用户名: 密码: 验证码:
台风暴雨引发公路水毁特征与边坡水毁机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上遭受台风危害最严重的国家。我国东南部地区经常受台风暴雨影响。每次台风带来的暴雨都会对公路工程带来巨大损失。近年来由于经济的快速发展和公路交通设施的大力建设,台风暴雨对公路造成的经济损失随时间呈快速上升的趋势。通过对200多个公路水毁路段的现场调查和相关水毁资料的收集,对公路水毁类型进行了系统的分类,分析公路水毁的特征和各种破坏形式之间的相互影响关系。并通过构建多个实验模型,展开了降雨对均质边坡、含隔水层边坡坡体含水量、坡体应变、坡体前端推力、坡面变形影响的全面研究。人工降雨模型实验采用了水份传感器实时监测坡体含水量、采用布里渊光时域反射技术(BOTDR)监测坡体应变量、采用压力盒监测坡前推力变化、采用光纤光栅(FBG)位移传感技术监测坡面位移,得到了降雨作用下和地下水作用下边坡各性状随时间及深度的变化规律。并在前人研究的基础上,改进了有限元离心加载计算边坡稳定性的方法。得到了以下的成果和结论:
     (1)系统地按不同的标准对水毁进行了分类,为深入研究水毁提供了基础支持。对水毁的类型、特点和产生原因有全面分析,提出了各水毁类型之间存在相互影响关系的观点,应该将各种水毁防护措施作为一个整体系统进行水毁的防治工作。
     (2)在降雨作用下,入渗是从坡面到坡体自上而下逐步发展的。降雨入渗过程中,坡体中部深度附近会存在一个含水量相对较小的区域。降雨过程不仅对土体含水量的数值有影响,而且对含水量等值线的形态也有影响。
     (3)在降雨作用下坡体前端推力、坡体变形、坡面变形这三个特性指标随时间变化规律相似:在降雨作用下,边坡特性指标的监测数值会产生一个峰值,在降雨作用消退以后,监测数值逐渐回落,最终趋于一个稳定值。不同的是坡体前端推力在降雨之后就开始产生变化,而坡体变形和坡面的位移在降雨过程初期没有明显反映,持续较长时间降雨后,监测数值才会发生明显反应。
     (4)降雨入渗对边坡不同深度上的坡体含水量、坡体变形和坡前推力影响规律相似:边坡顶层、上层土体变化幅度较大,速度较快;边坡底层、下层土体变化幅度较小,速度较慢。
     (5)降雨对不同坡角边坡的坡体含水量、坡体前端推力、坡体变形的影响规律也具有相似性:降雨过程中较大坡角边坡的反映较为强烈,其峰值要远大于小坡角边坡,但是大坡角边坡需要降雨的时间比较长。
     (6)通过对新老边坡分别实施人工降雨模拟实验,结果表明与雨前相比新边坡抗滑支撑结构受力增大;而老边坡在接受相同降雨作用时,坡体的应力状态变化较不明显。说明了新边坡在降雨作用下比较容易失稳,而老边坡则相对比较稳定。
     (7)地下水的作用对边坡性状的影响与降雨对边坡性状的变化规律相似,不同点主要存在两个方面:
     ①降雨作用和地下水作用对坡体含水量的影响过程不同,在降雨作用下,边坡的坡面附近土体含水量最先发生变化,含水量自上而下逐渐发生变化,边坡底层土体的含水量受影响最晚。而在地下水的作用下,边坡后缘以及底层土体的含水量最先受到影响,含水量是自下而上逐渐发生变化的。
     ②在降雨作用下,边坡受影响产生变化需要一定的积累时间,而在地下水作用下,发展几乎不需要积累时间,地下水作用之后边坡就受影响产生变化。
     (8)降雨对含不透水层边坡的影响与均质边坡类似,但是边坡的性状反映主要在不透水层的上部,即降雨可以影响的部分。
     地下水作用在不透水层下部坡体时,实验表明不透水层上部坡体会受到影响。上部坡体的坡前推力、坡体变形、坡面变形都会产生较大的变化,其中靠近坡面的部分产生的变化最大。
     (9)重新构建有限元离心加载法的实现过程,克服原方法的缺陷,使其达到了与有限元强度折减法有相同应用价值的水平。
China is a country suffered typhoons most seriously of the world, and southeast region is usually influenced by typhoon rainstorm. Every time typhoon rainstorm would cause extensive damage to roads. In recent years, considering economy and highway traffic facilities have a rapid development, the damage submit zooming trend with time. Based on the field investigation of more than 200 road disease spots and the collected information, the water damage forms are classified systematically, and the interaction relation of destructions is analyzed. On this basis, multi-experimental model were constructed to study the effect of rainfall on slope characters of homogeneous and slope with confining stratum. The slope characters including water content, body strain, thrust at front end, surface deformation of slope. In this experiment, water sensors were adopted to detect the water content in slope body on real time; BOTDR for strain in slope body; pressure cell for thrust at front end; FBG for the surface deformation. The characters change laws with time and depth of slope were obtained under rainfall and groundwater. On the basis of previous study, the FEM centrifuge loading method was improved. The results and conclusions were got as following:
     (1) The water damage forms are classified systematically, which provide basic support to the further study. After comprehensively analyzing on the water damage forms, characters and cause, the point is proposed that the different water damage forms affect each other. So the protective work of water damage should take all the protective measures as a whole system.
     (2) Under rainfall, the infiltration develops gradually from slope surface to the bottom. In the rainfall infiltration cause, there is a region with a relatively less water content temporarily. Not only rainfall can affect the water content value in slope, but also can affect the morphology of the water content isoline.
     (3) Under rainfall, the change laws with time of the slope characteristic indexes, including body strain, thrust at front end, surface deformation of slope, are similar. The slope characteristic indexes bring a peak value during rainfall course, when the rainfall effect is extinct, the characteristic indexes value will fall back, and approach a stable value finally. But the difference of the change laws is that, thrust at front end starts changing after the rainfall begins. While the body strain and surface deformation of slope had obvious change after a relatively long rainfall time.
     (4) Under rainfall, the change laws with depth of the slope characteristic indexes, including water content, body strain, thrust at front end of slope, are similar. The changing of characteristic indexes in the top and upper part of slope is with great range and speed; the bottom and lower part of slope with less range and speed.
     (5) Under rainfall, the change laws of the slope characteristic indexes in different angle slope, including water content, body strain, thrust at front end of slope, are similar. Compared with less angle slope, the changing of characteristic indexes in larger angle slope is more strong and with a peak value much higher than that in less angle slope; but the rainfall time needed in larger angle slope is more than the less one
     (6) After the rainfall effect, comparing with the state before rainfall, the force of anti-slide structure in new slope has a great growth, but the force in old slope hasn't obvious differentia. This phenomenon explains that the new slope is easier to fail than the old one under rainfall.
     (7) The change laws of the slope characteristic indexes with the groundwater effect are similar to that with the rainfall effect, but differentia as following.
     ①The water content change processes are different. Under the rainfall, the water content in the top part of slope changes at the earliest, and the bottom part changes at latest, that is the water content changes from the top to bottom. Under the groundwater, the water content in the rear and bottom part of slope changes at the earliest; the water content changes from the bottom to top.
     ②Under rainfall, the change in slope occurs after a certain rainfall time, but the change in slope occurs when the groundwater affect the slope, and there is no accumulating time.
     (8) The effect of the rainfall on the slope with impermeable layer is similar to which on the homogeneous slope, but the rainfall can only affect the part above the impermeable layer.
     When the groundwater affect the part under the impermeable layer, the part above the impermeable layer can also be affected. As the experiment results show, the thrust at front end, body strain and surface deformation of slope have a great change in the upper part of slope, especially in the top part.
     (9) By reconstructing the finite element centrifuge loading method realization process, the method is improved. The improved method remedied the defect of the original method, which has the same application value as the finite element strength reduction method.
引文
[1]蒋焕章.公路水文勘测设计与水毁防治[M].北京:人民交通出版社,2002.
    [2]高速,方向池.公路水毁的研究防治现状及问题[J].中国减灾.1999,(03).
    [3]方向池,黄润秋.山区公路水毁灾害研究及治理[M].成都:四川大学出版社,2002.
    [4]高民欢,李辉,张新宇,等.高等级公路边坡冲刷理论与植被防护技术[M].北京:人民交通出版社,2005.
    [5]Rakshit K.S.Protection of Culverts and Minor Bridges against Damages Caused by the Effect of Scour or Seepage Flow[J].Indian Highways.1984,12(4):26-36.
    [6]Richardson J.R.,Abt S.R.,Richardson E.V.Inflow Seepage Influence on Straight Alluvial Channels[J].Journal of Hydraulic Engineering.1985,111(8):1133-1147.
    [7]Wohl Ellen E.,Pearthree Philip P.Debris Flows as Geomorphic Agents in the Huachuca Mountains of Southeastern Arizona[J].Geomorphology.1991,4(3-4):273-292.
    [8]Fischer Edward E.Scour at a Bridge over the Weldon River,Iowa[C].San Francisco,CA,USA.Publ by ASCE,New York,NY,USA,1993:1854-1859.
    [9]Luk Shiu-Hung,Abrahams Athol D.,Parsons Anthony J.Sediment Sources and Sediment Transport by Rill Flow and Interrill Flow on a Semi-Arid Piedmont Slope,Southern Arizona[J].CATENA.1993,20(1-2):93-111.
    [10]Ghiassian Hossein,Gray Donald H.,Hryciw Rolan D.Stabilization of Coastal Slopes by Anchored Geosynthetic Systems[J].Journal of Geotechnical and Geoenvironmental Engineering.1997,123(8):736-743.
    [11]Bryan R.B.,Rockwell D.L.Water Table Control on Rill Initiation and Implications for Erosional Response[J].Geomorphology.1998,23(2-4):151-169.
    [12]Bennett Sean J.Effect of Slope on the Growth and Migration of Headcuts in Rills[J].Geomorphology.1999,30(3):273-290.
    [13]Mathys N.,Brochot S.,Meunier M.,et al.Erosion Quantification in the Small Marly Experimental Catchments of Draix(Alpes De Haute Provence,France).Calibration of the Etc Rainfall-Runoff-Erosion Model[J].CATENA.2003,50(2-4):527-548.
    [14]Chapman John A.Stability Concepts of Riverbanks:A Case Study of Riverbank Erosion Along the Snake River,Oregon[C].Denver,CO,United States.American Society of Civil Engineers,Reston,VA 20191-4400,United States,2004:92-100.
    [15]Young Ann R.M.The Influence of Debris Mantles and Local Climatic Variations on Slope Stability near Wollongong,Australia[J].CATENA:1978,5(2): 95-107.
    [16]Edil T.B.,Vallejo L.E.Mechanics of Coastal Landslides and the Influence of Slope Parameters[J].Engineering Geology.1980,16(1-2):83-96.
    [17]Adegoke-Anthony Clement W.,Agada O.A.Observed Slope and Road Failures in Some Nigerian Residual Soils[C].Honolulu,HI,USA.ASCE,New York,NY,USA,1982:519-536.
    [18]Yagi N.,Yatabe R.,Yamamoto K.Slope Failure Mechanism Due to Seepage of Rain Water[C].Haifa,Isr.Taligraph Ltd,Isr.,1983:1861-1871.
    [19]Mcnicholl D.P.,Cho G.W.F.Surveillance of Pore Water Conditions in Large Urban Slopes[J].Engineering Geology Special Publication.1986,3:403-415.
    [20]Dobie M.J.D:,Chappell Nick A.,Sherlock Mark D.Slope Instability in a Profile of Weathered Norite Contrasting Flow Pathways within Tropical Forest Slopes of Ultisol Soils[J].Quarterly Journal of Engineering Geology and Hydrogeology.1987,20(4):279-286.
    [21]Day Robert W.,Axten Gregory W.Surficial Stability of Compacted Clay Slopes[J].Journal of Geotechnical Engineering.1989,115(4):577-580.
    [22]Denlinger Roger P.,Iverson Richard M.Limiting Equilibrium and Liquefaction Potential in Infinite Submarine Slopes[J].Marine Geotechnology.1990,9(4):299-312.
    [23]Mshana Naftali S.,Suzuki Atsumi,Kitazono Yoshito.Study on the Mechanisms of Slope Failure Due to Heavy Rainfall by Using Laboratory and Numerical Models[C].Bangkok,Thail.Publ by A.A.Balkema,Rotterdam,Neth,1991:225-239.
    [24]Reddi Lakshmi N.,Wu Tien H.Probabilistic Analysis of Ground-Water Levels in Hillside Slopes[J].Journal of Geotechnical Engineering.1991,117(6):872-890.
    [25]Budhu Muniram,Gobin Roger.Seepage-Induced Slope Failures on Sandbars in Grand Canyon[J].Journal of Geotechnical Engineering.1995,121(8):601-609.
    [26]Chen R.H.,Lin M.L.,Chen H.,et al.Mechanism of Initiation of Debris Flow.in.Urban Disaster Mitigation:The Role of Engineering and Technology[M],Oxford:Pergamon,1995.
    [27]Budhu Muniram,Gobin Roger.Slope Instability from Ground-Water Seepage[J].Journal of Hydraulic Engineering.1996,122(7):415-417.
    [28]Pariseau W.G.,Schmelter S.C.,Sheik A.K.Mine Slope Stability Analysis by Coupled Finite Element Modeling[J].International Journal of Rock Mechanics and Mining Sciences.1997,34(3-4):520.
    [29]Ng C.W.W.,Shi Q.Numerical Investigation of the Stability of Unsaturated Soil Slopes Subjected to Transient Seepage[J].Computers and Geotechnics.1998,22(1):1-28.
    [30]Raj J.K.The Failure of a Slope Cut into the Weathering Profile Developed over a Porphyritic Biotite Granite[J].Journal of Asian Earth Sciences.1998,16(4):419-427.
    [31]Fuchu Dai,Lee C.F.,Sijing Wang.Analysis of Rainstorm-Induced Slide-Debris Flows on Natural Terrain of Lantau Island,Hong Kong[J].Engineering Geology.1999,51(4):279-290.
    [32]Dodagoudar G.R.,Venkatachalam G.Rain-Induced Failures on Residual Soil Slopes[J].Journal of Nepal Geological Society.2000,22:49-54.
    [33]Iverson Richard M.Landslide Triggering by Rain Infiltration[J].Water Resources Journal.2000,207:59-82.
    [34]Nandy S.,Jiao J.J.,Godt Jonathan W.,et al.Ground-Water Flow Analysis in the Slope above Shum Wan Road,Hong Kong Rainfall Characteristics for Shallow Landsliding in Seattle,Washington,USA[J].Environmental and Engineering Geoscience.2001,7(3):239-250.
    [35]Collins Brian D.,Znidarcic Dobroslav.Stability Analyses of Rainfall Induced Landslides[J].Journal of Geotechnical & Geoenvironmental Engineering.2004,130(4):362-372.
    [36]Orense Rolando P.,Shimoma Suguru,Maeda Kengo,et al.Instrumented Model Slope Failure Due to Water Seepage[J].Journal of Natural Disaster Science.2004,26(1):15-26.
    [37]王德山.预防公路水毀的措施[J].公路.1958,(05).
    [38]沈国梁.山区公路桥梁水毁原因和防治意见[J].公路.1964,(12).
    [39]郑茂林.草皮护坡好省钱效果大--介绍一种防治公路水毀的办法[J].公路.1964,(SN 0451-0712).
    [40]孙启昌.山区公路水毁问题[J].公路.1965,(06).
    [41]李发春.从变迁性河段桥梁水毁事故中吸取教训[J].公路.1980,(04).
    [42]宋为民.造林是防治公路水毀的重要措施[J].内蒙古林业.1985,(07).
    [43]蒋焕章.公路水毁防治(1)--公路水毁预防与根治问題[J].公路.1986,(01).
    [44]蒋焕章.公路水毁防治(2)--公路路基冲刷防护[J].公路.1986,(02).
    [45]蒋焕章.公路水毁防治(3)公路路基冲刷防护Ⅲ、丁坝防护[J].公路.1986,(03).
    [46]蒋焕章.公路水毁防治(4)路基冲刷防护[J].公路.1986,(04).
    [47]蒋焕章.公路水毁防治(5)--公路路基冲刷防护[J].公路.1986,(06).
    [48]蒋焕章.公路水毀防治(6)--公路路基冲刷防护[J].公路.1986,(07).
    [49]蒋焕章.公路水毁防治(7)桥渡冲刷防护Ⅰ.桥渡建筑物的水毀及其原因[J].公路.1986,(08).
    [50]蒋焕章.公路水毁防治(8)--桥渡冲刷防护[J].公路.1986,(09).
    [51]蒋焕章.公路水毁防治(9)--桥渡冲刷防护[J].公路.1986,(10).
    [52]蒋焕章.公路水毁防治(11)--桥渡冲刷防护[J].公路.1986,(11).
    [53]蒋焕章.公路水毁防治(11) 桥渡冲刷防护[J].公路.1986,(12).
    [54]姚颖,张启进.高速公路水毁原因与防治[J].东北公路.1994,(03).
    [55]伍光祥.浅析我省公路水毁原因及减灾措施[J].湖南交通科技.1996,(04).
    [56]李文鑫.沈环沈铁高速公路水毁原因及防治措施[J].东北公路.1998,(01).
    [57]许敏锋.福建省林业公路水毁原因的分柝和防治措施[J].福建建筑.1998,(S1).
    [58]林炳淦.林区公路水毀产生原因及防治对策[J].福建林业科技.1999,(S1)。
    [59]徐汉信.对公路水毀原因及防治的思考[J].内蒙古公路与运输.1999,(01).
    [60]杜晓光,尹岩,高景华.山区公路水毁原因分析及防治措施[J].辽宁交通科技.2000,(03).
    [61]司利钧.乌盟地区公路水毀原因初探[J].内蒙古公路与运输.2000,(02).
    [62]汪淑玲,陆浚涵.浅析青海省公路桥梁水毀原因及改建状况[J].青海交通科技.2000,(04).
    [63]王保国,王淑芝,姜兴文.造成公路水毁的原因及防治措施[J].森林工程.2000,(01).
    [64]张玉强.呼盟公路桥梁水毀原因分析与防治[J].内蒙古公路与运输.2000,(02).
    [65]李治平.陕西公路水毁原因及防治对策[J].公路与汽运.2003,(05).
    [66]姚光荣,王慧觉.湖北省公路水毁原因调查[J].交通环保.2003,(04).
    [67]聂国才,佘江波,苏启飞,等.浅析山区公路水毁的原因[J].交通标准化.2004,(10).
    [68]蒙金冠,李结全.多雨地区公路路基水毁的原因及防治对策[J].西部交通科技.2007,(02).
    [69]颜志芳.公路水毁原因及防治[J].山西建筑.2007,(02)。
    [70]丁龚志敏.山区公路水毁原因分析与防治措施探讨[J].公路与汽运.2008,(01).
    [71]李政强。田绍情.试析高速公路路面水毁原因[J].科技创新导报.2008,(05).
    [72]高冬光.公路与桥梁水毁防治[M].北京:人民交通出版社,2002。
    [73]文宝萍,国外降雨滑坡灾害预测预报动态 研究现状 发展趋势,in,Editor^Editots.2004,中国地质环境信息网.p.
    [74]Lumb P.Slope Failures in Hongkong[J].Quarterly Journal of Engineering Geology.1975,8:31-65.
    [75]周蓝玉.降雨对边坡稳定性影响的分析方法[J].长安大学学报(自然科学版).1983,(SN 1671-8879).
    [76]Brand Ew,Premchitt J.,Phillipson H.B.Retationship between Rainfall and Landslides in Hong Kong[C].Proc.4th International Symposium on Landslides Toronto.BiTech Publishers,vol.1,1984:377-384.
    [77]Au S.W.C.Rain-Induced Slope Instability in Hong Kong[J].Engineering Geology.1998,51(1):1-36.
    [78]Cannon Susan H.,Ellen S.O.Rainfatl That Resulted in Abundant Debris-Flow Activity During the Storm[J].Landslides,Floods,andMarine Effects of the Storm of January.1988,3(5):27-33.
    [79]曲焰.蠕变滑动与降雨量的相关关系[C].1987年全国滑坡学术讨论会滑坡论文选集.成都.四川科学技术出版社.,1989:198-204.
    [80]谢守益,张年学.长江三峡库区典型滑坡降雨诱发的概率分析[J].工程地质学报.1995,(2):60-69.
    [81]陈正洪,孟斌.湖北省降雨型滑坡泥石流及其降雨因子的时空分布、相关性浅析[J].岩土力学.1995,(03).
    [82]韩会增,吕小平.土质边坡坍塌灾害的预测[J].中国地质灾害与防治学报.1995,(01)。
    [83]李焯芬.雨水渗透与香港滑坡灾害[J].水文地质工程地质.1997,(04).
    [84]陈永波,王成华.滑坡发生的危险边坡判别及预测预报分析[J].山地学报.2000,(06)。
    [85]林孝松,郭跃.滑坡与降雨的耦合关系研究[J].灾害学.2001,(02).
    [86]谢剑明.降雨对滑坡灾害的作用规律研究[D].2004。
    [87]王继华.降雨入渗条件下土坡水土作用机理及其稳定性分析与预测预报研究[D].2006.
    [88]Lumb.Effect of Rainstorm on Slope Stability[J].Symon HongKong soils.1962:73-87.
    [89]Fredlund Og.Slope Stability Analysis Incorporating the Effect of Soil Suction[J].Geotechnical Engineering and Geomorphology.1987:113-144.
    [90]Sammori T.,Tsuboyama Y.Parametric Study on Slope Stability with Numerical Simulation in Consideration of Seepage Process[C].Christchurch,NZ.Publ by A.A.Balkema,Rotterdam,Neth,1991:539.
    [91]Alonso E,Gens A,Lioret A,et al.Effect of Rain Infiltration on the Stability of Slopes[J].Unsaturated Soils.1995,1:241-249.
    [92]Shimada K,Fujii H,T Mcrii.Stability of Unsaturated Slopes Considering Changes of Matric Suction[J].Unsaturated Soils.1995,1:293-299.
    [93]Sun Y,Nishigakim,I.Kohno.A Study on Stability Analysis of Shallow Layer Slope Due to Raining Permeation[C].Proc.of the 1st Int.Conf.on Unsaturated Soil.Rotterdam:Balkema.vol.1,1995:1135-1141.
    [94]Ng C W W,A.Shi Q.A Numerical Investigation of the Stability of Unsaturated Soil Slopes Subjected to Transient Seepage[J].Computer and Geotechnics.1998,22(1):1-28.
    [95]陈守义.考虑入渗和蒸发影响的土坡稳定性分析方法[J].岩土力学.1997,(SN 1000-7598).
    [96]吴宏伟,陈守义,庞宇威.雨水入渗对非饱和土坡稳定性影响的参数研究[J].岩土力学.1999,(SN 1000-7598)。
    [97]陈善雄,陈守义.考虑降雨的非饱和土边坡稳定性分析方法[J].岩土力学.2001,(SN 1000-7598).
    [98]高润德,王钊,等.雨水入渗作用下非饱和土边坡的稳定性分析[J].人民长江.2001,(11):25-27.
    [99]姚海林,郑少河,李文斌,等.降雨入渗对非饱和膨胀土边坡稳定性影响的参数研究[J].岩石力学与工程学报.2002,(07).
    [100]黄润秋,戚国庆.非饱和渗流基质吸力对边坡稳定性的影响[J].工程地质学报.2002,(4):343-348.
    [101]朱文彬,刘宝琛.公路边坡降雨引起的渗流分析[J].长沙铁道学院学报.2002,(SN 1000-2499)。
    [102]吴俊杰,王成华,李广信.非饱和土基质吸力对边坡稳定的影响[J].岩土力学.2004,(SN 1000-7598)。
    [103]沈珠江,米占宽.膨胀土渠道边坡降雨入渗和变形耦合分析[J].水利水运工程学报.2004,(3):7-11.
    [104]戚国庆,黄润秋.降雨引起的边坡位移研究[J].岩土力学.2004,(3):379-382.
    [105]平扬,刘明智,郑少河.降雨入渗条件下的膨胀土边坡稳定性分析[J].岩石力学与工程学报.2004,(S1).
    [106]魏宁,茜平一,傅旭东.降雨和蒸发对土质边坡稳定性的影响[J].岩土力学.2006,(5):778-781,786。
    [107]林韵梅.实验岩石力学--模拟研究[M].北京:煤炭工业出版社,1984.
    [108]左东启,王世夏,陈国棨.模型试验的原理和方法[M].北京:水利电力出版社,1984.
    [109]杨连生.水利水电工程地质[M].武汉:武汉大学出版社,2004。
    [110]肖旦期,胡华,董云.边坡变形破坏机制的底摩擦试验模拟[J].交通科技与经济.2004,(01).
    [111]杜应吉.地质力学模型试验的研究现状与发展趋势[J].西北水资源与水工程.1996,(02).
    [112]沈泰.地质力学模型试验技术的进展[J].长江科学院院报.2001,(05).
    [113]张家发,杨金忠.三峡工程永久船闸高边坡降雨入渗实验研究[J].岩石力学与工程学报.1999,(2):137-141.
    [114]李爱国,岳中琦,谭国焕,等.土体含水率和吸力量测及其对边坡稳定性的影响[J].岩土工程学报.2003,(SN 1000-4548)。
    [115]詹良通,吴宏伟,包承纲,等.降雨入渗条件下非饱和膨胀土边坡原位监测[J].岩土力学.2003,(2):151-158.
    [116]汤明高,许强,黄润秋,等.滑坡体基质吸力的观测试验及变化特征分析[J].岩石力学与工程学报.2006,(02)。
    [117]张亮亮,曹杉杉,卢小超.降雨入渗的边坡非饱和渗透性试验研究[J].中国水运(理论版).2006,(04).
    [118]邓卫东,唐颂,黄华华.路堤边坡雨水渗流的模型试验研究[J].公路交通技术.2003,(5):4-6,9。
    [119]黄涛,罗喜元,邬强,等.地表水入渗环境下边坡稳定性的模型试验研究[J].岩石力学与工程学报.2004,(SN 1000-6915).
    [120]罗先启,刘德富,吴剑,等.雨水及库水作用下滑坡模型试验研究[J].岩石力学与工程学报.2005,(14):2476-2483.
    [121]文高原,姚鹏运,曾宪明,等.降雨前、后夯实填土边坡破坏模式试验研究[J].岩石力学与工程学报.2005,(5):747-754.
    [122]刘翠容,孔德惠.离心模型技术在土质边坡稳定中的应用[J].路基工程.2006,(SN 1003-8825):21-23.
    [123]徐光明,王国利,顾行文,等.雨水入渗与膨胀性土边坡稳定性试验研究[J].岩土工程学报.2006,(2):270-273.
    [124]马增伦.滑坡工程地质水文地质勘察中物探技术的应用[J].铁道工程学报.1996,(02).
    [125]刘展.地质工程中的物探方法综述[J].西安工程学院学报。1998,(S1).
    [126]王健,罗志胜,侯宝健.声波测井确定滑坡滑动面的效果[J].中国地质灾害与防治学报.1998,(S1)。
    [127]姜卫方,万明浩,赵永辉,等.地质雷达在滑坡面调查中的应用及效果分析[J].物探与化探.2000,(03).
    [128]李张明,练继建,刘润泽.物探技术在三峡工程高边坡岩体研究中的应用[J].人民长江.2004,(01).
    [129]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994.
    [130]黄昌乾,丁恩保.边坡工程常用稳定性分析方法[J].水电站设计.1999,(SN 1003-9805)。
    [131]尚岳全,王清,蒋军,,等.地质工程学[M].北京:清华大学出版社,2006.
    [132]汪益敏,陈辉.路基边坡问题研究现状[J].中南公路工程.2004,(SN 1002-1205).
    [133]夏元友,李梅,谢全敏.基于实例类比推理的边坡稳定性评价方法[J].岩土力学.2003,(S2)。
    [134]陈祖煜,汪小刚.杨健,等.岩质边坡稳定分析--原理·方法·程序[M].北京:中国水利水电出版社,2005.
    [135]崔政权,李宁.边坡工程--理论与实践最新发展[M].北京:中国水利水电出版社,1999.
    [136]W.Fellenius.Erdstatisch Berechnungen[M].Berlin:W.Ernst und Sohn revised edition,1939.
    [137]N.Janbu.Earth Pressure and Bearing Capcity Calculations by Generalized Procedure of Slices[C].Proc.4th Conf.on soil mechanics and foundation engineering.London.vol.2,1957:207-212.
    [138]Morgenstern N R,E.Price V.The Analysis of the Stability of General Slip Surface[J].Geotechnique.1965,15(1):79-93.
    [139]E.Spencer.A Method.of Analysis of Embankments Assuming Parallel Interslice Forces[J].Geotechnique.1967,17(1):11-26.
    [140]张宜虎,尹红梅,简文星.剩余推力法及其在斜坡稳定性评价中的应用[J].岩土力学.2004,(4):628-631.
    [141]Revilla J,E.Castillo.The Calculus of Variation Applied to Stability of Slope[J].Geotechnique.1977,27(1):1-11.
    [142]K.Sarma S.Stability Analysis of Embankments and Slopes[J].Geotechnique.1973,23(3):423-433.
    [143]Hoek E,W.Bray J.岩石边坡工程[M].北京:冶金工业出版社,1983.
    [144]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980.
    [145]殷宗泽.土力学学科发展的现状与展望[J].河海大学学报(自然科学版).1999,27(1):1-5。
    [146]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,2003.
    [147]陈祖煜,汪小刚,邢义川,等.边坡稳定分析最大原理的理论分析和试验验证[J].岩土工程学报.2005,(SN 1000-4548).
    [148]陈祖煜.土质边坡稳定分析--原理·方法·程序[M].北京:中国水利水电出版社,2003.
    [149]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002。
    [150]肖武.基于强度折减法和容重增加法的边坡稳定分析及工程研究[D].2005.
    [151]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学报.2001,(SN 1000-4548).
    [152]赵尚毅,时卫民,郑颖人.边坡稳定性分析的有限元法[J].地下空间.2001,(SN 1001-831X).
    [153]赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报.2002,(SN 1000-4548).
    [154]郑颖人,赵尚毅,张鲁渝.甩有限元强度折减法进行边坡稳定分析[J].中国工程科学.2002,(SN 1009-1742)。
    [155]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报.2003,(SN 1003-868X)。
    [156]张鲁渝,郑颖人,赵尚毅,等.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报.2003,(SN 0559-9350).
    [157]赵尚毅,邓卫东,等.用有限元強度折减法进行节理岩质边坡稳定性分析[J].岩 石力学与工程学报.2003,(2):254-260。
    [158]马建勋,赖志生,蔡庆娥,等.基于强度折减法的边坡稳定性三维有限元分析[J].岩石力学与工程学报.2004,(16):2690-2693.
    [159]郑颖人,胡文清,王敬林,强度折减有限元法及其在隧道与地下洞室工程中的应用,in中国土木工程学会第十一届、隧道及地下工程分会第十三届年会论文集,Editor^Editors.2004.p.
    [160]刘金龙,栾茂田,赵少飞,等.关于强度折减有限元方法中边坡失稳判据的讨论[J].岩土力学.2005,(SH 1000-7598).
    [161]李荣建,于玉贞,邓丽军,等.非饱和土边坡稳定分析方法探讨[J].岩土力学.2007.(10)。
    [162]Chen W F,E Mizuno,Nonlinear Analysis in Soil Mechanics:Theory and Implementation.,in,Editor^Editors.1990.p.
    [163]C Swan C.Limit State Analysis of Earthen Slopes Using Dual Continuum/Fem Approaches[J].Int J Numer Anal.Meth.Geomech.1999,23:1359-1371.
    [164]李焕强,孙红月,尚岳全,等.有限元离心加载法分析边坡稳定性[J].江南大学学报(自然科学版).2008.
    [165]李宪之.论台风[M].北京:气象出版社,1983.
    [166]王志烈,许以平.台风[M].北京:气象出版社,1983.
    [167]周中,傅鹤林,刘宝琛,等.堆积层边坡人工降雨致滑的原位监测试验研究[J].中国铁道科学.2006,(SN 1001-4632).
    [168]左东启 王世夏,陈国棨,等.模型试验的原理和方法[M].北京:水利电力出版社,1984.
    [169]二滩水电开发有限责任公司.岩土工程安全监测手册[M].北京:中国水利水电出版社,1999.
    [170]郑颖人,赵尚毅,时卫民,等.边坡稳定分析的一些进展[J].地下空间.2001,(SN 1001-831X).
    [171]曹建建,邓安.离心加载有限元方法在边坡稳定分析中的应用[J].岩土工程学报.2006,(S1).
    [172]黄昌乾,丁恩保.边坡稳定性评价结果的表达与边坡稳定判据[J].工程地质学报.1997,(SH 1004-9665).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700