:①α物种多样性分析结果:灌木物种丰富度在各个群落中均小于草本层,白桦林、桦木云杉混交林物种丰富度较小;均匀度较大的群落是油松林、栎林,草本层较灌木层有高有低,没有确定的变化规律;物种多样性两种指数变化趋势相似,栎林、山杨林、落叶松白桦针阔混交林多样性指数较高,其他相对小些,云杉白桦针阔混交林物种多样性最小。②物种相似性分析结果:AB=EG=EF=FK=IJ,这几个群落之间相似性系数最大,即β多样性最小,异质程度最低,山杨林与落叶松白桦混交林之间共有种最少,相似性最小。草本层Sokal相似性系数最大的是云杉桦木针阔混交林、白桦林DF=白桦林、落叶松白桦混交林FI,其次为BF=DE=EF=FH=FJ=HI,β多样性最大的是GJ=GK。
     (4)土壤理化性质间相互关系研究结果表明,①土壤毛管含水量和碱解氮有较高的正相关,与速效磷呈负相关;土壤田间持水量与碱解氮、有机质含量和pH值正相关,而与速效k呈负相关。②土壤有机质含量与≥4mm、≤0.1mm和0.25-1mm的土壤粒径负相关,速效钾和≥4mm、≤0.1mm的土壤粒径土同样负相关。③土壤自然含水量和土壤毛管含水量与≥4mm、≤0.1mm的土壤粒径土负相关。④森林枯落物中的半分解层与全P含量、碱解氮和全N正相关关系,分解层与全P含量同样正相关,而与pH值有明显的负相关关系。
     (5)生物多样性与生境相关分析得出,①影响生物多样性的主要地形因子是海拔、郁闭度、坡位和坡向。随着海拔高度的增加,生物多样性将会减少,尤其是多样性指数。②在多样性与林地养分因子相关关系中,影响多样性的主要因子是全N含量和pH值。③在土壤粒径的变量组中,影响多样性的主要因子有≥4mm、≤0.1mm和0.15~0.25mm的土壤粒径。
     (6)林木生长与生境因子相关分析得出,①枯落物中的各个分解层与林分生长的指标有不同的相关关系。②林分生长中的各项指标均与全P、速效k、pH值呈正相关。③林分生长量与≤0.1mm、1~2mm粒径的土壤正相关,≥4mm、2~4mm、0.1~0.154mm土壤粒径有明显的负相关。
     在总结研究成果基础上,简要提出了以凋落物和生物多样性为调节机制的森林生态系统健康管理措施。
The forest vegetation in the Xiaowutai Mountain National Nature Reserve of Hebei Province is a typical representative of the temperate forest ecosystem,and the study on the quantitative relationship of the main factors may provide an important basis for the management of forest ecosystem in the said climate zone.The investigation has been conducted on the typical forest ecosystems such as Larix principis forest,Pinus tabulaeformis forest,Betula platyphylla forest,P opulus davidiana forest, Betula-Larix mixed forest and other broad-leaved mixed forests in the Xiaowutal Mountain.Based on the analyses on the main factors such as soil physical and chemical properties,species diversity and tree growth as well as the correlation of these factors,some proposals have been put forward for the healthy management of the Xiaowutai Mountain forest ecosystem.The main research conclusions are as follows:
     (1) The research on soil characteristics indicates that①Soil particles in different forest communities are mainly 0.25~2mm grade and≥2mm grade.The deeper the soil layer,the more the particles of≥2mm grade.②The soil bulk density tends to increase as the soil layer deepens.The difference is not big among different stands and different soil layers with an average range of 0.78~1.08g/cm~3,and the soil is fairly loose.③The soil water first increases and then decreases as the soil layer deepens,and varies among different stand and different soil layers.④The nitrogen is insufficient in forest soils and the content of the rapidly available nitrogen trends downwards as the soil layer deepens.The rapidly available P content was stable,between 0.01g/kg~0.02g/kg.The rapidly available K content trends downwards as the soil layer deepens.The available K in coniferous forest soils is more than broad-leaved forest soils.The soil organic matter has shown a downward trend with the increases of soil depth and the larch soil organic matter content is highest.The soil in this area belongs to the acidity and the neutral soil and the soil pH value trends upwards as the soil layer deepens.
     (2) Stand structure and forest growth:①The stand diameter structure is near the normal distribution.The diameter structure of high-altitude stand is near the truncated normal distribution,the diameter structure of high-altitude coniferous forest basically belongs to the normal distribution,and the diameter structure of low-altitude coniferous forest shows right deviation.②The tree height of low-altitude broadleaved forest is more than that of high-altitude broad-leaved forest.On the contrary, the mean height of low-altitude coniferous forest is less than that of high-altitude coniferous forest.
     (3)The plant species diversity:①The analyzing result ofαspecies diversity indicates that the shrub species richness in each community was smaller than that of the herb species.Betula platyphylla forest and Betula-Picea mixed forest have small species richness.Pinus tabulaeformis forest and Quercus forest have fairly big species evenness,and the herb layer and the shrub layer vary in the species evenness without regular change.The two indexes of species diversity have similar change trend.The species diversity index of Quercus forest,Populus davidiana forest and Larix-Betula mixed forest are fairly high,and the lowest is Picea-Betula mixed forest.②The analyzing result of the species similarity:AB=EG=EF=FK=IJ,the similarity coefficient between these communities is the biggest,that is to say,theβ-diversity is the smallest and the heterogeneity degree is the lowest.There are few common species between Populus davidiana forest and Larix-Betula mixed forest and the similarity was the smallest.
     (4) Relationship between physical and chemical properties of soil:①There is a positive correlation between soil capillary water and rapidly available N,but a negative correlation between soil capillary water and soil available P.There is a positive correlation between soil field water and rapidly available N,organic matter and pH value,but a negative correlation between soil field water and rapidly available k.②The soil organic matter and≥4mm,≤0.1mm and 0.25-1mm particle size soil show negatively correlated,likewise,available k and≥4mm,≤0.1mm soil particle size soil show an inverse correlation.③Soil natural water and soil capillary water show inverse correlation with≥4mm,≤0.1 mm particle size soil.④The semi-decomposed litter has a positive correlation with total P,available N and total N.The decomposed litter has a positive correlation with total P,but an obvious inverse correlation with the pH value.
     (5) Relationship between biodiversity and habitat:①The main factors affecting biodiversity are altitude,canopy density,slope position and slope aspect.The biodiversity reduces as altitude increases, particularly the diversity index.②The main nutrient factors affecting diversity are total N content and pH value.③In the variable group of soil particle size,the main factors affecting diversity the soil particles of≥4mm,≤0.1mm and the 0.15~0.25mm.
     (6) Relationship between forest growth and habitat factors:①Each decomposed layer of litter has a different correlation with stand growth indicators.②All stand growth indicators have a positive correlation with total P,available k and pH value.③Stand growth has a positive correlation with the soil particles of≤0.1mm and 1~2mm size,but an obvious negative correlation with the soil particles of≥4mm,2~4mm and 0.1~0.154mm size.
     Based on the above-mentioned research results,this paper briefly puts forward some health management measures about forest ecosystem.
引文
[1]安树青,朱学雷,王峥峰等.海南五指山热带山地植物物种多样性研究[J].生态学报,1999,19(6):803-809.
    [2]鲍文,包维楷.眠江上游中山区次生灌丛与人工油松林土壤理化性质比较研究[J].水土保持通报,2004,24(5):10-13.
    [3]曹慧,孙辉,杨浩等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109
    [4]曹志洪.解译土壤质量演变规律,确保土壤资源持续利用[J].世界科技研究与发展,2001,23(3):38-32.
    [5]陈竣,李贻铨,杨承栋.中国林木施肥与营养诊断研究现状[J].世界林业研究,1998,11(3):58-65.
    [6]陈晓德.缙云山森林土壤速效氮、钾含量随植物群落演替变化趋势分析[J].西南师范大学学报,1998,23(1):12l-124.
    [7]陈印平,赵丽华,吴越华,等.森林凋落物与土壤质量的互作效应研究[J].世界科技研究与发展,2005,27(4):88-94.
    [8]陈云明,侯喜禄,刘文兆.黄上丘陵半干旱不同类型植被水保生态效益研究[J].水上保持学报,2000,14(3):57-61.
    [9]陈仲新,张新时.毛乌素沙化草地景观生态分类与排序的研究[J].植物生态学报,1996,20(5):423-437.
    [10]崔玲,张奎壁.中国北方地区生态建设与保护[M].北京:金盾出版社,2003
    [11]戴伟,向师庆.北京山地长石质岩类森林土壤发生分类的研究[J].北京林业大学学报,1994,16(2):34-39
    [12]杜晓军,姜风岐,沈慧,等.低价林早期诊断:生态因子途径[J].应用生态学报,2002,13(12):1523-1528
    [13]方开泰.实用多元统计分析[M].华东师范大学出版社,1989
    [14]冯跃华,张杨珠.土壤有机磷分级研究进展[J].湖南农业大学学报,2002,28(3):259-264.
    [15]耿玉清,孙向阳.北京卧佛寺地区土壤系统分类的研究[J].北京林业大学学报,1998,20(4):30-35
    [16]耿玉清,王保平.森林地表枯枝落叶层涵养水源作用的研究[J].北京林业大学学报,2000,22(5):49-52
    [17]龚子同.中国土壤系统分类理论·方法·实践[M].北京:科学技术出版社,1999
    [18]巩杰,陈利顶,博伯杰,等.黄土丘陵区小流域土地利用与植被恢复对土壤质量的影响[J].应用生态学报,2004,15(12):2292-2296.
    [19]谷建才.华北土石山区典型区域主要类型森林健康分析与评价[D].北京:北京林业大学,2006:76-80.
    [20]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986
    [21]郭继勋,祝廷成.羊草草甸枯枝落叶的分解积累和营养物质会是养分的动态[J].植物生态学与地植物学报,1988,12(3):197-203.
    [22]郭旭东,博伯杰,陈利顶,等.低山丘陵区土地利用方式对土壤质量的影响-以洞北省遵化市为例[J].地理学报,2001,56(4):447-455
    [23]郭志华,减润国,蒋有绪.生物多样性的形成、维持机制及其宏观研究方法[J].林业科学,2002,38(6):116-124
    [24]郭中伟.生态系统水源涵养功能评价-以兴山县为例[J].自然资源学报,1997,13(3):242-248.
    [25]韩维栋,高秀梅,卢昌义,等.中国红树林生态系统生态价值评估[J].生态科学,2000,19(1):40-46.
    [26]韩有志,铁梅,王月娥,等.太行山林区中部土壤养分对油松人工林生长的影响[J].山西农业大学学报,1998,18(1):10-13
    [27]韩玉萍,杨万勤,李旭光等.缙云山森林土壤速效N的分布规律[J].西南师范大学学报,1998,23(2):212-217.
    [28]何晓群.多元统计方法[M].北京:中国人民大学出版社,2004
    [29]贺金生.中国中亚热带东部常绿阔叶林主要类型的群落多样性特征[J].植物生态学报,1998,22(4):303-311.
    [30]侯元兆等.中国森林资源核算研究[M].北京:中国林业出版社,1995.
    [31]胡锋,刘满强,李辉信.土壤动物对土壤质量的影响及研究展望[C]//石元亮.面向农业与环境的土壤科学:中国土壤学会第十届全国会员代表大会及第五届海峡两岸土壤肥料学术交流研讨会文集(综述篇).北京:科学出版社,2004:160-173
    [32]胡佩,周顺桂,刘德辉.土壤磷素分级方法研究评述[J].土壤通报,2003,34(3):229-232
    [33]胡肄慧,陈灵芝,孔繁志,等.几种树木枯叶分解速率的试验研究[J].植物生态学与地植物学报,1987,11(2):124-131.
    [34]黄成敏,龚子同.海南岛北部玄武岩上土壤发育过程的定量研究[J].地理科学,2000,20(4):337-342
    [35]黄国胜,王雪军,孙玉军,等.河北森林生态环境质量评价[J].北京林业大学学报,2005,27(5):75-80
    [36]黄建辉,陈灵芝.北京东灵山地区森林植被物种多样性分析[J].植物学报,1994,36(S1):178-186.
    [37]黄宇,冯宗炜,汪思龙,等.杉木与固氮和非固氮树种混交对林地土壤质量和土壤水化学的影响[J].生态学报,2004,24(10):2192-2199
    [38]黄宇,汪思龙,冯宗炜,等.不同人工林生态系统林地土壤质量评价[J].应用生态学 报,2004,15(12):2199-2205
    [39]蒋菊生.生态资产评估与可持续发展[J].华南热带农业大学学报,2001,7(3):41-46.
    [40]蒋延玲,周广胜,中国主要森林生态系统公益的评估[J].植物生态学报,1999,23(5):426-432.
    [41]雷启迪,刘明久,刘景彦.改造辽西山地人工油松纯林为混交林的探讨[J].生态学杂志,1997,16(1):8-13.
    [42]李金良,郑小贤.北京地区水源涵养林健康评价指标体系的探讨[J].林业资源管理,2004,(1):31-34
    [43]李利平,邢韶华,赵勃,等.北京山区不同区域油松林植物多样性比较研究[J].北京林业大学学报,2005,27(4):12-16
    [44]李天杰,赵烨,张科利,等.土壤地理学[M].北京:高等教育出版社,2005
    [45]李叙勇,李保国,石元春.土壤发育指数及其在黄土-古土壤序列中的应用[J].土壤学报,2001,38(2)154-159
    [46]李学垣.土壤化学[M].北京:高等教育出版社,2001
    [47]李延茂,胡江春,汪思龙,等.森林生态系统中土壤微生物的作用与应用[J].应用生态学报,2004,15(10):1943-1946
    [48]李志安,邹碧,丁永祯,等.森林凋落物分解重要影响因子及其研究进展 458-465[J].生态学报,2004,23(6):77-83.
    [49]李忠佩,程励励,林心雄.红壤腐殖质组成变化特点及其与肥力演变的关系[J].土壤,2002,(1):9-15
    [50]梁宏温,黎洁娟.七坪林场常绿阔叶林凋落物研究初报[J].生态学杂志,1991,10(5):23-26
    [51]梁文举,葛亭魁,段玉玺.土壤健康及土壤动物生物指示的研究与应用[J].沈阳农业大学学报,2001,32(1):70-72
    [52]梁文举,武志杰,闻大中.21世纪初农业生态系统健康研究方向[J].应用生态学报,2002,13(8):1022-1026
    [53]廖崇惠,陈茂乾.小良山人工阔叶混交林中白蚁对枯枝落叶的消耗作用[J].生态学报,1990,10(2):173-176.
    [54]廖利平,高洪,汪思龙、等.外加氮源对杉木叶凋落物分解及土壤养分淋失的影响[J].植物生态学报,2000,24(1):34-39
    [55]林波,刘庆,吴彦等.森林凋落物研究进展[J].生态学杂志,2004,23(1):60-64.
    [56]刘光崧.土壤理化性质测定与剖面描述[M].北京:中国标准出版社,1996
    [57]刘世梁,博伯杰,刘国华,等.我国土壤质量及其评价研究的进展[J].土壤通报,2006,37(1):137-143
    [58]刘小阳,吴开亚.天童山森林植被的群落稳定性与物种多样性的研究[J].生态学杂志,1999,16(5):17.
    [59]刘晓冰,邢宝山,Herbert S J.土壤质量及其评价指标[J].农业系统科学与综台研究,2002, 18(2):109-112
    [60]刘苑秋,刘光顺.人工恢复与重建森林生态系统健康性评价及其维护初探[J].江西林业科技,2001,(5):15-17.
    [61]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999
    [62]鲁绍伟,刘凤芹,余新晓,等.北京市八达岭林场森林生态系统健康性评价[J].水土保持学报,2006,20(3):79-82,105.
    [63]陆元昌.森林健康状态监测技术体系综述[J].世界林业研究,2003,,16(1):20-25
    [64]马克明,博伯杰,周华锋.北京东灵山地区森林的物种多样性和景观格局多样性研究[J].生态学报,1999,19(1):1-7
    [65]马克平,黄建辉,于顺利.北京东灵山地区植物多样性的研究[J].生态学报,1995,15(3):268-277
    [66]马立,韩海荣,马钦彦,等.森林生态系统健康的研究进展[J].林业调查规划,2007,32(1):103-110.
    [67]马万里,Josqum T.Mark A土壤微生物多样性研究的新方法[J].土壤学报,2004,41(1):103-107
    [68]欧阳志云.生态系统服务功能内涵与研究进展.生态系统服务功能研究[M].北京:气象出版社,2002,1-27.
    [69]潘开文,何静,吴宁.森林凋落物对林地微生境的影响[J].应用生态学报,2004,15(1):153-158
    [70]庞学勇,刘庆,刘世全,等.川西亚高山云杉人工林土壤质量性状演变[J].生态学报,2004,24(2):261-267
    [71]钱迎倩,马克平.生物多样性研究的原理和方法[M].北京:中国科学技术出版社,1994,13-36
    [72]邱扬,傅伯杰,王军,等.黄土丘陵小流域土壤水分的空间异质性及其影响因子[J].应用生态学报,2001,12(5):715-720
    [73]任海,彭少麟.恢复生态学导论[M].科学出版社,2001
    [74]任青山.西藏冷杉原始森林土壤物理性质特征分析[J].林业科学,2002,38(3):57-62
    [75]任天志,Stefano G持续农业中的土壤生物指标研究[J].中国农业科学,2000,33(1):68-75
    [76]盛炜彤,范少辉.人工林长期生产力保持机制研究的背景、现状和趋势[J].林业科学研究,2004,17(1):106-115
    [77]吴水荣.2005年全球森林资源评估最新情况[[J].世界林业动态,2005,(15):2-3.
    [78]唐守正.多元统计分析方法[M].北京:中国林业出版社,1986
    [79]吴彦,刘庆,何海,等.亚高山针叶林人工林恢复过程中物种多样性变化[J].应用生态学报,2004,15(8):1301-1306.
    [80]肖风劲,欧阳华,孙江华,等.森林生态系统健康评价指标与方法[J].林业资源管理,2004,23(1):27-30.
    [81]谢高地,张钇锂,鲁春霞等.中国自然草地生态系统服务价值[J].自然资源学报,2001,16(1):47-53.
    [82]徐燕,张彩虹,吴钢.森林生态系统健康性评价与野生动植物资源的可持续利用[J].生态学 报,2005,25(2):380-386.
    [83]薛达元,包浩生,李文华.长白山自然保护区森林生态系统间接经济价值评估[J].中国环境科学,1999,19(3):247-252.
    [84]薛达元.生物多样性经济价值评估-长白山自然保护区案例研究[M].北京:中国环境科学出版社,1997.
    [85]阳含熙,潘渝的,伍业钢,等.长白山阔叶红松林马氏链模型[J].生态学报,1988,8(3):211
    [86]杨万勒,钟章成,陶建平等.缙云山森林土壤速效N,P,K时空特征研究[J].生态学报,2001,21(3):1285-1289.
    [87]杨万勤,钟章成,陶建平.缙云山森林土壤速效P的分布特征及其与物种多样性的关系研究[J].生态学杂志,2001,20(4):24-27.
    [88]杨万勤,钟章成,陶建平,等.缙云山森林土壤速效K的分布特征及其与物种多样性的关系[J].生态学杂志,2001,20(6):1-3.
    [89]杨小波,张桃林,吴庆书.海南琼北地区不同植被类型物种多样性与土壤肥力的关系[J].生态学报,2002,22(2):190-196.
    [90]尹华军,刘庆.森林生态系统健康诊断研究进展及亚高山针叶林健康诊断的思考[J].世界科技研究与发展,2003,25(5):56-61.
    [91]余新晓,张志强,陈丽华,等.森林生态水文[M].北京:中国林业出版社,2004.
    [92]张洪江,程金花,余新晓,等.贡嘎山冷杉纯林枯落物储量及其持水特性[J].林业科学,2003,39(5):147-151.
    [93]张林静,岳明,顾峰雪,张远东等.新疆阜康绿洲荒漠过渡带植物群落物种多样性与土壤环境因子的耦合关系[J].应用生态学报,2002,13(6):658-662.
    [94]张颖.我国森林生物多样性变化的评价研究[J].林业资源管理,2002,31(4):45-52.
    [95]赵景柱,肖寒,吴刚.生态系统服务的物质量与价值量评价方法的比较分析[J].应用生态学报,2000,11(2):290-292.
    [96]郑元润.森林群落稳定性研究方法初探[J].林业科学,2000,36(5):28.
    [97]宗跃光,陈春红,郭瑞华.地域生态系统服务功能的价值结构分析-以宁夏灵武市为例[J].应用生态学报,2000,19(2):148-155.
    [98]Aamlid D,Torseth K,Venn K et al.Changes of forest health in Norwegian boreal forests during 15 years[J].Forest Ecology and Management,2000,127:103-118.
    [99]Acosta-Martinez V:Zobeck TM:Gill TE:Kennedy AC.Enzyme activities and microbial community structure in semiarid agricultural soils.Biology and Fertility of soils.2003,3:216-227.
    [100]AERTS R.Nitrogen partitioning between resorption and decomposition pathways:a trade off between nitrogen use efficiency and litter decomposibility[J].Oikos,1997,80:593-603.
    [101]Allen Eric,Forest health assessment in Canada[J].Ecosystem Health,2001,7:28-34.
    [102]Armesto J J,Pickett S T,McDon M J.Spatial heterogeneity during succession:A cyclic model of invasion and exclusion[J].Ecological Heterogeneity,1991,99;256-269.
    [103]Attiwill PM,Adams MA.Nutrient cycling in forests [J].New Phytol.1993,124:561-582.
    [104]Badiane NNY:Chotte JL:Pate E:Masse D:Rouland C.Use of soil enzyme activities to monitor soil quality in natural and improved fallow s in semi-arid tropical regions.Applied soil ecology,2001,18(3):229-238.
    [105]Bellehumeur G,Legendre P.Multiscale source of variation in ecological variable modeling spatial dispersion elaborating sampling designs[J].Landscape Ecology 1998,13:14-25.
    [106]Berebdse,F.Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystem.Journal of eco logy,1990,78:413-427.
    [107]Berg B.The influence of experimental acidification on nutrient release and decomposition rata of needle and root litter in the forest floor[J].For.Ecol.Manage,1986,15:195-213.
    [108]Bergstrom DW;Monreal CM;Millette JA;King DJ.Spatial dependence of soil enzyme activities along a slope,1998,62(5):1302-1308.
    [109]Bhattacharyya T;Mukhopadhyay S;Baruah U;Chamuah GS.Need for soil study to determine degradation and landscape stability.Current Science,1998,74(1):42-47.
    [110]Binkley D;Resh SC.Rapid changes in soils following Eucalyptus afforestation in Hawaii.Soil Science Society ofAmerica Journal,1999,63(1):222-225.
    [111]Brubaker S C,Jones A J,Lewis D T,et al.Soil properties associated with slope positions.Soil Science Society of American Journal,1993,57:235~239.
    [112]Callicott J B.The value of ecosystem health[J].Environmental value,1995,4:345~361.
    [113]Callicott JB,Aldo Leopold metaphor.Ecosystem Health:New Goals for Environmental Management[M].Washington:Island Press,1992,42-56.
    [114]Costanza R.Toward an operational definition of health[A].In:Costanza R,Norton B,Haskell B.Ecosystem Health-New Goals for Environmental Management[C].Washington D C:Island Press,1992.
    [115]Costanza R,Norton B G,Haskell B D.Ecosystem Health:New goals for environmental management [M].Washington D C:Island Press,1992.
    [116]Costanza R.Ecological and economic system health and social decision making[A].In:Rapport D J,Calow P,Gauder C.Evaluating and Monitoring the Health of Larg-scale Ecosystems [C].New York:Springer-Verlag1995.
    [117]Costanza R.Toward an operational definition of ecosystem health.Ecosystem Health:New Goals for Environmental Management[M].Washington:Island Press,1992,239-256.
    [118]Dale J.Forest health in west coast forests [M].Oregon Dept of Forestry Salem,2000,46-60.
    [119]Francioso O,Ciavatta C,Sanchez S,et al.Spectroscopic characterization of soil organic matter in long-term amendment triats.Soil Sci.,2000,165:495~504.
    [120]Franco vizcaino.E.Plant species diversity and chemical properties of soils in the central desert of BajaCalifornia[J].MexicaSoil Science,1993,155(6):406-416.
    [121]Gross K L,Pregitzer K S,Burton A J.Spatial variation in nitrogen availabiclity in three successional plant communities[J].Journal of Ecology,1995,83,357-367.
    [122]Gross,K L.Spatial variation in nitrogen availability in three successional plant communities[J].Journal of Ecology,1995,83(3):357-367.
    [123]Haskell B D,Norton B G,Costanza R.What is ecosystem health an why should we worry about it [M].Washington DC:Island Press,1992,2-20.
    [124]Haworth L,et al.Adual-perspective model of agro ecosystem health:system functions and system goals [J].Journal of Agro ecosystem and Environmental Ethics,1997,10(2):127-152.
    [125]Hirvonen H.Canada's national ecological framework:an asset to reporting on the health of Canadian forests[J].The Forestry Chronicle,2001,77(1):111-115.
    [126]Hirvonen H.Methods for mapping forest sensitivity to acid deposition for North America.Ecosystem Health,2001,7:4-35.
    [127]Jenkinson D S.Determination of microbial carbon and nitrogen in soil.In:Wilson J B (ed.),Advances in nitrogen cycling.CAB International,Wallingford,England,1988,368~386.
    [128]Karr J R,et al.Assessing biological intergrity in running waters-a method and its rational[M].Champaigre:History Survey,Illinois,Special Publication,1986,5.
    [129]Kerr S R,Dickie L M.Measuring the health of aquatic e-cosystem[A].In:Levin S A,et al.Ecotoxicology:Prob-lems and Approaches[C],New York:Springer-verlag,1984.
    [130]Kristin S.Ecosystem health:a new paradigm for ecological assessment[J].Trends in Ecology and Evolution,1994 (9):456-545.
    [131]Mageau M T,Costanza R,Ulanowicz R E.The development and initial tasting of a quantitative assessment of ecosystem health [J].Ecosystem Health,1995,1(4):201-213.
    [132]Mcmichael A J,Bolin B,Costanza R.Globalization and sustainability of human health:an ecological nersnectives[J].Bioscience,1995,21(49):205-210.
    [133]Mekee,K L.Soil physiochemical patterns and mangrove species distribution reciprocal effects[J].Journal of Ecology,1993,81:477-487.
    [134]Miller H,G Carbon and nutrient interaction-the limitations to productivity,processing of international conference.Forest nutrient cycling,1987,373-385.
    [135]NAGY L A,MACAULEY B J.Eucalyptus leaf-litter decomposition:effects of relative humidity and substrate moisture content[J].Argic Ecosyst Envi ron,1982,14:233-236.
    [136]Nihlgard,B.Nitrogen pollutants seriously stressing.Europe forestry acid magazine,1990.
    [137]0' Laughlin J.Forest ecosystem health assessment issues:definition,measurement and management implications[J].Ecosystem Health,1996(2):19-39.
    [138]O' Laughlin J,Cook P S.Inventory-based forest health indicators:Implications for national forest management[J].Journal of forestry,2003,101(2):11~17.
    [139]Palmer MW.Putting things in even better order the advantages of correspondence analysis.Ecology,1993,74(8):2215-2230
    [140]Page T.Environmental existentialism[A].In:Costanza R,Haskell B.Ecosystem Health-New goods for environmental management[C].Washington DC:Island Press,1992,97-123.
    [141]PRESCOTT C E.Influence of forest floor type on rates of litter decomposition in microcosms[J].Soil Biol Biochem,1996,28(10/11):1319-1325.
    [142]Rapport D J.Defining the practice of clinical ecology[A].In:Costanza R,Norton B,Haskell B.Ecosystem Health-New Goals for Environmental Management[C]Washington D C:Island Press,1992.
    [143]Rapport D J.Ecosystem Health[M].Oxford:Blackwell Science,Inc,1998.
    [144]Rapport D J.What constitutes ecosystem health[J].Pers Biol Med,1989 (33):124-132
    [145]Rboerrson G P,Vitowsek P M.Nitrification potentials in primary and secondary secondary succession[J].Ecology,1981,62,376-386.
    [146]Regens J L,Hodges D G Perspectives on valuing forest ecosystem health[J].Ecosystem Health,1996,22(36):3-4.
    [147]Robert T Lackey.Values,policy and ecosystem health[J].Bioscience,2001,51(5):437-443.
    [148]Schaeefer D K,Cox D K.Establishing ecosystem threshold criteria[A].In:Costanza Norton B,Haskell B.Ecosystem Health New goods for environmental management[C].Washington DC:Island Press,1992.
    [149]Tilman DE,Haddi A.Drought and biodiversity in grasslands[J].Oecologia,1992,89:257-264.
    [150]Timan D.Plant strategies and the Dynamics and Structure of Plant Communities[J].Princeton Unieversity Press,Princeton,N J 1998.
    [151]Tom Cameron.2002:the year of the diversity-ecosystem function'debate.TRENDS in Ecology&Evolution,2002,17:495-496.
    [152]Ulanowicz R E.Ecosystem health and trophic flow networks [A].In:Costanza R,Norton B,Haskell B.Ecosystem Health-New goods for environmental management[C].Washington DC:Island Press,1992,190-206.
    [153]Vaughn C E,Michael C D,Milton B J.Seasonal fluctuations in nurient availability in some northern,Calitornia annual rages soils[J].Soil Science,1986,141(1):43-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700