用户名: 密码: 验证码:
CO_2浓度升高与干旱胁迫对苗木水分运输的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO_2浓度上升影响植物的生长、竞争及水分关系,可以引起植物快速生长而可能使植物在干旱胁迫下更易遭受空穴和栓塞,导致输水系统破坏而不能存活,从而严重影响陆地植物的输水安全与生存。本文以在北京林业大学苗圃内的密闭式生长箱内经过不同时间的高CO_2浓度处理的7个主要造林和绿化树种(油松、侧柏、刺槐、元宝枫、丁香、大叶黄杨和白蜡)为试验对象,研究CO_2浓度增加与干旱胁迫对植物水分运输的影响。通过系统测定其生长指标(苗高、地径、叶生长、叶解剖结构和生物量)、生理指标(气体交换特性、荧光参数、光合特性和碳同位素比值)、水分利用效率、耗水特性、水力结构参数(导水率、比导率、叶比导率和胡伯尔值)、水分参数等分别在720μmol·mol~(-1)CO_2和380μmol·mol~(-1)CO_2(大气现有CO_2浓度)浓度下随着干旱胁迫的变化,得出以下主要结论:
     (1)高CO_2浓度下,7树种的苗高、地径、叶面积、生物量、根茎比、光合速率、胞间CO_2浓度、Fv/Fm、Fv/Fo、WUE_i和WUE_L均增加,阔叶树的海绵组织厚度、栅栏组织厚度、叶片厚度、叶片紧密度、气孔长径、短径、气孔长径和短径比、单个气孔面积均增加。其中,叶面积增长大小为刺槐>白蜡>丁香>元宝枫>大叶黄杨>侧柏>油松,栅栏组织厚度增加的幅度最大。同时,气孔密度、蒸腾速率、暗呼吸速率、比叶重、δ~(13)C值和耗水量下降,气孔导度是先减小后增大。针叶树的叶δ~(13)C值高于阔叶树,叶δ~(13)C值明显小于枝条和根系的,刺槐和白蜡的δ~(13)C值超出了全球C_3植物的δ~(13)C值的极限范围,720μmol·mol~(-1)CO_2所有树种的平均值远高于C_3植物的平均值27.0‰。
     (2)随着干旱胁迫的增加,海绵组织厚度、栅栏组织厚度、叶片厚度、叶片紧密度、疏松度、气孔长径和短径比、耗水量、叶片、枝条和根生物量均减小,油松和侧柏的角质层厚度、上下表皮厚度、根茎比和WUE_L增加。4树种的耗水量日变化呈单峰型曲线,耗水速率在叶面积变化较大时与耗水量的变化不同。CO_2增加和干旱胁迫减弱了干旱或者CO_2浓度增加中的某一单因子对气孔变化的敏感性,使得气孔变化缓慢。
     (3)不同CO_2浓度培养时间的侧柏,总生物量不是随着培育的时间越长其生物量增加的越大。培养1年时间的枝条和根系的δ~(13)C值均大于2年培养时间的。元宝枫叶片δ~(13)C多重复干旱循环的变化曲线呈波浪形,在重度干旱时达到每个波段的顶点,随着循环次数的增加波动幅度越小。高CO_2浓度下树种发生干旱胁迫的时间比正常CO_2浓度的时间慢,延长了植物的干旱周期,720μmol·mol~(-1)CO_2处理可以减缓水势的降低,减少干旱胁迫对植物造成空穴和栓塞的危险性,CO_2浓度增加延迟了水分胁迫的发生,改善了植物体内的水分状况。
     (4)不同CO_2浓度元宝枫在多重复干旱循环中,第2次重复干旱是一个比较复杂的过程,是多重复干旱调节的重要时期。随着CO_2浓度的增加,RWC~0/RWC_s下降,Ψ~0π和Ψ~(100)π在循环1时先增加后下降,一直持续到循环3,高CO_2浓度下元宝枫维持膨压的能力增强,渗透调节和自身保护能力,以及忍耐脱水能力虽然增加,但是抗脱水能力却减弱了,不能同时兼得。720μmol·mol~(-1)CO_2元宝枫ε~(max)在水分条件较好时增加,细胞壁较坚硬,弹性小,但是到循环3时,ε~(max)在轻度干旱和中度干旱时下降,到后期水分严重胁迫时却升高。
     (5)随着CO_2浓度增加,7树种的0级、1级和2级分枝的导水率增加,比导率增加而大叶黄杨和丁香的1级和2级分枝下降,叶比导率在各分枝级的变化不一致,胡伯尔值变化不明显。2级分枝的导水率增幅大于0级和1级。分枝级导水率、比导率和胡伯尔值随着干旱胁迫的增加而逐渐下降,叶比导率在720μmolmol~(-1)CO_2浓度下随着干旱胁迫的增加非线性变化。不同茎段所在区域的导水率、比导率和叶比导率CO_2浓度的增加均增加,随着干旱胁迫的增加而减小。
     (6) PLC为50%的水势Ψ_(50)作为脆弱曲线的拐点,随着相对分枝级的增加Ψ_(50)值增大;拐点将曲线分为两部分,靠右段和靠上段。靠右段越靠右,水势阈值越大,PLC=0时的水势值甲Ψ_0值为发生栓塞的水势阈值。综合考虑甲Ψ_0、Ψ_(50)和Ψ_(max),植物相对分枝级的栓塞脆弱性大小为2级>1级>0级,2年侧柏大于1年侧柏,不同茎段所在区域的栓塞脆弱性大小为限速区>非限速区,1年侧柏大于2年侧柏。首先受害的是2级分枝,也就是说在干旱胁迫到一定严重程度后,植物采取抵御干旱胁迫的生态策略是尽可能的保存主干和低分枝级的部分。
     (7)不同树种在不同干旱胁迫,不同相对分枝级,不同茎段所在区域采取不同的方式来适应由水势降低而引起的栓塞变化,在不同的水势阶段,而采取有效性和安全性折衷的策略,这些策略有:保持较高的水分安全性;减轻安全性而对有效性的折衷;同时降低有效性和安全性但不是终止任何生产力或树高的组织生长的所需水的限制。
The water,growth and competition of trees were influenced by elevated CO_2 concentration,which caused quickly growth of trees might easier to suffer cavitation and embolism and can not surive because of water transport system destroyed.It can seriously influenced the water transport efficiency and security.The water transport of trees under 720μmol·mol~(-1)CO_2 and drought stress were measured after 7 trees have been exposed to 720μmol·mol~(-1)CO_2 for different times.The growth index(the growth quantity,leaf area, leaf tissue characteristics and biomass),physiological index(gas exchange parameters, chlorophyll fluorescence parameters,photosynthesis characteristics andδ~(13)C),water use efficiency,water consumption characteristic,hydraulic architecture parameters(hydraulic conductivity,specific conductivity,leaf specific conductivity,Huber values),water parameters were measured under 720μmol·mol~(-1)CO_2 and 380μmol·mol~(-1)CO-2 with drought stress.The results show that:
     (1) The 7 trees growth quantity,leaf area,biomass,root/shoot ratio,photosynthesis rate,Ci,Fv/Fm,Fv/Fo,WUE_i and WUE_L increased with elevated CO_2 concentration.Also, the thickness of spongy tissue,thickness of palisade tissue,thickness of leaves,stomatal long diameter,stomatal wide diameter,stomatal area and stomatal long diameter/stomatal wide diameter increased.The sequence of leaf area was Robinia pseudoacacia,Fraxinus chinesis,Syringa oblate,Acer truncatum,Euonymus japonicus,Platycladus orientali and Pinus tabulaeformis.The stomatal density,transpiration rate,dark respiration rate,specific leaf weight,δ~(13)C and water consumption was decreased,while stomatal conductance was firstly decreased and then increased along elevated CO_2 concentration.Theδ~(13)C of conifer trees were higher than broad-leaves trees and root and branch ofδ~(13)C were obviously bigger than leaf.Theδ~(13)C of Robinia pseudoacacia and Fraxinus chinesis were gone beyond the range of C_3 plants,and the averageδ~(13)C of 7 trees under 720μmol·mol~(-1)CO_2 were higher than the average of C_3 plants,which is 27.0‰.
     (2) Thickness of spongy tissue,thickness of palisade tissue,thickness of leaves, stomatal long diameter/stomatal wide diameter,water consumption and biomass decreased along water stress,while cuticle thickness of epidermis of Pinus tabulaeformis and Platycladus orientalis,thickness of epidermis,root/shoot ratio and long-term water use efficiency increased.The water consumption curve of trees was unimodal curve,which different from water consumption rate when the leaf area great changed.The stoma changed slowly because of the interaction between elevated CO_2 concentration and water stress which changed the sensitivity of stoma under only CO_2 concentration or water stress.
     (3) The total biomass of Platycladus orientalis was not increased with long times under elevated CO_2 concentration.Theδ~(13)C of root and branch under elevated CO_2 concentration with 1 year were also bigger than that of 2 years.The leafδ~(13)C of Acer truncatum was undulate under controlled cycles of dehydration and rehydration and CO_2 concentrations.The peak of the curve were appeared at serious water station,and the fluctuate range decreased with the circles of the water stress.The water potential were decreased under 720μmolmol~(-1)CO_2,which reduced the occurrence of cavitation and embolism,delayed the happen of water stress and changed the water stress in plants.
     (4) The circle 2 was a more complicated and important phase of Acer truncatum under controlled cycles of dehydration and rehydration and CO_2 concentrations.RWC~0/ RWC_s decreased whileΨ~0πandΨ~(100)πincreased firstly in circle 1,and then decreased from circle 1 to 3 along elevated CO_2 concentrations.The ability of maintaining turgor pressure, osmotic adjustment,capable of preserving and endurance of water separation capability were increased under elevated CO_2 concentrations,whereas the resistance of water separation capability decreased.Theε~max) increased in normal water condition of Acer truncatum under 720μmol·mol~(-1)CO_2,and cytoderm more hardness and less elasticity.But in circle 3,ε~(max) decreased in light and middle drought conditions and increased in serious drought condition.
     (5) The branch 0,branch 1 and branch 2 of hydraulic conductivity of 7 trees increased along elevated CO_2 concentration.Specific conductivity increased,while Euonymus japonicus and branch 1 and branch 2 of Syringa oblata were decreased.The leaf specific conductivity and Huber values changed ruleless.Branch 0 and branch 1 of hydraulic conductivity increased amplitude were smaller than branch 2.Hydraulic conductivity, specific conductivity and Huber values with relative ramification rate were gradually decreased along water stress,while leaf specific conductivity was not linearity changed under 720μmol·mol~(-1)CO_2 along water stress.Hydraulic conductivity,specific conductivity and leaf specific conductivity in different area stem segment increased under elevated CO_2 concentration and decreased under water stress.
     (6) The water potentialΨ_(50) of 50%of PLC was the inflexion of the vulnerability curve,which increased with relative ramification rate;the inflexion divided the curve,the right part and upside part.The more right the right part keep,the bigger the water potential threshold value.The water potential ofΨ_(50).which is PLC equal to 0,is the threshold value of occurrence embolism.General considerd theΨ_0,Ψ_(50) andΨ_(max),the embolism vulnerability with relative ramification rate was branch 2,branch 1 and branch 0,1 year of Platycladus orientalis smaller than that of 2 years.The embolism vulnerability in different area stem segment was restricted stem segment bigger than non-restricted stem segment, while 1 year of Platycladus orientalis bigger than that of 2 years.Branch 2 was the first damaged part of trees.It means that the ecological strategy of trees adopting the water stress was trying their best to keep the trunk and low branch part.
     (7) Use different manners to accommodate to the embolism which caused by decreased water potential,7 trees with relative ramification rate and in different area stem segment,were taking ecological strategy of tradeoff of efficiency and security in different water stress.This strategy include keeping high water transport security,alleviating water transport security to tradeoff the efficiency,and at the same time,reducing the water transport security and efficiency but not end the needing of water to growth and any productivity.
引文
1.安锋,张硕新.7种木本植物根和小枝木质部栓塞的脆弱性[J].生态学报,2005,25(8):1928-1933.
    2.柴宝峰,王盂本,李洪建.三树种P-V曲线水分参数的比较研究[J].水土保持通报,1996,16(4):35-40.
    3.陈世苹,白永飞,韩兴国.稳定性碳同位素技术在生态学研究中应用[J].植物生态学报,2002,26(5):549-560.
    4.陈平平.大气二氧化碳浓度升高对植物的影响[J].生物学通报,2002,37(3):20-23.
    5.陈英华,胡俊,李裕红,等.碳稳定同位素技术在植物水分胁迫研究种的应用[J].生态学报,2004,24(5):1027-1033.
    6.陈杰,齐亚东.对应用氚水法测定林木蒸腾量的评价[J].东北林业大学学报,1990,18(3):105-112.
    7.邓熊,李小明,张希明,等.4种荒漠植物气体交换特征的研究[J].植物生态学报,2002,26(5):605-612.
    8.丁明明,苏晓华,黄秦军.碳稳定同位素技术在林木遗传改良中的应用[J].世界林业研究,2005,18(5):21-26.
    9.窦新永,吴国江,黄红英等.麻疯树幼苗对干旱胁迫的响应[J].应用生态学报,2008,19(7):1425-1430.
    10.樊大勇,谢宗强.木质部导管空穴化研究中的几个热点问题[J].植物生态学报,2004,28(1):126-132.
    11.冯虎元,安黎哲,王勋陵.环境条件对植物稳定碳同位素组成的影响[J].植物学通报,2000,17(4):312-318.
    12.付士磊,周永斌,何兴元,等.干旱胁迫对杨树光合生理指标的影响[J].应用生态学报,2006,17(11):2016-2019.
    13.高素华,郭建平.CO_2浓度和土壤湿度对羊草光合特性影响机理的初探[J].草业科学,2004,21(5):23-27.
    14.郭建平,高素华,王连敏,等.杨柴对高CO_2浓度和土壤干旱胁迫的响应[J].植物资源与环境学报,2002,11(1):14-16.
    15.郭建平,高素华,王连敏,等.CO_2浓度与土壤水分胁迫对红松和云杉苗木影响的试验研究[J].气象学报,2004,62(4):493-497.
    16.韩兴国,严昌荣,陈灵芝,等.暖温带地区几种木本植物碳稳定同位素的特点[J].应用生态学报,2000,11(4):497-500.
    17.韩梅,吉成均,左闻韵,等.CO_2浓度和温度升高对11种植物叶片解剖特征的影响[J].生态学报,2006,26(2):326-333.
    18.胡新生,王世绩.苗木水分胁迫生理与耐旱性研究进展及展望[J].林业科学,1998,34(2):77-89.
    19.蒋高明主编.植物生理生态学[M].北京:高等教育出版社,2004,99-100.
    20.蒋高明.大气CO_2浓度升高对植物的直接影响--国外十余年来模拟试验研究之主要手段及基本结论[J].植物生态学报,1997,21(6):489-502.
    21.蒋跃林,张庆国,张仕定,等.大豆根系生理特性对大气二氧化碳浓度升高的反应[J].作物杂志,2006,2,40-43.
    22.葛晋纲,蔡庆生,周兴元,等.土壤干旱胁迫对2种不同光合类型草坪草的光合特性和水分利用率 的影响.草业科学,2005,22(4):103-107.
    23.巨关升,刘奉觉,郑世锴,等.稳态气孔计与其它3种方法蒸腾测值的比较研究.林业科学研究,2000,13(4):360-365.
    24.康绍忠主编.土壤-植物-大气连续体水分传输理论及其应用[M].北京:水力电力出版社,1994.
    25.康绍忠,蔡焕杰等.大气CO_2增加对农田蒸发和水分利用的影响[J].水力学报,1996,(4):18-26.
    26.康博文,侯琳,王得祥,等.几种主要绿化树种苗木耗水特性的研究[J].西北林学院学报,2005,20(1):29-33.
    27.李海涛,陈灵芝.暖温带森林生态系统主要树种若干水分参数的季节变化[J].植物生态学报,1998,22(3):202-213.
    28.李吉跃,Blake T J.多重复干旱循环对苗木气体交换和水分利用效率的影响[J].北京林业大学学报,1999,21(3):1-8.
    29.李吉跃.全球[CO_2]浓度变化与植物水分关系[J].世界林业研究,1997,5:16-25.
    30.李吉跃,翟洪波.木本植物水力结构与抗旱性[J].应用生态学报,2000,11(2):301-305.
    31.李吉跃,翟洪波,刘晓燕.苗木水力结构的昼夜变化规律[J].北京林业大学学报,2002,23(4):1-7.
    32.李吉跃.PV技术在油松侧柏苗木抗旱特性研究中的应用[J].北京林业大学学报,1989,11(1):3-11.
    33.李吉跃,王继强,陈坤,等.水分胁迫对北京城市绿化树种水分状况和栓塞的[J].北京林业大学学报,2006,28(增刊1)12-16.
    34.李吉跃.Blake T J.多重复干旱循环对苗木气体交换和水分利用效率的影响[J].北京林业大学学报,1999,21(3):1-8.
    35.李吉跃,周平,招礼军.干旱胁迫对苗木蒸腾耗水的影响[J].生态学报,2002,22(9):1380-1386.
    36.李相博,陈践发,张平中,等.青藏高原(东北部)现代植物碳同位素组成特征及其气候信息[J].沉积学报,1999,17:325-329.
    37.李永华,王献,孔德政,等.长期CO_2加富对苗期红掌(Anthurium andraeanum L.)植株生长和光合作用的影响[J].生态学报,2007,27(5):1852-1857.
    38.李永华,刘丽娜,叶庆生.高CO_2浓度对红掌的生长和光合作用的影响[J].热带亚热带植物学报,2005,13(4):343-346
    39.林植芳,李双顺,林桂珠.叶片气孔的分布与光合途径[J].植物学报,1986,28(4):387-395.
    40.林金星,胡玉熹.大豆叶片结构对CO_2浓度升高的反应[J].植物学报,1996,38(1):31-34.
    41.林伟宏,王大力.大气二氧化碳升高对水稻生长及同化物分配的影响[J].科学通报,1998,43(21):2299-2302.
    42.刘昌明,王会肖.土壤-作物-大气界面水分过程与节水调控[M].北京:科学出版社,1999.
    43.刘晓宏.赵良菊,Menassie Gasaw,等.东非大裂谷埃塞俄比亚段内C_3植物叶片δ~(13)C和δ~(15)N及其环境指示意义[J].科学通报,2007,52(5):199-206.
    44.刘晓燕,李吉跃,翟洪波.从苗木水力结构特征探讨植物耐旱性[J].北京林业大学学报,2003,25(3):48-54.
    45.刘晓燕,李吉跃,翟洪波.10种木本植物水力结构特征春季变化规律[J].北京林业大学学报,2004,26(1):35-40.
    46.刘世荣,蒋有绪,郭泉水.大气CO_2浓度增加对苗木生长和生理的可能影响[J].东北林业大学学报,1997,25(3):30-37.
    47.刘娟娟,李吉跃.CO_2浓度倍增对苗木生长和养分含量的影响[J].福建林学院学报,2008,28(2):184-189.
    48.刘娟娟,李吉跃,王继强.北京城市绿化树种的水力结构特征[J].北京林业大学学报,2006,28(增刊1):38-46.
    49.刘娟娟,李吉跃,庞静.CO_2浓度倍增与干旱胁迫对油松相对分枝级水力结构的影响[J].生态学报,2008,28(9):4136-4143.
    50.刘淑明,孙丙寅,孙长忠.油松蒸腾速率与环境因子关系的研究[J].西北林学院学报,1999,14(4):27-30.
    51.马履一,王华田,林平.北京地区几个造林树种耗水性比较研究[J].北京林业大学学报,2003,25(2):1-7.
    52.欧志英,彭长连.高浓度二氧化碳对植物影响的研究进展[J].热带亚热带植物学报,2003,11(2):190-196.
    53.乔匀周,王开运,张远彬.CO_2浓度升高对红桦幼苗树皮和去皮树干特征的影响[J].西北林学院学报2007,22(1):1-4.
    54.任红旭,陈雄,吴冬秀.CO_2浓度升高对干旱胁迫下蚕豆光合作用和抗氧化能力的影响[J].作物学报,2001,(6):729-736
    55.容丽,王世杰,杜雪莲.贵州花江峡谷区常见乔灌植物叶片δ~(13)C值对喀斯特石漠化程度的响应[J].林业科学,2007,43(6):38-44.
    56.沈繁宜,康惠宁,李吉跃.对PV曲线分析方法的进一步探讨[J].植物生理学通讯,1995,31(4):286-289.
    57.申卫军.木本植物木质部空穴和栓塞研究(综述)[J].热带亚热带植物学报,1999,7(3):257-266.
    58.申卫军,张硕新,张存旭.木本植物木质部栓塞研究进展[J].西北林学院学报,1999,14(1):33-41.
    59.申卫军,张硕新,刘立科.几种木本植物木质部栓塞的日变化[J].西北林学院学报,1999,14(1):22-27
    60.苏波,韩兴国,李凌浩,等.中国东北样带草原区植物δ~(13)C值及水分利用效率对环境梯度的响应[J].植物生态学报,2000,24:648-655.
    61.孙双峰,黄建辉,林光辉,等.稳定同位素技术在植物水分利用研究中的应用[J].生态学报,2005,25(9):2362-2371.
    62.孙志虎,王庆成.应用PV技术对北方4种阔叶树抗旱性的研究[J].林业科学,2003,39(2):33-38.
    63.冯玉龙,巨关升,朱春全.杨树无性系幼苗光合作用和PV水分参数对水分胁迫的响应[J].林业科学,2003,39(3):30-36.
    64.冯金朝.沙生植物水分特征曲线及水分关系的初步研究[J].中国沙漠,1995,15(3):222-226.
    65.王精明,李永华,黄胜琴,等.CO_2浓度升高对凤梨叶片生长和光合特性的影响[J].热带亚热带植物学报,2004,12(6):511-514.
    66.王丽霞,李心清,郭兰兰.中东亚干旱半干旱区C_3植物δ~(13)C值的分布及其对气候的响应[J].第四纪研究,2006,26(6):955-961.
    67.王孟本,李洪建,柴宝峰,等.树种蒸腾作用、光合作用和蒸腾效率的比较研究[J].植物生态学报,1999,23(5):401-410.
    68.王国安,韩家懋.C_3植物碳同位素在旱季和雨季中的变化[J].海洋地质与第四纪地质,2001,21(4):43-47.
    69.王国安,韩家懋,刘东生.中国北方黄土区C-3草本植物碳同位素在组成研究[J].中国科学(D 辑),2003,6:550-556.
    70.许大全.光合作用效率[M].上海:上海科学技术出版社,2002,84-98.
    71.严昌荣,韩兴国,陈灵芝,等.温暖带落叶林主要植物叶片中δ~(13)C值的种间差异及时空变化[J].植物学报,1998,40(9):853-859.
    72.严昌荣,韩兴国,陈灵芝,等.中国暖温带落叶阔叶林中某些树种的~(13)C自然丰度:~(13)C值及其生态学意义[J].生态学报,2002,22(12):2164-2166.
    73.俞新妥,卢建煌,王锦上.不同种源栓皮栎幼苗水分适应及耐旱特性比较研究[J].植物生态学与地植物学学报,1991,15(4):356-365.
    74.俞满源,黄占斌,山仑.不同水分条件下CO_2浓度升高对植物生长及水分利用效率的影响[J].中国生态农业学报,2003,11(3):100-112.
    75.翟洪波,李吉跃,李保华,等.Darcy定律在测定油松木质部导水特征中的应用[J].北京林业大学学报,2001,23(4):6-9.
    76.翟洪波,李吉跃,聂立水.油松的水力结构特征[J].林业科学,2003,39(2):14-20.
    77.翟洪波,李吉跃,Huang Wending,等.SPAC中油松栓皮栎混交林水分特征与气体交换[J].北京林业大学学报,2004,26(1):30-34.
    78.翟洪波,李吉跃,魏晓霞.从油松苗木的水力结构探讨管道模型[J].北京林业大学学报,2002,24(1):22-25.
    79.翟洪波,李吉跃,姜金璞.元宝枫栓皮栎苗木水力结构特征的对比研究.北京林业大学学报,2002,24(4):45-50.
    80.赵平.森林植物对大气:二氧化碳浓度增高的生理生态响应(综述)[J].热带亚热带植物学报,1997,5(1):84-90.
    81.张丹,张硕新,黄菊莹,等.不同水分梯度下几个树种木质部栓塞的研究[J].西北林学院学报,2004,19(2):18-21.
    82.张香凝孙向阳,王保平等.土壤水分含量对Larrea tridentata苗木光合生理特性的影响[J].北京林业大学学报,2008,30(2):95-101.
    83.张硕新,申卫军,张迎远.六种木本植物木质部栓塞化生理生态效应的研究[J].生态学报,2000,20(5):788-794.
    84.张硕新,申卫军,张迎远,等.几个抗旱树种木质部栓塞脆弱性的研究[J].西北林学院学报,1997,12(2):1-6.
    85.张建国,李吉跃,姜金璞.京西山区人工林水分参数的研究(Ⅰ[J].北京林业大学学报,1994,16(1):1-12.
    86.赵凤君,高荣孚,沈应柏,等.水分胁迫下美洲黑杨不同无性系问叶片δ~(13)C和水分利用效率的研究[J].林业科学,2005,41(1):36-41.
    87.赵凤君,沈应柏,高荣孚。等.叶片δ~(13)C与长期水分利用效率的关系[J].北京林业大学学报,2006,28(6):40-45.
    88.赵凤君,沈应柏,高荣孚,等.黑杨无性系间长期水分利用效率差异的生理基础[J].生态学报,2006,26(7):2079-2086.
    89.郑淑霞,上官周平.陆生植物稳定碳同位素组成与全球变化[J].应用生态学报,2006,17(4):733-739.
    90.郑淑霞,上官周平.辽东栎叶片气孔密度及δ~(13)C值的时空变异[J].林业科学,2005,41(2):30-36.
    91.郑凤英,彭少麟.植物生理生态指标对大气CO_2浓度倍增响应的整合分析[J].植物学报,2001,43(11):1101-1109.
    92.周玉梅,韩士杰,胡艳玲,等.高浓度CO_2对红松(Pinus koraiensis)针叶光合生理参数的影响[J].生态学报,2008,28(1):423-429.
    93.周正朝,上官周平.红豆草与土壤氮含量对大气二氧化碳浓度升高的响应[J].应用生态学报,2006,17(11):2175-2178.
    94.周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究[J].北京林业大学学报,2002,24(5/6):50-55.
    95.朱林,许兴.植物水分利用效率的影响因子研究综述[J].干旱地区农业研究,2005,23(6):204-209.
    96.Allen L H,Valle Raul R,Jones J W,et al.Soybean leaf water potential responses to carbon dioxide and drought[J].Agronomy Journal,1998,90:375-383.
    97.Amthor J S.Respiration in a future,higher CO_2 world[J].Plant,Cell and Environment,1991,14:13-20.
    98.Baker,J T,Laugel F,Boote K J,et al.Effects of day-time carbon dioxide concentration on dark respiration in rice[J].Plant,Cell and Environment,1992,15:231-239.
    99.Benkert R,Zhu J J,Zimmermann G,et al.Long-term xylem pressure measurements in the liana tetrastigma voinerianum by means of the xylem pressure probe[J].Planta,1995,196:804-813.
    100.Blake T J,Li J Y.Hydraulic adjustment in jack pine and black spruce seedlings under controlled cycles of dehydration and rehydration[J].PhySIOsiologia Plantarum,2003,117:532-539.
    101.Brendel O,Handley L,et al.The delta C-13 of Scots pine(Pinus sylvestfis L.) needles:spatial and temporal variations[J].Annals of Forest Science,2003,60(2):97-104.
    102.Brodribb T,Hill R S.The importance of xylem constraints in the distribution of conifer species[J].New Phytologist,1999,143:365-372.
    103.Calfapietra,C,Gielen,B,Galema,A N J,et al.Free-air CO_2 enrichment(FACE) enhances biomass production in a short-rotation poplar plantation[J].Tree physiology,2003,23(12):805-814.
    104.Canny M J.Applications of the compensating pressure theory of water transport[J].American Journal of Botany,1998,85:897-909.
    105.Cay(?)n M G,El-Sharkawy M A,Cadavid L F.Leaf gas exchange of cassava as affected by quality of planting material and water stress[J].Photosynthetica,1997,34,409 - 418.
    106.Cernusak L A,Marshall J D.Responses of foliar δ~(13)C,gas exchange and leaf morphology to reduced hydraulic conductivity in Pinus monticola branches[J].Tree Physiology,2001,21:1215-1222.
    107.Ceulemans R,Jaeh M E,Van de Velde R,et al.Elevated atmospherie CO_2 alters wood roduction,wood quality and wood strength of Scotts pine(Pinus sylvestris L) after three years of enrichment [J].Global change biology,2002,(8):153-162.
    108.Chartzoulakis K,Patskas A,Kofidis G,et al.Water stress affects leaf anatomy,gas exchange,water relations and growth of two avocado cultivers[J].Scientia Horticulturae,2002,95(1):39-50.
    109.Chaudhuri U N,Kirkham M B,Kanemasu E T.Root growth of winter wheat under elevated carbon dioxide and drought[J].Crop Science,1990,30:853-857.
    110.Chaves M M,Pereira J S,Maroco J,et al.How plants cope with water stress in the field?Photosynthesis and growth[J].Annals of Botany,2002,89:907-916.
    111.Condon A G,Richards R A,Farquhar G D.Carbon isotope discrimination is positively correlated with grain field and dry matter production in field-frown wheat[J].Crop Science,1987,27(5):996-1001.
    112.Cochard H,Vulnerability of several conifers to air embolism[J].Tree Physiology,1992,11:73-83.
    113.Cochard H,Coste S,Chanson B,et al.Hydraulic architecture correlates with bud organogenesis and primary shoot growth in beech(Fagus sylvatica)[J].Tree physiology,2005,25(12):1545-1552.
    114.Conroy J P,Milham P J,Mazur M,et al.Growth,dry weight partitioning and wood properties of Pinus radiate D.Don after 2 years of CO_2 enrichment[J].Plant,Cell and Environment,1990,13:329-337.
    115.Craufurd PQ,Austin RB,Acevedo E,et al.Carbon isotope discrimination and grain yield in barley [J].Field Crops Research,1991,27:301-313.
    116.Damesin C S,Rambal S,Joffre R.Between tree variations in leaf δ~(13)C of Quercus flex among Mediterranean habitats with different water availability[J].Oecologia,1997,111,26-35.
    117.Damesin C S,Rambal S,Joffre R.Seasonal and annual changes in leaf δ~(13)C in two co-occurring Mediterranean oaks:relations to leaf growth and drought progression[J].Functional Ecology,1998,12:778-785.
    118.DeLucia E H,Schlesinger W H.Resource-use efficiency and drought tolerance in adjacent Great Basin and Sierran plants[J].Ecology,1991,72:51-58.
    119.Deluis J,Irigoyen J J,Sanchez-Diazn M.Elevatede CO_2 enhances plant growth in drought N_2-fixing alfalfa without improving water stress[J].Physiology Plantarum,1999,107:84-89.
    120.Derner J D,Polley H W,Johnson H B,et al.Root system response of C_4 grass seedlings to CO_2 and soil water[J].Plant and soil,2001,231:97-104.
    121.Dixon H,Joly J.On the ascent of sap[J].Proceeding Royal Society Bullrtin,1894,57:3-5.
    122.Downton W J S,Loveys B R,Grant W J R.Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid[J].New Phytol,1988,108(2):263-266.
    123.Drake P L,Franks P J.Water resource partitioning,stem xylem hydraulic properties and plant water use strategies in a seasonally dry riparian tropical rainforest[J].Oecologia,2003,137(3):321-329.
    124.Dunham S M,Comstock J P.Variability in hydraulic architecture and gas exchange of common bean(Phaseolus vulgaris) cultivars under well-watered conditions:Interactions with leaf size[J].Tree,2007,21:65-78.
    125.Elation J S,Petrovic A M,Dawson T E.Relationship between carbon isotope discrimination,water use efficiency and evapotranspiration in Kentucky bluegrass[J].Crop Science,1998,38:157-162.
    126.Ebukanson G J.Retardation of chloroplast ATPase activity in maize seedlings by drought stress[J].Journal of Plant Physiology,1987,129(1):187-189.
    127.Ehleringer,J R.~(13)C/~(12)C fraction and its utility in terrestrial plant studies.In:Coleman D C,Fry B.Carbon Isotope Techniques[M].San Diego:Academic Press,1991.
    128.Ehleringer J R.Carbon and water relations in desert plants:an isotopic perspective.In:Ehleringer J R,Hall A E,Farquhar G D.Stable isotopes and plant carbon-water relations[M].San Diego:Academic Press.1993,155-172.
    129.Ehleringer J R.Variation in leaf carbon isotope discrimination in Encelia farinose:implications for growth,competition,and drought survival[J].Oecologia,1993,95:340-346.
    130.Ehleringer J R,Dawson T E.Water uptake by plants:perspectives from stable isotope composition [J].Plant Cell and Environment,1992,15:1073-1082.
    131.Ehleringer J R,Klassen S,Clayton C,et al.Carbon isotope discrimination and transpiration efficiency in common bean[J].Crop Science,1991,31:1611-1615.
    132.Ehleringer J R,Phillips S L,Schuster W S F,et al.Differential utilization of summer rains by desert plants,implications for competition and climate change[J].Oecologia,1991,88:430-434.
    133.Eamus D.The interaction of rising CO_2 and temperatures with water use efficiency[J].Plant,Cell and Environment,1991,14:843-852.
    134.Farquhar G D,Ehleringer J R,Hubick K T.Carbon isotope discrimination and photosynthesis[J].Annual Review of Plant Physiology and Plant Molecular Biology,1989,40(1):503-537.
    135.Farquhar G D,O'Leary M H,Berry J A.On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J].Australia Journal of Plant Physiology,1982,9:121-137.
    136.Flanagan L B,Ehleringer J R,Marshall J D.Differential uptake of summer precipitation among co-occurring trees and shrubs in a pinyon-junniper woodland[J].Plant Cell and Environment,1992,15:831-836.
    137.Finn G.A,Brun W A.Effect of atmospheric CO_2 enrichment on growth,nonstructural carbonhydrate content and root nodule activity in soybean[J].Plant Physiology,1982,69:327-331.
    138.Friend A L,Coleman M D,Bebrands J G.Carbon allocation to root and shoot systems of woody plants.In:Davis T D,Haissig B E eds.Biology of Adventitijons Root Formation[M].Plenum Press,New York,1994,1-6.
    139.Gartner B L.Patterns of xylem variation witnin a tree and their hydraulic and mechanical consequences.In:Gartner B L,eds.Plant stems-physiology and functional morphology[M].San Diego:Academic Press,1995,125-149.
    140.Gimenez C,Mitchell V G,Lawlor D W.Regulation of photosynthetic rate of two sunflower hybrids under water stress[J].Plant Physiology,1992,98(2):516-524.
    141.Grossniclde S C.Shoot phenology and water relations of Picea glauca[J].Canadian Journal of Forestry Research,1989,(19):1287-1290.
    142.Grulke N E,Riechers G H,Oechel W C,et al.Carbon balance in tussock tundra under ambient and elevated atmospheric CO_2[J].Oecologia,1990,83:485-494.
    143.Hacke U G,Sperry J S.Function and ecological xylem anatomy[J].Perspectives in Plant Ecology,Evolution and Systematies,2001,2(4):97-115.
    144.Hacke U G,Sperry J S,Wheeler J K,et al.Sealing of angiosperm xylem structure with safety and efficiency[J].Tree physiology,2006,26(6):689-701.
    145.Hamerlynck E P,Huxman T E,Loik M E,et al.Effects extreme high temperature,drought and elevated CO_2 on photosynthesis of the Mojave Desert evergreen shrub,Larrea tridentate[J].Plant Ecology,2000,148:183-193.
    146.Hubbard R M,Bond B J,Ryan M G.Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees[J].Tree Physiology,1999,19:165-172.
    147.Idso S B,Kimball B A,Anderson M G,et al.Growth response of a succulent plant,Agave vilmoriana,to elevated CO_2[J].Plant Physicol,1986,80:796-797
    148.Jackson G E,Grace J.Cavitation and water transport in trees[J].Endeavour,1994,18:50-54.
    149.Jackson G E,Irvine J,Grace J.Xylem cavitation in Scots pine and Sitka spruce saplings during water stress[J].Tree physiology,1995,15:783-790.
    150.Johnson D A,Asay K H,Tieszen L L,et al.Carbon isotope discrimination:potential in screening cool- season grasses for water-limited environments[J].Crop Science,1990,30:338-343.
    151.Kloeppel B D,Gower S T,Treichel I W,et al.Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers:a global comparison[J].Oecologia,1998,114:153-159.
    152.Knight J D,Livingston N J,van Kessel C.Carbon isotope discrimination and water-use efficiency of six crops grown under wet and dry land eonditiond[J].Plant Cell and Environment,1994, 17(2):173-179.
    153.Kogami H,Hanba Y T,Kibe T,etal.CO_2 transfer conductance,leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes[J].Plant Cell and Environment,2001,24:529-538.
    154.Lambers H,Chapin F S,Pons T L.Plant Physiological Ecology[M].New York:Spdnger-Verlag,1998.
    155.Li J Y,Blake T J.Effects of Repeated Cycles of Dehydration-Rehydration on Gas Exchange and Water Use Efficiency in Jack Pine and Black Spruce Seedlings[J].Journal of Beijing Forestry University(English Ed.),1996,5:73-87.
    156.Long S P,Ainsworth E A,Rogers A,etal.Rising atmospberic carbon dioxide:Plants face the future.Annu Rev Plant Biol,2005,55:591-628.
    157.Luomala E M,Laitinen K,Kellomaki Set al.Variable photosynthetic acclimation in consecutive cohorts of Scots Pine needles during 3 years of growth at elevated CO_2 and elevated temperature [J].Plant Cell and Environment,2003,26:645-660.
    158.Macinnis-Ng C,McCleanaban K,Eamus Derek.Convergence in hydraulic architecture,water relations and primary productivity amongst habitats and across seasons in Sydney[J].Functional Plant Biology,2004,31:429-439.
    159.Martre P,North GB,Nobel PS.Hydraulic conductance and mercury-sensitive water transport for roots of Opuntia acanthocarpa in relation to soil drying and rewetting[J].Plant Physiology,2001,126,352-362.
    160.Morecroft M D,Woodward F I.Experimental investigations on the environmental determination of δ~(13)C at different altitudes[J].Journal of Experimental Botany,1990,41,1303-1308.
    161.Morrison J L.Sensitivity of stomata and water use efficiency to high CO_2[J].Plant,Cell and Environment,1985,8:467-474.
    162.Nie G Y,Long S P,Garcia R L,et al.Effect of free-air CO_2 enrichment on the development of the photosynthetic apparatus in wheat,as indicated by changes in leaf proteins[J].Plant,Cell and Environment,1995,18:855-864.
    163.Qaded M M,Kurepin LV,Reid DM,et al.Growth and physiological responses of canola(Brassica napus) to three components of global climate change:Temperature,carbon dioxide and drought[J].Physiologia Plantarum,2006,128:710-721.
    164.O'Leary M H.Carbon isotope fractionation in plants[J].Phytochemistry,1981,20,553-567.
    165.O'Leary M H.Carbon isotopes in photosynthesis[J].Bioscience,1988,38(5),328-336.
    166.O'Leary M H.Environmental effects on carbon isotope fractionation in terrestrial plants.In:Wada E,Yoneyama T,Minigawa M,et al.Stable Isotopes in the Biosphere[M].Kyoto:Kyoto University Press,1995,78-91.
    167.Oliveras I,Martinez-Vilalta J,Jimenez-Ortiz T,et al.Hydraulic properties of Pinus halepensis,Pinus pinea and Tetraclinis articulate in a dune ecosystem of Eastern Spain[J].Plant Ecology,2003,169:131-141.
    168.Os(?)rio J,Os6rio M L,Chaves M M,et al.Effects of water deficit on δ~(13)C discrimination and transpiration efficiency of Eucalyptus globulus clones[J].Australian Journal of Plant Physiology,1998,25(6):645-653.
    169.Philip J R.Plant water relations:some physical aspects[J].Annual Review of Plant Physiology,1966,(17):245-268.
    170.Praxedes S C,DaMatta F M,Loureiro M E,et al.Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee(Coffea canephora Pierre vat.kouillou) leaves[J].Environment and Experimental Botany,2006,56,263-273.
    171.Pritehard S T,Rogers H H,Prior S A,et al.Elevated CO_2 and plant structure:a review[J].Global Change Biology,1999,5:807-837.
    172.Qaderi M M,Kurepin LV,Reid DM,et al.Growth and physiological responses of canola(Brassica napus) to three components of global climate change:Temperature,carbon dioxide and drought[J].Physiologia Plantarum,2006,128:710-721.
    173.Ramesh R,Bhattacharya S K,Gopalan K.Climatic correlations in the stable isotope records of silver fir(Abies pindrow) trees from Kashmir,India[J].Earth and Planetary Science Letters,1986,79:66-74.
    174.Rasehke K,Resemann A.The midday depression of CO_2 assimilation in leaves of Arbutus unedo:Diurnal changes in photosynthesis capacity related to changes in temperature and humidity[J].Planta,1986,168(4):546-558.
    175.Rasehke K.How abseisic acid causes depression of the photosynthetic capacity of leaves.In:Pharis R P,Rood S B,eds.Plant Growth Substances[M].Bedin:Springer-Verlag,1988,383-390.
    176.Rogers H H,Prior S A,O'Neil E G.Cotton root and rhizosphere responses to free-air CO_2enrichment.Critical Reviews in Plant Sciences,1992a,11:251-263.
    177.Sharkey T D,Loreto F,Vassey T L.Effects of stress on photosynthesis.In:Baltseheffsky M,eds.Current Research in Photosynthesis[M].Dordreeht:Kluwer Academic Publishers,1990,549-556.
    178.Smith S D,Osmond,C B.Stem photosynthesis in a desert ephemeral Eriagonum iflatum,morphology,stomatal conductance and water-use efficiency in field population[J].Oecologia,1987,72:533-541.
    179.Sperry J S,Donnelly J R,Tyree M T.A method for measuring hydraulic architecture conductivity and embolism in xylem[J].Plant,Cell and Environment,1988(11):35-40.
    180.Sperry J S,Tyree M T.Water-stress-induced xylem embolism in three species of conifers[J].Plant,Cell and Environment,1990,13:427-436.
    181.Sperry J S.Limitations on stem water transport and their consequences.In:Gartner B L,eds.Plant Stems.Physiology and Functional Morphology[M].San Diego:Academic Press,1995.
    182.Sperry J S,Meinzer F C,McCulloh K A,et al.Safety and efficiency conflicts in hydraulic architecture:scaling from tissues to trees[J].Plant,Cell and Environment,2008,31(5):632-645.
    183.Springer C J,Thomas R B.Photosynthetic responses of forest understory tree species to long-term exposure to elevated carbon dioxide concentration at the Duke Forest FACE experiment[J].Tree physiology,2007,27(1):25-32.
    184.Stewart J D,Zien EI Abidine A,Bernier PY.Stomatal and mesophyll limitations of photosynthesis in black spruce seedlings during multiple cycles of drought[J].Tree Physiology,1995,15:57-64.
    185.Stefan M,Barbara R,Birgit D.Hydraulic efficiency and safety of leader shoots and twigs in Norway spruce growing at the alpine timberline[J].Journal of Experimental Botany,2003,54(392):2563-2568.
    186.Stuiver M,Braziunas T F.Tree cellulose ~(13)C/~(12)C isotope rations and climatic change[J].Nature,1987,328,58-60.
    187.Stulen I,den Hertog J.Root growth and functioning under atmospheric CO_2 enrichment[J].Vegetatio,1993,104/105:99-115.
    188.Tyree M T,Sperry J S.Vulnerability of xylem to cavitation and embolism[J].Annual Review of Plant Physiology and Molecular Biology,1989,40:19-38.
    189.Tyree M T,Davis S D,Cochard H.Biophysical perspectives of xylem revolution:is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction?[J].IAWA Journal,1994,15: 335-360.
    190.Tyree M T.The forgotten component of plant water potential:A reply-tissue pressures are not additive in the way M.J.Canny suggests[J].Plant biology,1999,1:598-601.
    191.Valentini R,Scarascia Mugnozza G E,Ehleringer J R.Hydrogen and carbon isotope ratios of selected species of a Mediterranean macchia ecosystem[J].Functional Ecology,1992,6:627-631.
    192.Vitousek P M,Field C B,Matson P A.Variation in foliar ~(13)C in Hawaiian Metrosideros polymorpha:A case of internal resistance?[J].Oecologia,1990,84:362-370.
    193.Walcroft A S,Silvester W B,Grace C,et al.Effects of branch length on carbon isotope discrimination in Pinus radiate[J].Tree Physiology,1996,16:281-286.
    194.Waring R H,Silvester W B.Variation in foliar δ~(13)C values within tree crowns of Pinus radiate[J].Tree Physiology,1994,14:1203-1213.
    195.Wall,G W.Elevated atmospheric CO_2 alleviates drought stress in wheat[J].Agriculture,ecosystems and environment,2001,870):261-271.
    196.Warren C R,Adams A M.Water availability and branch length determine δ~(13)C in foliage of Pinus pinaster[J].Tree Physiology,2000,20:637-643.
    197.Ward J,Tissue D T,Thomas R B,et al.Comparative responses of model C_3 and C_4 Plants to drought in low and elevated CO_2[J].Global Change Biology,1999,5:857-867.
    198.Winter K,Holtum J A M,Edwards G E,et al.Effects of low relative humidity on δ~(13)C value in two C_3 grasses and in Panicum milioides,a C_3-C_4 intermediate species[J].Journal of Experimental Botany,1982,33:88-91.
    199.Wong S C.Elevated atmospheric partial pressure of CO_2 and plant growth.Ⅱ.Nonstructural carbohydrate content in cotton plants and its effect on growth parameters[J].Photosynthesis Research,1990,23:171-180.
    200.Wullschleger S D,Meinzer F C,Vertessy R A A.Review of whole plant water use studies in trees [J].Tree Physiol,1998,18:499-512.
    201.Wullschieger S D,Tschaplinski T J,Norby R J.Plant water relations at elevated CO2-implications for water-limited environments[J].Plant,Cell and Environment,2002,25:319-331.
    202.Yong J W H,Wong S C,Letham D S et al.Effects of elevated CO_2 and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton[J].Plant Physiol,2000,124:767-779.
    203.Zhang J,Marshell J D.Population differences in water-use efficiency of well-watered and water-stressed western larch seedings[J].Canadian Journal of Forest Research,1994,24:92-99.
    204.Zhang W H,Prado C H B A.Water relation balance parameters of 30 woody species from Cerrado vegetation in wet and dry season[J].Journal of Forestry Research,1998,9(4):12-18.
    205.Zimmermann M H.Hydraulic architecture of some diffnse-porons trees[J].Canadian Journal of Botany,1978,56:2286-2295.
    206.Zine E A,Bernier MC,Bernier P Y,et al.Control of pressure-chamber and rehydration-time effects on pressure-volume determination of water relation parameters[J].Canadian Journal of Botany,1993,(71):1009-1015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700