用户名: 密码: 验证码:
长白山退化云冷杉林演替动态及恢复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林是由树木为主体所组成的地表生物群落,自然界生长的森林是地球表面自然历史长期发展的地理景观(《中国森林》编辑委员会,1997)。森林是陆地生态系统的主体,是人类和多种生物赖以生存和发展的基础。森林具有复杂的结构和功能,不仅为人类提供了大量的木质林产品和非木质林产品,并具有历史、文化、美学、休闲等方面的价值,而且在保障农牧业生产条件、维持生物多样性、保护生态环境、减免自然灾害和调节全球碳平衡和生物地球化学循环等方面起着重要的和不可替代的作用。因此,森林资源的保护与可持续经营是当今全球共同关注的焦点。
     本文以吉林省汪清县金沟岭林场为研究区,以杨桦次生林为主要研究对象,运用植被生态学、数量生态学、森林经理学等有关理论和技术,以地面样地调查和统计学方法为基础,运用定量化分析方法研究了退化云冷杉林森林生态系统的演替变化规律,并分析不同演替阶段的乔木树种的种间联结性、空间分布格局、林分直径结构、径阶生长与枯损模拟研究、杨桦次生林生长过程与演替动向分析,以及提出退化云冷杉林林分结构调整技术措施。本研究对于指导次生林植被恢复、次生林改造,从而加快次生演替进展,促进林业生态环境建设具有一定指导意义。本研究主要取得了以下研究成果:
     (1)演替阶段划分是植被恢复研究的重要内容。运用“空间代替时间”的方法,建立长白山退化云冷杉林森林演替过程中各阶段群落标准地,实测所有胸径大于5cm的胸径和坐标等数据。利用种间联结测定,主成份分析,最优分割法定量研究了长白山过伐林区退化云冷杉林的次生演替过程。结果表明:在次生演替过程中,白桦、山杨归为衰退种组;红松、云杉、冷杉归为进展种组;枫桦、落叶松、椴树、色木、榆树、水曲柳、黄菠萝和山槐归为其他树种组。其演替过程分为5个阶段:第1与2阶段为不同恢复程度的杨桦次生林群落,目前主要是以白桦、山杨、椴树、色木占优势的杨桦阔叶混交林;第3阶段为杨桦和云冷杉为主的针阔混交林阶段;第4阶段为云冷杉林阶段;第5阶段为云冷杉针阔混交林阶段。天然次生林各演替阶段的定量划分为该研究地区植被恢复、次生林改造以及林业生态环境建设提供重要理论和现实依据。
     (2)通过方差分析,x~2检验和种间联结系数AC值等的计算,对杨桦次生林和云冷杉针阔叶混交林阶段林分总体种间联结性进行了定量分析。研究结果表明:杨桦次生林群落内出现12个乔木树种之间的总体关联性的方差均值VR=0.932,接近1,表现为无相关性;在针阔叶混交林阶段,群落主要种间的总体关联性表现为正相关,说明该阶段的群落已处于和该地区环境条件相适应的稳定阶段,群落总体正关联性随着演替进程而加强。多树种间总体联结性反映了群落内各树种间相关性的总体趋势,树木种群的关联关系进一步说明,该群落处于杨桦次生林向云冷杉针阔叶混交林过渡的阶段。
     (3)运用空间点格局分析方法中的Ripley's K(t)和K_(12)(t)函数分析退化云冷杉林各个演替阶段的先锋树种、顶级树种和其他树种的空间格局和空间关联性。研究结果表明:①从杨桦次生林、云冷杉林到云冷杉针阔混交林演替过程中,林分整体空间分布格局由聚集分布过渡为随机分布,先锋树种早期呈聚集分布状态,到了演替后期呈随机分布;其他树种在总体上都是小尺度上为聚集分布,而大尺度上是随机分布;顶级乡土树种云冷杉、红松在20号云冷杉针阔混交林样地中,>12m的尺度,L(t)值中偏离0较远,向着均匀分布方法发展。②次生演替过程中先锋树种和顶级树种种间关系由先期的负关联变到正关联,树种之间共同利用资源;杨桦次生林中先锋树种杨桦和其它伴生树种之间在所有尺度下均呈负关联,到15 m尺度时关联显著;项级树种与其他树种二者在所有尺度上都呈正关联。因此,分析种内或种间关联时,不同尺度有着明显多样的格局。
     (4)利用林分空间结构参数—混交度、大小比数和角尺度三个参数,分析了研究区杨桦次生林从1989年到2005年的空间结构信息演变过程。研究结果表明:该林分已由随机分布生长到轻度聚集分布;林分内各树木之间的直径差距正在逐渐缩小;该林分已经从中度混交过渡到强度混交。随着林分次生演替进程,林分中杨树、白桦和柞树等先锋树种逐渐退出所在群落,而当地云杉、冷杉和红松等顶级群落树种则演变为优势树种。
     (5)分析了杨桦次生林直径分布特征,通过威布尔函数和负指数函数2种直径分布模型的模拟和检验,发现两者都能用于异龄次生林的直径分布模拟中。此外,还计算了次生异龄林中连续的两个径阶中的株数之比(常数q值),分布范围在1.26~1.49之间。
     (6)以长白山过伐林区金沟岭林场的云冷杉林4个局级固定样地连续12年的观测数据资料为研究对象,利用固定样地内主要针叶树种红松、冷杉和云杉,从1978年到1984年间隔6年内的胸径与定期平均生长量对应值数据,建立林木径阶生长转移概率模型,预估林木径阶平均生长量,并利用1990年观测数据进行检验,结果表明所建概率模型实际应用误差较小,精度较高;同时本文还分析了1978年至1990年12年间云冷杉混交林的枯损林木的株数分布特征,通过模型模拟和检验,表明Weibull分布函数适合用于异龄混交林的枯损株树分布模拟。
     (7)根据山杨、白桦解析木资料,利用Richards方程拟合了白桦和山杨的胸径、树高和材积的生长方程,分别编制了二者的生长过程表;同时根据径阶组划分标准,统计各树种在不同径阶组中的株数及其所占的比例,从而对林分内各乔木树种的演替动向进行分析。研究结果表明:山杨和白桦作为林分内的先锋树种,处于衰退趋势;红松、冷杉与云杉为地带性顶级树种,将在地带性顶级群落中占据为优势树种;其他树种在演替过程中变化不明显。
The forest is the surface biological communities,which is composed of the trees for the main body; the forest of nature growth is the geographical landscape on the earth's surface in the long-term development of nature history(The Editorial Board of〈Chinese forest〉,1997).The forest is the main body of terrestrial ecosystems,which is the survival and development foundation of humanity and many kinds of biology.The forest also has complex structure and function,it is not only providing massive woody forest products and non forest product,having the value of history,culture,aesthetics,leisure, and so on,but also playing an vital and irreplaceable role in the aspect of guaranteeing the conditions of agriculture-stock production,maintaining the biodiversity,protecting the ecological environment, reducing the natural disaster,regulating the global carbon balance and biogeochemical cycle,and so on. Therefore,the conservation and sustainable management of forest resources are the focus of attention and study.
     The study area is located at the Jingouling experimental forest farm,Wangqing forestry bureau, Jilin province,situated on the middle lower hill region of Changbai Mountain in northeast China.Based on the theory and technology related to vegetation ecology,quantitative ecology,forest management, the author combination of the sample-plot survey and the statistical method,the degraded spruce-fir forest was quantified at different secondary succession stages,analysis the interspecific association of main tree populations in the different succession stages,and also studied the spatial distribution pattern, stand diameter structure,growth and mortality of size-class model,growth process and succession trends.In the end,the stand structure regulation and restoration strategies was proposed.The study may be helpful to the research of secondary forest management,and to the secondary forest restoration,the construction of ecological environment in China.The study has mainly obtained the following research results:
     (1)Division the succession stages is one of the most important part in the research of vegetation restoration.Based on spatial-temporal method,the author established a degraded spruce-fir secondary succession forest series plots to analysis the spatial pattern,regeneration and succession process.All trees at least 5 cm in diameter at breast height were mapped and identified to species.Based on the interspecific association,main component analysis and fisher optimum split method,the degraded spruce-fir forest was quantified at different secondary successional stages,which is in Changbai Mountain,northeast China.We found that:during the secondary forest succession,Betula platyphylla and Populus ussuriensis were the declining species;Pinus koraiensis,Abies nephrolepis and Picea jazoensis are the progressive species;and Betulla costata,Larix gmelini,Tilia mandshuricum,Acer mono,Ulmus propinqua.Fraxinus,Maackia amurensis and Phellodendron are the transient species. The succession process was divided into five stages:the first and second stages are polar-birch secondary communities of different recovery,and the dominant species are Betula platyphylla,Populus ussuriensis,Tilia mandshuricum and Acer mono;the third stage is the polar-birch and spruce-fir mixed forests;the forth stage is the spruce-fir overcut forest;the last stage is the virgin forest,which is spruce-fir and broadleaved mixed forests.Analysis of quantitative division of secondary successional stages in degraded spruce-fir forest is benefit to the management and restoration of the secondary forest.
     (2)A series of techniques,including analysis of variance,x~2 test and interspecies association coefficient,were used to analyze interspecies association of dominant species both in polar-birch secondary forests and in spruce-fir forest.The results showed that the mean variance of the 12 principal arbor species in polar-birch secondary forests is 0.932,closes to 1,and has no significant correlation; but in spruce-fir mixed forest,it shows positive correlation,this indicated that the stage is relatively stable that adapts the environmental condition,and the positive correlation of the whole community is strengthening along with the progression of succession.The end-result of competition will lead the pioneer tree contains B.platyhylla and P davidiana,they are declining species,will be replaced by the zonal climax species in the future.The overall correlation between multi-species reflects the general trends between various species in community.The passage further explains that the community in the transitional stages will changed from the polar-birch secondary forests to spruce-fir mixed forest.
     (3)Based on spatial-temporal method,the author established a degraded spruce-fir secondary succession forest series plots to analysis the spatial pattern,regeneration and succession process.All trees at least 5 cm in diameter at breast height were mapped and identified to species.In this study,the spatial patterns and spatial associations of pioneer species,climax species and other species among different succession stages were analyzed by a point pattern analysis method,which was the Ripley's K(t)and K_(12)(t)statistic.We found that in the secondary process from polar-birch forest,spruce-fir forest and spruce-fir mixed forest,all of the species showed clumps to randomly distribution.Pioneer species such as Betula platyphylla and Populus davidiana are changed from aggregated to randomly at all spatial scale.The other species showed clumps at small scale but randomly at large scale.Climax species showed in the middle of the upper and lower broken line,and tends to rectangular distribution at scale lager than 12 m.During the secondary succession,interspecies of pioneer species and climax species was changed from negative to positive association,and shared the environment resources in the end.The polar-birch forest vs other species showed negative association at all scale,but significantly at 15 m.Climax and other species association showed positive at all scale,and spruce and fir species were continuously regenerating population.So,qualify the intra- and interspecies spatial associations of varied with species,spatial characteristics of the forest structure are closely related to spatial scales. Analysis of spatial pattern of intra- and interspecies of polar-birch secondary succession is benefit to the management and restoration of the secondary forest.
     (4)The forest structure has the important reference significance regarding the forest managers.In the paper,Neighborhood pattern,comparison and distribution of mingling are used to analysis the process of spatial structure succession in polar-birch secondary forests in Changbai Mountain from 1989 to 2005.The result shows that the stand is in mild accumulation distribution in 2005,while in random distribution in 1989,and the gap between various trees diameter disparity is reducing gradually,and the stand already has been from moderate mixed degrees to a mixed intensity.Along with the secondary succession,pioneer tree species such as the Betula platyphyll,Populus davidiana and Xylosma racemosum are gradually withdraw from the community,but the pioneer species such as Picea jezoensis and Pinus koraiensis become dominant,By using the spatial pattern method to study the structural change in the process of the secondary forest succession,it also reflects the succession process,and it is very useful to guiding management and structural adjustment.At last,it will be speed up the forest to the top stage development.
     (5)Based on observation data of these plots,the Weibull function and Negative exponential diameter distribution function,were developed to model diameter frequency distributions.Results show that Weibull function and Negative exponential function are suitable models for modeling uneven-aged secondary forests.And the study calculates the q factor,which is characterized by a constant ratio in the number of trees between successive size classes,that is between 1.26~1.49.
     (6)Based on the 4 permanent observation plots in the spruce-fir mixed forests in over-cutting forest area of Changbai Mountain,northeast China,and the data material was continuous observed for 12 years from 1978 to 1990,the latest observation was in 2008.In the paper,we are using the diameter and periodic annual increment data of main coniferous species,that is Pinus koraiensis,Abies nephrolepic and Picea koraiensis,to establish the transition probability,and predicted the average increment of diameter grade.From the testing data in 1990 years,the testing results indicate that the practical application error is small and the precision is high of probabilistic model.At the same time,the author analysis the mortality distribution in each species among 12 years from 1978 to 1990,results show that Weibull function is suitable for tree mortality model in uneven-aged spruce-fir mixed forests.
     (7)The study discusses two aspects.In one hand,according to the data of the analytic trees,which is the species of Betula platyphylla Suk and Populus davidiana Dode,the author fits the Richards equation using the diameter at breast height,tree height and volume of the growth equation,and compiles the forms of the growth process.In the other hand,based on the standard of arbor species diameter grade,the author makes the statistic of the number and proportion in every grade,and the succession trend is analyzed.The results showed that the pioneer tree contains Betula platyphylla Suk and Populus davidiana Dode,they are declining species,but Pinus koraiensis Sieb.et Zucc,Abies Mill and Picea asperata Mast are occupying the major advantages,they are the zonal climax species in the future,and the other species changes of is small.
引文
[1]安慧君,惠刚盈,郑小贤,等.不同发育阶段阔叶红松林空间结构的初步研究[J].内蒙古大学学报,2005,36(06):714-718.
    [2]安慧君.阔叶红松林空间结构特征研究[C].唐守正.东北天然林生态采伐更新技术研究[M].北京:中国科学技术出版社,2005:478-553.
    [3]安树青,张久海,谈健康,等.森林植被动态研究述评[J].生态学杂志,1998,17(5):50-58.
    [4]包维楷,刘照光,刘朝禄,等.中亚热带湿性常绿阔叶次生林自然恢复15年来群落乔木层的动态变化[J].植物生态学报,2000,24(6):702-709.
    [5]毕晓丽,洪伟,吴承祯,等.改进单纯形法在林分结构规律研究中的应用[J].江西农业大学学报,2002,24(01):94-98.
    [6]陈大珂,周晓峰,丁宝永,等.黑龙江省天然次生林研究(I)—栽针保阔经营途径[J].东北林学院学报,1984,(4):1-12.
    [7]陈大珂,周晓峰,祝宁,等.天然次生林—结构、功能、动态与经营[M].哈尔滨:东北林业大学出版社,1994.
    [8]陈大珂.森林经营学[M].哈尔滨:东北林业大学出版社,1993.
    [9]丹尼尔 T W,海勒姆斯 J A,贝克 F S 著.森林经营原理[M].赵克绳,王业遽,宫连城,等译.北京:中国林业出版社,1987,374-375.
    [10]丁圣彦,宋永昌.浙江天童国家森林公园常绿阔叶林演替前期的群落生态学特征[J].植物生态学报,1997,23(2):197-207.
    [11]董厚德,唐炯炎.辽东山地“乱石窖”植被演替规律的初步研究[J].植物生态学与地植物学丛刊,1965,(1):117-139.
    [12]杜道林,刘玉成,李睿.缙云山亚热带栲树林优势种群间联结性研究[J].植物生态学报,1995,19(2):149-157.
    [13]范少辉,张群,沈海龙.次生林内红松幼树的恢复及其状况的量化表达[J].林业科学,2005,41(01):71-77.
    [14]方炜,彭少鳞,何道泉等.广州白云山次生林演替过程的种群动态[J].植物学通报(生态学专辑),1995,12:55-62.
    [15]付恒良,王树明.穆棱林区天然次生林演替特点及天然更新[J].林业科技,1997,22(2):18-21.
    [16]傅松玲,黄宝龙.皖东石灰岩山地次生林演替趋势与树种的生理特性分析[J].林业科学,2002,38(1):50-55.
    [17]葛剑平.森林生态学建模与仿真[M].哈尔滨:东北林业大学出版社,1996,83-240.
    [18]关玉秀,张守攻.样方法及其在林分空间格局研究中的应用[J].北京林业大学学报,1992,14(02):1-10.
    [19]郭志华,卓正大,陈洁,等.庐山常绿阔叶、落叶阔叶混交林乔木种群种间联结性研究[J].植物生态学报,1997,21(5):424-432.
    [20]郭忠玲,马元丹,郑金萍,等.长白山落叶阔叶混交林的物种多样性、种群空间分布格局及种间关联性研究[J].应用生态学报,2004,15(11):2013-2018.
    [21]韩东锋,钱拴提,孙丙寅,等.油松飞播林直径结构规律研究[J].西北林学院学报,2008,23(5):182-187.
    [22]郝云庆,王金锡,王启和,等.柳杉纯林改造后林分空间结构变化预测[J].林业科学,2006,42(8):8-13.
    [23]郝占庆,郭永良,曹同.长白山植物多样性及其格局[M].沈阳:辽宁科学技术出版社,2002.
    [24]郝占庆,陶大立.长白山北坡阔叶红松林及次生白桦林高等植物物种多样性比较[J].应用生态学报,1994,5(1):16-21.
    [25]何友均,崔国发,邹大林,等.三江源玛珂河林区寒温性针叶林优势草本种间联结研究[J].北京林业大学学报,2008,30(1):148-153.
    [26]何友均,崔国发,邹大林,等.三江源自然保护区玛珂河林区寒温性针叶林优势灌木种间联结研究[J].林业科学,2006,42(12):126-129.
    [27]洪利兴,杜国坚,张庆荣,等.天然常绿阔叶异龄幼林胸径的 Weibull 分布及动态预测[J].植物生态学报,1995,19(01):29-42.
    [28]侯向阳,韩进轩,阳含熙.长白山红松阔叶林林冠木竞争生长及林冠空隙动态研究[J].生态学报,2000,8(3):211-219.
    [29]侯向阳,韩进轩.长白山红松林主要树种空间格局的模拟分析[J].植物生态学报,1997,21(3):242-249.
    [30]胡理乐,江明喜,党海山,等.从种间联结分析濒危植物毛柄小勾儿茶在群落中的地位[J].植物生态学报,2005,29(02):258-265.
    [31]胡理乐,毛志宏,朱教君,等.辽东山区天然次生林的数量分类[J].生态学报,2005,25(11):2848-2854.
    [32]胡晓龙.林分枯损模型的研究[J].林业科学研究,1996,9(5):525-529.
    [33]胡艳波,惠刚盈.优化林分空间结构的森林经营方法探讨[J].林业科学研究,2006,19(1):1-8.
    [34]黄世能,王伯荪.热带次生林群落动态研究:回顾与展望[J].世界林业研究,2000,13(6):7-13.
    [35]惠刚盈,[德]冯佳多.森林空间结构量化分析方法[M].北京:中国科学技术出版社,2003:170-173.
    [36]惠刚盈,von Gadow K,Albert M.角尺度——一个描述林木个体分布格局的结构参数[J].林业科学,1999,35(1):37-42.
    [37]惠刚盈,von Gadow K,Albert M.一个新的林分空间结构参数——大小比数[J].林业科学研究,1999,12(1):1-6.
    [38]惠刚盈,胡艳波.混交林树种空间隔离程度表达方式的研究[J].林业科学研究,2001,14(1):23-27.
    [39]惠刚盈,克劳斯·冯佳多.德国现代森林经营技术[M].北京:中国科学技术出版社,2001,8:119-134.
    [40]惠刚盈,盛炜彤.林分直径结构模型的研究[J].林业科学研究,1995,8(2):127-131
    [41]《吉林森林》编辑委员会.吉林森林[M].吉林:吉林科学技术出版社,中国林业出版社,1988,231-245.
    [42]江洪,张艳丽,James R S.干扰与生态系统演替的空间分析[J].生态学报,2003,23(9):1861-1876.
    [43]姜磊,陆元昌,廖声熙,等.滇中高原云南松林分直径结构研究[J].林业科学研究,2008,21(1):126-130.
    [44]蒋有绪.川西亚高山森林植被的区系、种间关联和群落排序的生态分析[J].植物生态学与地植物学丛刊,1982,6(4):281-301.
    [45]金淑芳,宋国华,张伟.天然次生林群落动态掩体分析[J].黑龙江生态工程职业学院学报,2006,89(1):65-67.
    [46]金则新.浙江天台山七子花群落优势种群结构及种间联结性研究[J].植物研究,2002,22(01):76-83.
    [47]康冰,刘世荣,蔡道雄,等.南亚热带人工杉木林灌木层物种组成及主要木本种间联结性[J].生态学报,2005,25(9):2173-2179.
    [48]康冰,刘世荣,温远光,等.广西大青山南亚热带次生林演替过程的种群动态[J].植物生态学报,2006,30(6):931-940.
    [49]亢新刚,胡文力,董景林,等.过伐林区检查法经营针阔混交林林分结构动态[J].北京林业大学学报,2003,25(6):1-5.
    [50]亢新刚,罗菊春,孙向阳,等.森林可持续经营的一种模式[J].林业资源管理,1998,特刊:51-59.
    [51]亢新刚.森林资源经营管理[M].北京:中国林业出版社,2001.
    [52]孔令红,郑小贤.金沟岭林场云冷杉林空间分布格局及更新研究[J].林业调查规划,2007,32(1):1-3.
    [53]兰士波.天然杨桦林密度效应的研究[J].南京林业大学学报(自然科学版),2007,31(02):83-87.
    [54]郎奎建,胡光,郝锦莹,等.人工林枯损动态模型及其规律分析[J].东北林业大学学报,1996,24(3):66-72.
    [55]雷相东,唐守正.森林经营对群落多样性影响的研究进展[J].生态学杂志,2000,19(3):46-51.
    [56]雷相东,张会儒,李冬兰,等.东北过伐林四种森林类型的物种多样性比较研究[J].生态学杂志,2003,22(5):47-50.
    [57]李庵.黑石顶森林中次生裸地上的群落演替进程研究[J].热带亚热带植物学报,1997,5(3):16-21
    [58]李贵祥,施海静,孟广涛,等.云南松原始林群落结构特征及物种多样性分析[J].浙江林学院学报,2007,24(4):396-400.
    [59]李国猷.北方次生林经营[M].北京:中国林业出版社,1992,1-5.
    [60]李哈滨,王政权.空间异质性定量研究理论与方法[J].应用生态学报,1998,9(6):651-657.
    [61]李建东,吴榜华,盛连喜.吉林植被[M].长春:吉林省科学技术出版社,2001.
    [62]李景文.森林生态学[M].北京:中国林业出版社,1994.
    [63]李久贵,孟宪友.次生林的经营管理[J].黑龙江:林业勘察设计,2005,134(2):43-44.
    [64]李俊清,李景文.中国东北小兴安岭阔叶红松林更新及其恢复研究[J].生态学报,2003,23(7):1268-1277
    [65]李俊清,牛树奎.森林生态学[M].北京:高等教育出版社,2006.
    [66]李俊清.阔叶红松林中红松的分布格局及其动态[J].东北林业大学学报,1986,14(1):33-38.
    [67]李明辉,何风华,刘云,等.林分空间格局的研究方法[J].生态科学,2003,22(01):077-081.
    [68]李生英,喻利华,王秀芬.林分直径枯损模型分析与研究[J].辽宁林业科技,1999,(3):11-13.
    [69]李文华.小兴安岭谷地云冷杉林群落结构和演替的研究[J].自然资源,1980,(4):7-29.
    [70]李雪峰,张岩,牛丽君,等.长白山白桦(Betula platyphlla)纯林和白桦山杨(Populus davidiana)混交林凋落物的分解[J].生态学报,2007,27(05):1782-1790.
    [71]李雪梅,刘玉成,李旭光等.缙云山森林次生演替序列群落结构、物种多样性与稳定性关系 [J].西南师范大学学报,1998,23(1):79-84.
    [72]铃木太七.森林经理学[M].日本:朝会书店,1982:116-122.
    [73]刘传照,李兆全.杨桦林下的生境条件与红松天然更新的研究[J].东北林业大学学报,1987,15(04):22-28
    [74]刘德隅.运用森林演替规律进行冷杉林迹地更新[J].林业调查规划,1985,(3):16-18.
    [75]刘金福,洪伟,林升学.格氏栲天然林主要种群直径分布结构特征[J].福建林学院学报,2001,21(4):325-328.
    [76]刘君然,赵东方.落叶松人工林威布尔分布参数与林分因子模型的研究[J].林业科学,1997,33(5):412-417.
    [77]刘萍萍,程积民.植物种间联结关系的研究[J].水土保持研究,2000,7(2):179-184.
    [78]刘慎谔.动态地植物学—基本理论的探讨和应用[M].刘慎谔文集,北京:科学出版社,1985.
    [79]刘玉成.四川缙云山常绿阔叶林次生演替及其物种多样性的研究.武汉植物学研究,1993,11(4):327-336.
    [80]刘忠君,郑秀梅.次生林的特点分析[J].黑龙江:林业勘察设计,2005,136(4):19-21.
    [81]娄安如.神农架3种天然次生林的种群结构和演替趋势[J].北京师范大学学报:自然科学版,1996,32(1):124-128.
    [82]陆元昌,雷相东,国红,等.西双版纳热带雨林直径分布模型[J].福建林学院学报,2005,5(1):1-4.
    [83]陆元昌.近自然森林经营的理论与实践[M].北京:科学出版社,2006.
    [84]吕林昭,亢新刚,甘敬.长白山落叶松人工林天然化空间格局变化[J].东北林业大学学报,2008,36(3):12-16.
    [85]罗传文,李盾,林代彬.天然次生林乔木树种的种间关系[J].东北林业人学学报,2004,32(2):5-8.
    [86]马姜明,刘世荣,史作民,等.川西亚高山暗针叶林恢复过程中不同恢复阶段的定量分析[J].应用生态学报,2007,18(08):1695-1701.
    [87]孟宪宇.测树学(第2版)[M].北京:中国林业出版社,1996,74-80.
    [88]孟宪宇.使用 Weibull 函数对树高分布和直径分布的研究[J].北京林业大学学报,1988(01):40-48.
    [89]牛丽丽,余新晓,岳永杰.北京松山自然保护区天然油松林不同龄级立木的空间点格局[J].应用生态学报,2008,19(7):1414-1418.
    [90]彭李菁.鼎湖山气候顶极群落种间联结变化[J].生态学报,2006,26(11):3732-3739.
    [91]彭少麟,方炜.鼎湖山植被演替过程优势种群动态研究Ⅱ.椎栗和木荷种群[J].植物生态学学报,1994,19(4):311-318.
    [92]彭少麟,王伯荪.鼎湖山人工马尾松第1代与自然更新代生长动态比较[J].应用生态学学报,1995,6(1):11-23.
    [93]彭少麟,周厚诚,郭少聪,等.鼎湖山地带性植被种间联结变化研究[J].植物生态学学报,1999,41(11):1239-1244.
    [94]彭少麟.恢复生态学与热带雨林的恢复[J].世界科技研究与进展,1997,3.
    [95]彭少麟.南亚热带森林群落动态学[M].北京:科学出版社,1996.1-444.
    [96]彭少麟.植物群落演替研究Ⅱ:动态研究方法[J].生态科学,1994,(2):117-119.
    [97]曲智林,胡海清.森林种群径阶转移模型中转移概率的估算方法[J].应用生态学报,2006,17(12):2307-2310.
    [98]曲智林,曲松,唐翠.基于矩阵模型的森林动态模拟与经营[J].东北林业大学学报,2007,35(6):28-30.
    [99]曲智林,赵惠勋,王虹.森林生态系统经营的森林种群模拟及分析[J].东北林业大学学报,2000,28(1):8-12.
    [100]曲仲湘.南京灵谷寺森林现况的分析[J].植物学报,1952,2(1):18-45.
    [101]任海,蔡锡安,饶兴权,等.植物群落的演替理论[J].生态科学,2001,20(4):59-67.
    [102]任海、彭少麟.恢复生态学导论[M].北京:科学出版社,2001,26-35.
    [103]任青山.天然次生林主要种群生态位结构的研究[J].东北林业大学学报,1998,26(2):5-10.
    [104]邵国凡,赵士洞,舒噶特.森林动态模拟[M].北京:中国林业出版社,1995.
    [105]沈琪,张骏,朱锦茹,等.浙江省生态公益林植被恢复过程中物种组成及多样性的变化[J].生态学报,2005,25(9):2131-2138.
    [106]史作民,刘世荣,程瑞梅,等.宝天曼落叶阔叶林种间联结性研究[J].林业科学,2001,37(2):39-35.
    [107]宋新章,张智婷,肖文发,等.长白山次生杨桦林采伐林隙乔灌木幼苗更新比较研究[J].林业科学研究,2008,21(3):289-294.
    [108]宋新章,张智婷,肖文发,等.长白山杨桦次生林采伐林隙幼苗更新动态[J].林业科学,2008,44(03):13-20.
    [109]孙冰,杨国亭,迟福昌,等.白桦种群空间分布格局的研究[J].植物研究,1994,14(2):201-207.
    [110]孙福生,徐衍武.小议次生林的作用[J].黑龙江:林业勘察设计,2003,126(3):19-20.
    [111]孙洪志,屈红军,任青山.黑龙江省次生林研究进展[J].森林工程,2003,19(4):9-12.
    [112]孙洪志,石丽艳.沙地樟子松的空间分布格局[J].东北林业大学学报,2005,33(1):93-94.
    [113]孙中伟,赵士洞.长白山北坡椴树阔叶红松林群落木本植物种间联结性与相关性研究[J].应用生态学报.1996,7(1):1-5.
    [114]谭学仁,张放,胡万良,等.辽东山区天然次生林恢复技术[M].辽宁科学技术出版社,2008.
    [115]汤孟平.森林空间经营理论与实践[M].北京:中国林业出版社,2007.
    [116]唐守正,李希菲.同龄纯林自然稀疏规律研究[J].林业科学,1993,29(3):234-241.
    [117]唐守正.多元统计分析方法[M].北京:中国林业出版社,1984:238-249.
    [118]王超,翟明普,马润国.基于空间结构单元的风景林抚育间伐研究[J].林业调查规划,2006,31(6):6-11.
    [119]王飞,代力民,邵国凡,等.非线性状态方程模拟异龄林径阶动态-以长白山阔叶红松林为例[J].生态学杂志,2004,23(5):101-105.
    [120]王乒,聂道平,郭泉水,等.大岗山森林生态系统研究[M].北京:中国科学技术出版社,2003:103-110.
    [121]王旭,周广胜,蒋延玲.山杨白桦混交次生林与原始阔叶红松林土壤呼吸作用比较[J].植物生态学报,2007,31(03):348-354.
    [122]王伯荪,马曼杰.鼎湖山自然保护区森林群落的演变.热带亚热带森林生态系统研究[M], 1982,(1):142-156.
    [123]王伯荪,彭少麟.鼎湖山森林群落分析.物种联结性[J].中山大学学报(自然科学版),1983,(4):27-35.
    [124]王伯荪,彭少麟.南亚热带常绿阔叶林种间联结测定技术Ⅰ[J].种间联结测式的探讨与修订,1985,9(4):274-285.
    [125]王辉忠,谢遵国,黄昊.抚育间伐对杨桦中壮龄次生林结构及群落演替的影响[J].林业科技,1999,24(3):17-19.
    [126]王顺忠,王飞,张恒明,等.长白山阔叶红松林径级模拟研究——林分模拟[J].北京林业大学学报,2006,28(5):22-27.
    [127]王文进,张明,刘福德,等.海南岛吊罗山热带山地雨林两个演替阶段的种间联结性[J].生物多样性,2007,15(03):257-263.
    [128]王政权,王庆成,李哈滨.红松老龄林主要树种的空间异质特征与比较的定量研究[J].植物生态学报,2000,24(6):718-723.
    [129]王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999.
    [130]温远光,元昌安,李信贤,等.大明山中山植被恢复过程植物物种多样性的变化[J].植物生态学报,1998,22(1):33-40.
    [131]邬建国.景观生态学——格局、过程、尺度与等级(第二版)[M].北京:高等教育出版社,2000:123-131.
    [132]吴刚,肖寒,赵景柱,等.长白山森林生态系统服务功[J].中国科学(C 辑),2001,31(5):471-480.
    [133]吴大荣,朱政德.福建省罗卜岩自然保护区闽楠种群结构和空间分布格局初步研究[J].林业科学,2003,39(1):23-30.
    [134]向玮,雷相东,刘刚等.近天然落叶松云冷杉林单木枯损模型研究[J].北京林业大学学报,2008,30(6):90-98.
    [135]徐海,惠刚盈,胡艳波,等.天然红松阔叶林不同径阶林木的空间分布特征分析[J].林业科学研究,2006,19(6):687-691.
    [136]徐化成,李长喜,唐谦.北京地区油松生态型变异的研究[J].林业科学研究,1992,6(2).
    [137]徐文铎,何兴元.长白山植被类型特征与演替规律的研究[J].生态学杂志,2004,23(5):62-174.
    [138]阳含熙,卢泽愚.植物生态学的数量分类方法[M].北京:科学出版社,1981.
    [139]杨慧,娄安如,高益军,等.北京东灵山地区白桦种群生活史特征与空间分布格局[J].植物生态学报,2007,31(02):272-282.
    [140]杨小波,文洪波.海南岛中部山区次生林生态特征研究[[J].海南大学学报:自然科学版.1999,17(4):343-346.
    [141]姚国清,池桂清,董兆琪,等.人工林红松三种林型生产力的研究[J].东北林业大学学报,1986,14(4):42-47.
    [142]于振良,赵士洞,王庆礼,等.长白山阔叶红松林带内杨桦林动态模拟[J].应用生态学报,1997,8(5):455-458.
    [143]于政中.森林经理学[M].北京:中国林业出版社,1993:47-49.
    [144]余树全.浙江淳安天然次生林演替的定量研究[J].林业科学,2003,39(01):17-22.
    [145]余新晓,张晓明,王雄宾.北京山区天然灌丛植被群落特征与演替规律[J].北京林业大学学报,2008,(S2):107-111.
    [146]张玲,袁晓颖,张东来.帽儿山落叶松群落主要树木种群间联结关系的研究[J].北京林业大学学报,2008,30(4):141-145.
    [147]张赟,张春雨,赵秀海,等.长白山次生林乔木树种空间分布格局[J].生态学杂志,2008,27(10):1639-1646.
    [148]张春雨,赵秀海,王新怡,等.长白山自然保护区红松阔叶林空间格局研究[J].北京林业大学学报,2006,28(sp2):45-51.
    [149]张家诚,陈力,郭泉水,等.演替顶级阶段森林群落优势树种分布的变动趋势研究[J].植物生态学报,1999:23(3):256-268.
    [150]张家来.应用最优分割法划分森林群落演替阶段的研究[J].植物生态学与地植物学学报,1993,17(3):224-231.
    [151]张建国,段爱国,童书振.林分直径结构模拟与预测研究概述[J].林业科学研究,2004,17(6):787-795.
    [152]张金屯,焦蓉.关帝山神尾沟森林群落木本植物种间联结性与相关性研究[J].植物研究,2003,23(4)458-463.
    [153]张金屯.植物种群空间分布的点格局分析[J].植物生态学报,1998,22(4):344-349.
    [154]张金屯.数量生态学[M].北京:科学出版社,2004.
    [155]张龙俊,王卫平.天然次生林培育与顶极演[J].林业科技通讯,2000,2(8):38-39.
    [156]张佩昌,王庆礼.天然林保护工程[M].北京:中国林业出版社,2000.
    [157]张庆费,由文辉,宋永昌.浙江天童植物群落次生演替对土壤化学性质的影响[J].应用生态学报,1999,10(1):19-22.
    [158]张少昂,王冬梅.Richards 方程的分析和一种新的树木理论生长方程[J].北京林业大学学报,1992,14(3):99-105.
    [159]张颂云.长白山地区次生林演替规律的研究[A].中国科学院长白山森林生态系统定位站.森林生态系统研究[C],北京:中国林业出版社,1983,(3):44-54.
    [160]张晓巍,李桂香,闫立海,等.天然次生林经营现状及对策[J].林业科技,2003,28(3):13-15.
    [161]张治国.生态学空间分析[M].北京:科学出版社,2007.
    [162]赵宝珠,张凤杰.辽东地区天然次生林形成及经营措施的探讨.辽宁林业科技,1999,(5):47-50.
    [163]赵利群,翁国盛,高秀芹.次生林综述[M].黑龙江:防护林科技,2006,74(9):1005-5215.
    [164]赵中华,袁士云,惠刚盈,等.小陇山不同灌木林地改造模式林分树种多样性研究[J].林业资源管理,2008,(01):53-57,64.
    [165]郑丽凤,周新年,江希钿,等.松阔混交林林分空间结构分析[J].热带亚热带植物学报,2006,14(4):275-580.
    [166]周灿芳.植物群落动态研究进展[J].生态科学,2000,19(2):53-59.
    [167]周春国,佘光辉,吴富桢,等.用变型 Weibull 分布对热带雨林结构规律的研究[J].南京林业大学,1998,22(04):14-18.
    [168]周国模,刘恩斌,刘安兴,等.Weibull 分布参数辨识改进及对浙江毛竹林胸径年龄分布的测度[J].生态学报,2006,26(09):148-156.
    [169]周先叶,王伯荪,李鸣光,等.广东黑石项自然保护区森林次生演替过程中群落的种间联结性[J].植物生态学报,2000,24(03):332-339.
    [170]周先叶,王伯荪,李鸣光,等.黑石顶自然保护区森林次生演替过程中群落主要种的种间协变分析[J].应用生态学报,2004,15(3):367-371.
    [171]周晓峰,李俊清.次生黄波罗林的研究[J].东北林业大学学报,1991,19(4):140-144.
    [172]周晓峰.红松阔叶林的恢复途径[J].东北林学院学报(增刊),1982,18-28.
    [173]周以莨,赵光仪.小兴安岭—长白山林区天然次生林的类型、分布及其演替规律[J].东北林业大学学报,1964,(3):33-45.
    [174]朱教君,刘世荣.次生林概念与生态干扰度[J].生态学杂志,2007,26(7):1085-1093
    [175]朱教君,刘世荣.森林干扰生态研究[M].北京:中国林业出版社,2007.
    [176]朱教君.次生林经营基础研究进展[J].应用生态学报,2002,13(12):1689-1694.
    [177]朱教君.森林退化/衰退的研究与实践[J].应用生态学报,2007,18(7):1601-1609
    [178]朱守谦,何纪星.南亚热带马尾松树冠构成规律初步研究[J].贵州农学院学报,1993,12(2):36-44.
    [179]朱守谦,龙翠玲.马尾松幼龄种群年龄结构研究[J].山地农业生物学报,1999,18(5):289-295
    [180]Aiba S,Hill DA,Agetsuma N.Comparison between ogrowth stands and secondary stands regenerating after clear-fell in warm-temperate forests of Yakushima[J],southern Japan.For Emanag,2001,140:163-175.
    [181]Alejandro A R,Walter P C.On the formation of dense understory layers in forests worldwide:consequence and implications for forest dynamics,biodiversity,and succession[J].Canadian Journal of Forest Research,2006,36(6):1345-1362.
    [182]Antos J and Parish R.Dynamics of an old-growth,fire-initiated,subalpine forest in southern interior British Columbia:tree size,age,and spatial structure[J].Canadian Journal of Forest Research,2002,32:1935-1946.
    [183]Bailey R L,Dell T R.Quantifying diameter distributions with the Weibull function[J].Forest Science,1973,19(2):97-104.
    [184]Biondi F,Myers D F,Avery C C.Geostatistically modelling stem size and increment in an old-growth forest[J].Canadian Journal Forest Research,1994,24:1354-1368.
    [185]Bliss C I,Reinker K A.A lognormal approach to diameter distributions in even-aged stands[J].Forest Science,1964,10(3):350-360.
    [186]Boyden S,Binkley D,Shepperd W.Spatial and temporal patterns in structure,regeneration,and mortality of an old-growth ponderosa pine forest in the Colorado Front Range[J].Forest Ecology and Management,2005,219:43-55.
    [187]Cain M D,Shelton M G.Secondary forest succession following reproduction cutting on the Upper Coastal Plain of southeastern Arkansas,USA[J].Forest Ecology and Management,2001,146:223-238.
    [188]Chert J Q,Bradshaw G A.Forest structure in space:a case study of an old growth spruce-fir forest in Changbaishan Natural Reserve,PR China[J].Forest Ecology and Management,1999,120:219-233.
    [189]Clark J,Evans F C.Distance to nearest neighbor as a measure of spatial relationships in populations[J].Ecology,1954,35:445-453.
    [190]Connell J H.Diversity in tropical rain forests and coral reefs[J].Science,1978,199:1302-1310.
    [191]Dansereau(1957).Shurr S H-Barnes B V.赵克绳,周祉译.森林生态学[M].北京:中国林业出版社,1982:300-323.
    [192]Donnegan J A,Rebertus A J.Rates and mechanisms of subalpine forest succession along an environmental gradient[J].Ecology,1999,80(4):1370-1384.
    [193]Douglas Sheil.Long-term observations of rain forest succession,tree diversity and responses to disturbance[J].Plant Ecology,2001,155:183-199.
    [194]Fajardo A,Goodburn J M,Graham J.Spatial patterns of regeneration in managed uneven-aged Ponderosa pine/Douglas-fir forests of Western Montana,USA[J].Forest Ecology and Management,2006,223:255-266.
    [195]Falkowski,M.J.et al.Characterizing forest succession with lidar data:An evaluation for the Inland Northwest,USA[J].Remote Sensing of Environment,2009,doi:10.1016/j.rse.2009.01.003
    [196]Finegan B.Pattern and process in Neotropical secondary rainforests:The first 100 years of succession[J].Trends Ecol,1996,11:119-124.
    [197]Fisher R A,et al.The relation between the number of species and the number of individuals in a random sample of an animal population[J].Animal Ecol,1943,12(1):42-58.
    [198]Fonseca M G,Martini A M Z,dos Santos F A M.Spatial structure of Aspidosperma polyneuron in two semi-deciduous forests in southeast Brazil[J].J.Veg.Sci.2004,15(1):41-48.
    [199]Gadow K V.Strukturentwicklung eines Buchen-Fichten-Mischbestandes[J].Allg.Forst-u.J.-Ztg.1997,168(6/7):103-106.
    [200]Goodburn J M,Lorimer C G Population structure in old-growth and managed northern hardwoods:an examination of the balanced diameter distribution concept[J].Forest Ecology and Management,1999,118:11-29.
    [201]Grau H R,Arturi M F,Brown AD,et al.Floristic and structural patterns along a chronosequence of secondary forest successionin argentinean subtropical montane forests[J].Forest Ecology and Management,1997,95:161-171
    [202]Grau H R.Regeneration patterns of Cedrela lilloi (Meliaceae) in northwestern Argentina subtropical montane forests[J].J.Trop.Ecol.2000,16,227-242.
    [203]Greig-Smith P.Quantitative plant ecology.Butter Worths and Co.,Ltd.,London,Grit Britain,1964,256.
    [204]Greig-Smith.Quantitative plant ecology.3rd ed[M].Oxford:blackwell Scientific Publications.1983,105-128.
    [205]Grushechy S T,Fajvan M A.Comparison of hardwood stand structure after partial harvesting using intensive canopy maps and geostatistical techniques[J].Forest Ecology and Management,1999,114:421-432.
    [206]Gul A U,Misir M,Misir N,et al.Calculation of uneven-aged stand structures with the negative exponential diameter distribution and Sterba's modified competition density rule[J].Forest Ecology and Management,2005,214:212-220.
    [207]Hafley W L,Schreuder H T.Statistical distributions for fitting diameter and height data in even-aged stands[J].Canadian Journal of Forest Research,1977,7:481-487.
    [208]Hall,J.S.,McKenna,J.J.,Ashton,P.M.S.,Gregoire,T.G Habitat characterizations underestimate the role of edaphic factors controlling the distribution of Entandrophragma[J].Ecology 2004,85:2171-2183.
    [209]Hao Z Q,Zhang J,Song B,et al.Vertical structure and spatial association of dominant tree species in an old-growth temperate forest[M].Forest Ecology and Management,2007,252:1-11.
    [210]Hao Z Q,Zhou Y,Wang L,et al.Optimization models of stand structure and selective cutting cycle for large diameter trees of broadleaved forest in Changbai Mountain[J].Journal of Forestry Research,2006,17(2):135-140.
    [211]Harrison TP,Michie BR.A generalized approach to the use ol matrix growth models[J].Forest Science,1985,31:850-856.
    [212]He F,Legendre P,LaFrankie J V.Distribution patterns of tree species in a Malaysian Tropical rain forest[J].J.Veg.Sci.1997,8(1):105-114.
    [213]Kershaw,K.A,Looney J H.Quantitative and dynamic plant ecology.3rd ed[M].London:Edward Arnold Limited.1985,78-94.
    [214]Kint V,Meirvenne M V,Nachtergale L,et al.Spatial methods for quantifying forest stand structure development:a comparison between nearest-neighbor indices and varibgram analysis[J].Forest Science,2003,49(1):36-49.
    [215]Knapp R.Vegetation Dynamics[M].Science Press,Beijing,China,1986:2-76.
    [216]Kohyama T,Aiba S.Dynamics of primary and seconda warm-temperate rain forests in Yakushima Island[J].Tropics,1997,6:383-392.
    [217]Kohyama T.Size-structured tree population in gap dynamics between forests:the forest architecture hypothesis for the stable coexistence of species[J].J.Tro.Ecol.,2006,81,31-143.
    [218]Kolbe A E,Buongiorno J,Vasievich M.Geographic extension of an un-aged multi-species matrix growth model for northern hard wood forests.Ecol Model,1999,121:235-253.
    [219]Krylo V V.Species association in plankton[J].Oceanology,1968,8(2):243-251.
    [220]Kuuluvainen T,Jarvinen E,Hokkanen T J,et al.Structure heterogeneity and spatial autocorrelation in a natural mature Pinus sylvestris dominated forest[J].Ecography,1998,21:159-174.
    [221]Lauri M.An algorithm for ensuring compatibility between estimated percentiles of diameter distribution and measured stand variables[J].Forest Science,2004,50(1):20-32.
    [222]Lee Y.Predicting mortality for even—aged stands of Lodgepole pine[J].Canada forestry chronicle,1971,47:29-32.
    [223]Levin S A.The problem of pattern and scale in ecology[J].Ecology 73 (6):1943-1967.
    [224]Lexerod N L,Eid T.An evaluation of different diameter diversity indices based on criteria related to forest management planning.Forest Ecology and Management,2006,222:17-28.
    [225]Li Wenhua.Degradation and restoration of forest ecosystems in China[J].Forest Ecology and Management,2004,201:33-41.
    [226]Li F.Analysis on the spatial structures of spruce-fir stands in northwest Maine[D].State University of New York College of Environmental Science and Forestry,2004.
    [227]Liu C M,Zhang S Y,Lei Y C.Evaluation of three methods for predicting diameter distributions of black spruce (picea mariana) plantations in central Canada[J].Canadian Journal of Forest Research,2004,34(12):2424-2432.
    [228]Liu C,Zhang L,Davis C J,et al.A finite mixture model for characterizing the diameter distributions of mixed[J].Forest Science,2002,48(4):653-661.
    [229]Liu Q J,Li X R,Ma Z Q,et al.Monitoring forest dynamics using satellite imagery—a case study in the natural reserve of Changbai Mountain in China[J].Forest Ecology and Management,2005,210:25-37.
    [230]Lu D,Mausel P,Brondizio E,et al.Classification of successional forest stages in the Brazilian Amazon basin.Forest Ecology and Management,2003,181:302-312.
    [231]Margalef R.Diversity,stability and materiality in natural ecosystems In:Dobben WH,Lowe-Mcconnell RH eds.Unifying Concepts in Ecology[M].Wageningen:centre for Agricultural publishing and Documentation.1975,151-160.
    [232]Mathieu F,Chhun U,Louis A.et al.Calibrating a generalized diameter distribution model with mixed effects[J].Forest Science,2006,52(6):650-658.
    [233]Mausel P,Wu Y,Li Y,et al.Spectral identification of succession stages following deforestation in the Amazon[J].Geocarto Int,1993,(8):61-72.
    [234]Meyer H A.Forest Mensuration[M],Pennsylvania Vally Publishers,Pennsylvania,1953.
    [235]Meyer H A.Structure,growth and drain in balanced uneven-aged forests[J].J.For.1952.50,85-92.
    [236]Michiel van B.Community dynamics during early secondary succession in Mexican tropical rain forests[J].Journal of Tropical Ecology,2006,22:663-674.
    [237]Moeru M.1993.Characterizing spatial patterns of trees using stem-mapped data.Forest Science,1993,39:756-775.
    [238]Moran E F,Brondizio E S.Land-use change after deforestation in Amazonia.In:Liverman D,Moran E F,Rindfuss RR,et al (Eds.),People and Pixels:Linking Remote Sensing and Social Science[M].National Academy Press,Washington,DC,1998:94-120.
    [239]Moran E F,Brondizio E,Tucker J M,et al.Effects of soil fertility and land use on forest succession in Amazonia[J].Forest Ecology and Management,2000,139:93-108.
    [240]Motta R,Edouard J L.Stand structure and dynamics in a mixed and multilayered forest in the upper Susa valley,Piedmond,Italy[J].Canadian Journal of Forest Research,2005,35(1):21-36.
    [241]O'Hara L O,Latham,P.A.,Hessburg,P.,et al.A structural classification for inland Northwest forest vegetation[J].Western Journal of Applied Forestry,1996,11:97-102.
    [242]Oliver C D.Forest development in North American following major disturbance[J].Forest Ecology and Management,1981(3):153-168.
    [243]Peng C H.Growth and yield models for uneven-aged stands:past,present and future[J].Forest Ecology and Management,2000,132(2):59-279.
    [244]Pielou E C.Population and community ecology Principle and methods[M].Gordon and Breach,New York,USA,1974.
    [245]Pienaar L V.An Approximation of Basal Area Growth after Thinned Based on the Growth in Unthinned Plantation[J].Forest Science,1979,25:223-232
    [246]Richards F J.A Flaxible Growth Function for Empirical Use[J].J.Exp.Bot,1959,10:301-316
    [247]Riginos C,Milton S J,Wiegand T.Context-dependent interactions between adult shrubs and seedlings in a semi-arid shrubland[J].J.Veg.Science.2005,16 (3),331-340.
    [248]Ripley B D.Modeling spatial pattern.Journal of the Royal Statistical Society (Series B),1977,39:172-212.
    [249]Ripley B D.Spatial statistics[M].Wiley,New York,1981,252.
    [250]Saldarriaga J Q West D C,Tharp M L,et al.Long term chronosequence of forest succession in the Upper Rio Negro of Colombia and Venezuela[J].J.Ecology,1988,76:938-958.
    [251]Sarkar R R,Petrovskii S V.Biswas M A.Gupta J.Chattopadhyay.An ecological study of a marine plankton community based on the field data collected from Bay of Bengal[M].Ecological Modelling,2006,589-601.
    [252]Sarkkola S,Hokka H,Penttila T.Natural development of stand structure in peatland scots pine following drainage:Results based on long-term monitoring of permanent sample plots[J].Silva Fennica,2004,38(4):405-412.
    [253]Schluter D.A variance test for detecting species association with some example application[J].Ecology,1984,65(3):998-1005.
    [254]Schurr F M,Bossdorf O,Milton S J,et al.Spatial pattern information in semi-arid shrubland:a priori predicted versus observed pattern characteristics[J].Plant Ecollogy,2004,173(2):217-282.
    [255]Solomon D S,Hosmer R A,Hayslett H T.A two-stage matrix model for predicting growth of forest stand in the Northeast[J].Can For Res,1986,16:521-528.
    [256]Solomon D S.Grove J H.Effects of uneven-aged management intensity on structural diversity in two major forest types in New England.Forest Ecology and Management.1999,114:265-274.
    [257]Torres I L,belda C F,Perez S F O,et al.Choosing Fagus sylvatica L.matrix model dimension by sensitivity analysis of the population growth rate with respect to the width of the diameter classes[J].Ecology Modelling,2008,218:307-314.
    [258]Tucker J M,Brondizio E S,Moran E F.Rates of forest regrowth in Eastern Amazonia:a comparison of Altamira and Bragantina regions,Para State,Brazil[J].Interciencia,1998,(23):64-73.
    [259]Turnbull K J.A System of Mathematical Model of Mixed Stand Growth and Structure.Ph.D Dissertation[J].Univ.of Washington,1963
    [260]TURNER I M,WONG YK,et al.Tree species richness in primary and old secondary tropical forest in Singapore[J].Biodiversity and Conservation,1997,(6):537-543.
    [261]Uhl C,Buschbacher R,Serrao E A S.Abandoned pastures in eastern Amazonia.I.Patterns of plant succession[J].J.Ecology.1988,76:663-681.
    [262]Usher M B.A matrix approach to management of renewable resources:With special reference to selection forests[J].J Appl Ecology,1966,3:355-367.
    [263]Van Laar A,AkcaA.Forest mensuration[M].Gottingen:Cuvillier Verlag,1997.418
    [264]Wang D P,Ji S Y,Chen F P,et al.Diversity and relationship with succession of naturally regenerated southern subtropical forests in Shenzhen,China and its comparison with the zonal climax of Hong Kong[J].Forest Ecology and Management,2006,222:384-390.
    [265]Wang M L,Rennolls K.Tree diameter distribution modelling:introducing the logit-logistic distribution[J].Canadian Journal of Forest Research,2005,35:1305-1313.
    [266]Wiegand K,Jeltsch F,Ward D.Do spatial effects play a role in the spatial distribution of desert-dwelling Acacia raddiana[J].Veg.Science,2000,11 (4):473-484.
    [267]Yang Z Q,Cohen W B,Harmon M E.Modeling early forest succession following clear-cutting in western Oregon[J].Canadian Journal of Forest Research,2005,35(8):1889-1900.
    [268]Yasuhiro K,Hiroyuki K,Kenichiro S.Spatial pattern dynamics over 10 years in a conifer/broadleaved forest,northern Japan[J].Plant Ecology,2007,190:143-157.
    [269]Yates F E,et al.Integration of the whole organism-A foundation for a theoretical biology.Challenging biological problem:direction towards their solutions[M].Oxford Univ.Press.New York,1972.
    [270]Yong blood A,Max T,Coe K.Stand structure in eastside old-growth ponderosa pine forests of Oregon and northern California[J].Forest Ecology and Management,2004,199:191-217.
    [271]Zasada M,Cieszewski C J.A finite mixture distribution approach for characterizing tree diameter distribution by natural social class in pure even-aged Scots pine stands in Poland[J].Forest Ecology and Management,2005,204(2-3):145-158.
    [272]Zhang L,Jeffrey G H,Liu C,et al.A finite mixture of two Weibull distributions for modeling the diameter distributions of rotated-sigmoid,uneven-aged stands[J].Canadian Journal of Forest Research,2001,31(9):1654-1659.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700