用户名: 密码: 验证码:
基于激光干涉原理的海洋灾害预警关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十一世纪是海洋的世纪,海洋经济在很多国家的经济中所占的比重越来越大。然而,我国的海洋灾害频发,造成巨大的生命财产损失。做好海洋灾害预警工作可以有效地促进国家的经济发展和保障人民的生命财产安全。
     本文依托于国家科技部国际科技合作计划项目“基于激光干涉原理的海洋灾害预警系统”(课题编号:2008DFR20230)。首先总结了我国海洋动力灾害的现状和世界各国使用的地球动力学检测技术;然后介绍了项目中所使用激光干涉测量装置,及其所获得的干涉图像的处理办法;最后以俄方建成的两个相距250公里的实验站为依托,完成了关于地球动力和地壳微形变之间关系的实验研究,并对实验数据进行了分析,得出了相关的结论。
     本文创新性的提出了采用激光干涉技术来测量海洋动力灾害所引起的地壳的微小形变。采用的激光干涉测量装置的位移测量精度可达到10-11m,能够检测频率从0Hz开始的地壳振动,具有良好的低频响应特性,对地壳常见的低频振动具有良好的响应,这些特性是其它地球动力学检测方法所不具备的。
     本文的主要工作如下:
     1、检测装置的测量精度和稳定度完全取决于激光源的频率稳定性及其相干性,因此,选择频率非常稳定He-Ne激光器作为测量装置的光源,能够保证光束在长光程上同样具有非常好的相干特性。在光信号传输过程中采用增压光束导管,将光信号受传播噪声的影响降到最小。
     2、在干涉仪的设计上,为了增加系统的灵敏度,采用了臂长为52.5m的迈克尔逊激光干涉仪。干涉仪的动镜是激光干涉仪中唯一不断运动的部件,其在运动过程中的平稳性保证干涉图像和复原光谱的质量。采用准猫眼动镜有效克服了动镜倾斜带来的对光谱质量的影响,并在文中分析了准猫眼动镜的工作原理,同时给出了准猫眼动镜的选择原则。激光干涉仪参考臂由具有调制和补偿功能的双PZT组构成,分析了双PZT组的最佳组合方式,及其在调制信号和反馈补偿信号作用下对干涉测量仪光程差的改变情况。上述这些方法最终解决了激光干涉仪测量低频微小振动中的关键技术问题。
     3、我们通过使用间隔布置的激光干涉仪进行测量,发现了海洋内波和表面波可以造成地壳水平方向上的微应变。同时,我们从实验角度揭示了采用激光干涉仪测量地震先兆的可能性。
     4、研究了水声波到声震波的转换。当水声源在岩基或斜坡后面时,地震波信号就会被不同的低频信号调制。在深海或浅海里安置低频水声源,通过激光干涉仪接收到的水声振荡波信号的变化,发现了水声波以接近临界角的方式作用在海底,并且最终转变为地震声波。
     5、证实了海洋内波能量不转换为小规模湍流能量,而是转换为海底(岩石圈)弹性振动能量。海洋表面波和内波与海底交互作用过程中,能量大多以Rayleigh波的形式被岩石圈吸收。
     6、本文分析了日本海大陆架区域由海洋内在重力波导致的低频岩石圈变形的数据,得出当波浪由大陆架边缘向日本海海岸传播时,周期可能会随着压力的增加而增大,并且伴随着地球重力波幅值增加的结论。
     以上研究成果表明激光干涉测量技术可以为海洋动力灾害预警提供科学的检测数据。
The 21st century is a century for sea and ocean. The sea economy takes more and more proportions of national economy in many countries. However, marine calamity happens frequently in China and causes giant loss of life and property. The marine calamity forecast can effectively promote economy development and safeguard life and property safety.
     This article depends on a research project from the International Science and Technology Corporation Plan organized by the Ministry of Science and Technology of the People′s Republic of China: Marine Calamity Forecast System Based On Laser Interferometry (project serial number: 2008DFR20230). Firstly, the current situation of China’s sea power disaster and the measuring technology for geodynamics in different countries are summarized; then the laser interferometer adopted in this project and the processing techniques for interference pattern are introduced; Finally, the relation between the Earth power and the micro deformation of Earth's crust is experimentally studied at two 250-kilometer-seperated experimental stations constructed in Russia; the empirical data are scientifically analyzed, and related conclusions are drawn.
     Using the laser interference technology to measure the infinitesimal deformation of the Earth’s crust is innovatively proposed. Common vibration with low-frequency of the Earth’s crust can be measured with a displacement measuring accuracy around 10-11m. This good response to low-frequency vibration is a unique characteristic of laser interference technology.
     The prime tasks of this article are as follows:
     1、The measuring accuracy and the stability are completely decided by the frequency stability and the coherence of the laser source. Therefore, choosing He-Ne laser with extremely stable frequency as light source can guarantee an extremely good coherent characteristic in a long optical path.
     2、In order to increase the sensitivity, a Michaelson laser interferometer with a 52.5-meter-long arm is adopted. The moving mirror is the only unceasing moving part in the laser interferometer. So the stability of moving mirror guarantees the quality of interference pattern and the spectrum restoration. A cat-eye moving mirror is used to overcome the influence from the tilt of moving mirror. The working principle and the selecting principle of cat-eye moving mirror are also analyzed simultaneously. The reference arm of laser interferometer was constituted of PZT groups with modulation and compensation function. The optimal combination of PZT groups and the optical path changes induced by modulation signal and feedback compensation signal are also analyzed. The above methods solve the key technological problem in measuring low-frequency small vibration by laser interferometer.
     3、From the measurements of spaced laser strainmeters, the horizontal crustal microstrains caused by surface and internal sea waves are observed. The possibility of earthquake forecast is experimentally revealed.
     4、The conversion from low-frequency hydroacoustic source to seismoacoustic signals is studied. When a hydroacoustic source is located on shelf or behind slope, seismoacoustic signals are modulated by various low-frequency signals. By using a low-frequency hydroacoustic source in a shallow or deep sea to generate hydroacoustic oscillations, the variations of signals received by a laser deformograph reveal that the hydroacoustic wave interacts with the bottom at around critical angles and transforms into a seismoacoustic wave.
     5、We testified that the energy of internal sea waves is transformed into the energy of elastic vibrations of the seafloor, instead of the energy of small-scale turbulence. During the interaction of internal and surface sea waves with the seafloor, the energy is mostly absorbed by the lithosphere in the form of Rayleigh waves.
     6、The data of low-frequency lithospheric deformations produced by marine internal gravitational waves (IGW) propagating in the continental shelf zone of the Sea of Japan are analyzed. A conclusion is deduced that wave period may increase as a result of additional pressure associated with an increase in the IGW amplitude during the waves propagate from the shelf edge toward the coast of the Sea of Japan.
     The above-mentioned research results indicated the laser interferometry technology may provide scientific data for marine calamity forecast.
引文
[1]李培英,杜军,刘乐军等.中国海岸带灾害地质特征及评价[M].北京:海洋出版社,2007.
    [2]谢富仁,邱泽华,王勇等.我国地应力观测与地震预报[J].国际地震动态,2005,15(5):54-59.
    [3]叶叔华,黄成.现代地壳运动和地球动力学研究[J].科学导报,1995,12(3):18-22.
    [4]王喜年.风暴潮灾害及其预报与防御对策[J].海洋预报,1998,15(3):27-31.
    [5]方欣华,杜涛.海洋内波基础和中国海内波[M].青岛:中国海洋大学出版社,2005.
    [6]李红艳.利用合成孔径雷达研究海洋内波[D].中国海洋大学物理海洋学,2004.
    [7]许才军,申文斌,晃定波.地球物理大地测量学原理与方法[M].武汉:武汉大学出版社,2006.
    [8]刘良明.卫星海洋遥感导论[M].武汉:武汉大学出版社,2005.
    [9]吕炳全.海洋地质学概论[M].上海:同济大学出版社,2008.
    [10]刘天佑.应用地球物理数据采集与处理[M].武汉:中国地质大学出版社,2004.
    [11]张景发,刘钊.InSAR技术在西藏玛尼强震区的应用[J].清华大学学报(自然科学版),2002,42(6):847-850.
    [12]刘国林,郝晓光,薛怀平.InSAR技术的理论与应用研究现状及其展望[J].山东科技大学学报(自然科学版),2004,23(3):1-6.
    [13]叶叔华,黄成.天文地球动力学[M].山东:山东科学技术出版社,2000.
    [14]Laske G, Masters G. Limits on differential rotation of the inner core from an analysis of the earth’s free oscillations. Nature, 1999, 402: 66-69.
    [15]Jaclbs J A. A textbook on geonomy. London: Adam Hilger,1974.
    [16]Hide R. Towards a theory of irregular variations in the length of day and core-mantle coupling. Phil. Trans. R. Soc Lond. , 1977, A284:547-554.
    [17]孙付平,赵铭.全球五大板块的运动与形变-用卫星激光测距数据导出的站速度分析[J].地球物理学报,1994,37(5):596-605.
    [18]符养,朱文耀,王晓亚等.利用中国地壳运动观测网络研究中国大陆相对于INTF97板块模型形变[J].地球物理学报,2002,45(3):330-336.
    [19]杨光.GPS与伪卫星组合定位技术及其在形变监测中的应用研究[D].河海大学土木学院,2004.
    [20]孟国杰.基于全球定位系统的现今地壳运动与形变研究[D].中国地震局地球物理研究所,2001.
    [21]徐绍铨,张华海,杨志强等.GPS测量原理及应用[M].武汉:武汉大学出版社,2001.
    [22]Gabriel A K, Goldstein R M, Zebker H A. Mapping Small Elevation Changes over Large Areas: Differential Radar Interferometry. J. Geophys. Res.1989,94 (B7):9183-9191.
    [23]Brand U,Hermann K.A laser measurement system for the high precision calibration of displacement transducers.Measurement Science and Technology,1996,7(6):911-917.
    [24]Heydemann Peter L M.Determination and correction of quadrature fringe measurement errors in interferometers.Applied Optics,1981,20(19):3382-3384.
    [25]William E Holt,James F NI,Terry C Wallace,et al.The Accive Tectonics of the Eastern Himalayan Syntaxis and Surrounding Regions.Journal of Geodesy,1998,72(5):200-214.
    [26]刘正荣.地震预报[M].北京:地震出版社,2007.
    [27]C Demets,R G Gordon,D F Argus et al.Effect of recent revision to the geomagnetic reversal time scale on estimates of current plate motions. Grophys.Res.Lett.,1994,21(16):2191-2194.
    [28]Alice E. Gripp, Richard G. Gordon.Current plate velocities relative to the hotspots incorporating the NUVEL-1 globleplate motion model. J. Geophys. Res.,1990,17(8):1109-1112.
    [29]窦秀明,代作晓,华健文等.激光干涉信号的位置及偏差提取[J].光电技术应用,2007,28(4):575-578.
    [30]羡一民,王科峰.激光干涉仪技术及发展[J].工具技术,2003,37(11):68-73.
    [31]Charles R Steinmetz . Performance evaluation of laser displacement interferometry on a precision coordinate measuring machine . Industry Metrology.1991,12(1):165-191.
    [32]韩旭东,艾华,龙科慧.一种新型单频激光干涉系统的研究[J].光电工程,2002,29(5):49-51.
    [33]郭彦珍,邱宗明,李信.激光偏振干涉光路的非线性分析计算[J].海洋预报,1995,16(4):38-42.
    [34]G R福尔斯.现在光学导论[M].上海:上海科学技术出版社,1980.
    [35]王文生.干涉测试技术[M].北京:兵器工业出版社,1992. Stratonovich, R.L. Application of the Markov processes theory to optimal filtering. Radio Engineering and Electronic Physics, 1960 5(11):1-19.
    [36]Roweis, S. and Ghahramani, Z.. A unifying review of linear Gaussian models. Neural Comput, 1999: 305-345.
    [37]Bierman, G.J.. Factorization Methods for Discrete Sequential Estimation. Mathematics in Science and Engineering. 1977,128:124-131.
    [38]Bozic, S.M.. Digital and Kalman filtering. Butterworth-Heinemann, 1994.
    [39]Li, Xiao-Rong. Estimation and Tracking: Principles, Techniques, and Software. YBS Publishing,1998.
    [40]F Dust,A Melling. Principles and Practics of Laser Doppler Anemometry. Acadamic Press, 1977.
    [41]Keven M Killian. Pointing Grade Fiber Optic Gyroscope. AEEE AES Magazine,1994: 6-10.
    [42]A Gerrard, J M Burch. Introduction to Matrix Methods in Optics. John Wiley & Sons, 1975.
    [43]Kees J Eijkel, Poul de Haan and Rene’M de Ridder. Techniques for Measuring Smalll Changes in the Orientation of the Easy Axis in Permalloy Films. Rev. Sci. Instrum. ,1988,59(12).
    [44]梁铨廷.物理光学[M].北京:机械工业出版社,1987.
    [45]卞松玲,刘木兴,刘良读等.傅立叶光学[M].北京:兵器工业出版社,1989.
    [46]Bucy, R.S. and Joseph, P.D.. Filtering for Stochastic Processes withApplications to Guidance. AMS Chelsea Publ., 2005.
    [47]Jazwinski, Andrew H.. Stochastic processes and filtering theory. New York: Academic Press, 1970.
    [48]Kailath, Thomas, An innovation approach to least-squares estimation Part I: Linear filtering in additive white noise. IEEE Transactions on Automatic Control, 1968,13(6): 646-655.
    [49]Kalman, R.E.. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 1960 82 (1): 35–45.
    [50]Kalman, R.E.; Bucy, R.S.. New Results in Linear Filtering and Prediction Theory,1961.
    [51]Julier, S.J.; Uhlmann, J.K.. A new extension of the Kalman filter to nonlinear systems. Int. Symp. Aerospace/Defense Sensing, Simul. and Controls 3, 1997.
    [52]Harvey, A.C.. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, 1990.
    [53]Roweis, S.; Ghahramani, Z.A Unifying Review of Linear Gaussian Models. Neural Computation. 1999,11(2): 305–345.
    [54]杨振寰著.光学信息处理[M].母国光,羊国光,庄松林译.天津:南开大学出版社,1986.
    [55]陶纯堪,陶纯匡.光学信息论[M].北京:科学出版社,1999.
    [56]钟锡华.光波衍射与变化光学[M].北京:高等教育出版社,1985.
    [57]宋菲君.近代光学信息处理[M].北京:北京大学出版社,1989.
    [58]杨国光.近代光学测试技术[M].北京:机械工业出版社,1986.
    [59]Arimondo E Phillips W and Strumia.Laser Manipulation of Atom and ions. Amsterdan:North-Holland Press,1992.
    [60]Maurr A.Lasers Light wave of the future. New York:ARCO Publishing, INC,1992.
    [61]殷纯永.现代干涉测量技术[M].天津:天津大学出版社,1999.
    [62]Fluck E et al.Near field probing of photonic crystals. Photonics and Nanostructures Fundamentals and Applications,2004(2): 127-135.
    [63]Spero R E, Whitcomb S E.Lasers gravity observation system[J]. Optics & Photonics News,1995,6(7): 35-39.
    [64]Vuletic V,Chu S . Laser Cooling of Atom,Ions,or Molecules by Coherent Scattering Physical Review Letter, 1999,84(17): 3787-3790.
    [65](苏)尤·姆·克里姆科夫.激光光电仪器设计.王诚华译.北京:测绘出版社,1984.
    [66](日)小原实,神成文彦,佐藤俊一.应用激光光学.李元變译.北京:科学出版社,1983.
    [67]Peltier W R, Wu P. Mantle phase transitions and the free-air graviy anomalies over Fennoscandia Laurenia Res. Lett, 1982, 9(7): 731-734.
    [68]Okada Y. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seimological Society of America, 1985, 7(5): 1135-1154.
    [69]杨练根,王选择.新型表面形貌测量仪器[M].北京:科学出版社,2008.
    [70]刘继芳.现代光学[M].西安:西安电子科技大学出版社,2004.
    [71]郭玉彬,霍佳雨.光纤激光器及其应用[M].北京:科学出版社,2008.
    [72]朱若谷,陈本永,郭斌.激光应用技术[M].北京:国防工业出版社,2006.
    [73]Rochester M G. Geomagnetic drift and irregulatities in the Earth’s rotation. Phil. Trans. R. Soc. Lond, 1960, A252:531-555
    [74]Shearer P. Introduction to seismology. Cambridge: Cambridge University Press, 2003.
    [75]Seno T, Stein S. Can the Okhotsk plate be disbriminated from the North America plate.Journal of Geophysics Research, 1996, 101: 11305-11315.
    [76]Rummel R, Sanso F, van Gelderen M et al. Spherical harmonic analysis of satellite gradiometry. Netherlands Geodetic Commission, Publications on Geodesy,New Series No.39,1993.
    [77]Rochester M G. Perturbations in the Earth’s rotation and geomagnetic core-mantle coupling. J. Geomagn. Geoelectr., 1968,20: 387-402.
    [78]Kirkpatrick S et al. Optimization by simulated annealing. Science, 1983, 220: 671-680.
    [79]Forman M.L. , Steel W.H,George A.Vanasse. Correction of Asynunetric Interferograms Obtained in Fourier Spectroseopy.Joural of Optical Society of America, 1967,(56): 59-63.
    [80]邵学.塞曼激光器的稳频研究[D].北京:清华大学精密仪器与机械学系,1988
    [81](美)萨普等著.激光物理学[M].杨顺华,彭放译.北京:科学出版社,1982
    [82]时岩.激光干涉测量技术及在电光陶瓷检测中的应用[D].杭州:浙江大学电子科学与技术,2008.
    [83]周肇飞等,He-Ne激光器的双纵模热稳频系统[J],仪器仪表学报,1998,4.
    [84]李东光,张国雄,李贵涛.提高激光干涉测量精度的研究[J].北京理工大学学报,2000,20(5):621-625.
    [85]Oelhaf H..Remote sensing of vertical profiles of atmospheric trace constituents with MIPAS limb-emission spectrometers. Applied Optics,1994, 2318:40-51.
    [86]G.G shepherd, G. Thuillier, W.A. Gault,et al.WINDII, the wind imaging interferometer on the wpper atmosphere research satellite,J. Geophy Res,1993,98(6):10725-10750.
    [87]Holbert E.,et al.,Verification of the spectral performance model of an imaging Fourier Transform spectrometer,SPIE,1995,2480:398-409.
    [88]Meigs A.D.Airborne visible hyperspectral imaging spectrometer:optical and system level description,SPIN,1995,2819:278-289.
    [89]Brown, Robert Grover,Hwang, Patrick Y.C. Introduction to Random Signals and Applied Kalman Filtering: with MATLAB Exercises and Solutions. John Wiley & Sons, Inc,1996.
    [90]Gelb. Arthur Applied Optimal Estimation. MIT Press,1974.
    [91]Grewal, Mohinder, S.Andrews, Angus P. Kalman Filtering Theory and Practice Using MATLAB. John Wiley & Sons, Inc., 2008.
    [92]Grewal, Mohinder S. ,Weill, Lawrence R.,Andrews, Angus P. Global Positioning Systems, Inertial Navigation, and Integration. John Wiley & Sons, Inc., 2007
    [93]Haykin, Simon, S. Kalman Filtering and Neural Networks. John Wiley & Sons, Inc., 2001.
    [94]Jacobs, O.L.R. Introduction to Control Theory. Oxford University Press,1993.
    [95]Lewis, Frank L. Optimal Estimation with an Introduction to Stochastic Control Theory John Wiley & Sons, Inc., 1986.
    [96]Maybeck, Peter S. Stochastic Models, Estimation, and Control. Academic Press Inc., 1979.
    [97]Simon, Dan. Optimal State Estimation: Kalman, H-infinity, and Nonlinear Approaches. John Wiley & Sons, Inc., 2006
    [98]Zarchan, Paul, Musoff, Howard. Fundamentals of Kalman Filtering: A Practical Approach. AIAA,2005
    [99]Steffen L. Lauritzen, Thiele: Pioneer in Statistics. Oxford University Press, 2002.
    [100] Stratonovich, R.L.. Optimum nonlinear systems which bring about a separation of a signal with constant parameters from noise. Radiofizika, 1959,2(6): 892-901.
    [101]王文绵.用于精密和超精密测长的双频激光干涉仪[J].航空精密制造技术,1995,31(2):35-39.
    [102]齐永岳,赵美蓉,林玉池.提高激光干涉测量系统精度的方法与途径[J].天津大学学报,2006,39(8):989-993.
    [103]韩旭东,艾华.共光路移相单频激光干涉测长系统[J].光学技术,2004,30(2):195-198.
    [104] Sanderson R.B., Bell E.E. Multiplicative Correction of Phase errors in Fourier Spectroscopy. Applied Optics. 1973,(12): 266-270.
    [105] R.L.Hilliard et al. Wide-angle michelson Interferometer for measuring Doppler line widths. Journal of the optical suciety americal, 1965, 56(3): 362-369.
    [106] Emest V. Loewenstein, The History and Curtent status of Fourier Trasform Spectroscopy. Applied Optics, 1966, 5: 845-853.
    [107] Michelson A.A. On the Application of Interference Methods Spectroscopic Measurements. Phil.Mag.Ser.1891,31-39.
    [108] Lewis E.N, Alexander M.G,Curtis M et al. High-fidelity Fourier Transform Infrared Spectroscopic. Imaging of Primate Brain Tissue, Applied Spectroscopy,1966,(50):263-269.
    [109] Harrison P W. The Laser for Long Distance Alignment-a Practical Assessment. Proc. Instrum., CE1972:1-24.
    [110] H T Minden. Sensitive Method for the Measurement of the Kerr Magneto-Optic Effect. Rev. Sci. Instrum., 1992,63(2):1798-1804.
    [111] Richard A Crocombe, Senja V Compton. The Design, Performance and Application of Dynamically-Aligned Step-Scan Interferometer.FT-IR技术与应用研讨会论文集。北京:中国光学学会光谱委员会编,1991.
    [112] Dongsheng Wang et al. Ultrathin Thickness and Spacing Measurement by Interferometry and Correction Method. SPIE., 1995,2542:129-135.
    [113] R A Hancel et al. Nimbus 4 Michelson Interferometer. Applied Optics., 1971,10(6): 1376-1382.
    [114] Waly,V.,Krogstad, and Moss, R., Interferometer with OKG for MeasuringStrains of the Crust. TIIER, 1965,9:186-190.
    [115] Berger, J. and Lovberg, R.H., Laser Meter of Crustal Strains. Prib. Nauchn. Issled., 1969,40(2):41-48.
    [116] Levine, J. and Hall, J.L., Design and Operation of a Methane Absorption Stabilized Laser Strainmeter. J. Geophys. Res., 1972,77(14):2595-2608.
    [117] Asakawa, K., Tako, T., and Hirata,S.. Oy buchiry,1979,48(6):519-525.
    [118] Beavan, R.J. and Goulty, N.R., Earth-Strain Measurements Made with the Cambridge Laser Strainmeter,Geophys. J. R. Astron. Soc., 1977,48:293-305
    [119] Dolgikh, G.I., Kopvillem,U.Kh.,and Pavlov,A.N.,Periods of the Earth’s Free Oscillations Observed with a Laser Strainmeter, Izv. Akad. Nauk SSSR, Fiz. Zemli.1983,2:15-20
    [120] Takemoto, S., Doi, H., and Hirahara, K., Observations of Groud Deformation with a Laser Extensometer System Installed in a Shalow Trench, J. Geod. Soc. Jap., 1985, 31(4): 295-304.
    [121] Davydov, A.V., Study of the Crustal Microstrains Caused by Waves in Osean, with the Use of Laser Strainmeters, Cand. Sci.(Phys.-Math.)Dissertation, Moscow, 1994.
    [122] Korchagin, F.G., Krinitsyn, Yu.M., Khalyapin, yu.N., et al., Study into the Free Oscillations of the Earth with the Help of an Optical Strainmeter, Tikhookean. Geol., 1986, 5:110-112.
    [123] Manzoni, G. and Marchesini, C., A 60-m Laser Strainmeter, Phiosl. Trans. R. Soc. London. Ser. A, 1973,274:285.
    [124] Takemoto, S., A. Araya, J. Akamatsu, W. Morii, H. Momose et al., 2004, A 100m laser strainmeter system installed in a 1km deep tunnel at Kamioka, Gifu, Japan, J. Geodyn, 38 477-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700