用户名: 密码: 验证码:
波浪和涌潮荷载作用下排桩的动力响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
排桩在波浪荷载下的动力响应以及排桩丁坝在涌潮作用下的受力特性一直是工程界关注的问题,它们都属于“流体-群桩-土体”的耦合振动问题。本文对波浪和涌潮荷载作用下排桩和排桩丁坝的动力响应问题进行了比较系统的研究。
     基于Biot固结理论,采用均匀多孔弹性介质土模型,推导了波浪作用下海床的动力响应,获得了海床模量在波浪作用下的竖向分布情况,为“流体-群桩-土体”的耦合振动问题提供了计算依据。
     对于大尺度桩的波浪受力问题,建立了“势流-弹性桩-土”解析模型,既考虑桩和流体耦合振动,又考虑埋置土层对动力响应的影响,通过桩的水平振动速度等于耦合面上的流体速度建立方程。对土模量,淘空深度,桩身刚度等参数对桩顶位移和桩身弯矩的影响进行了分析和研究。
     对于小尺度弹性桩的波浪受力问题,采用修正Morison公式计算波浪力,分别建立桩土单元振动模型和桩水单元振动模型,把桩土单元刚度矩阵和桩水单元刚度矩阵组合后,形成总体刚度矩阵。将Morison力等效为单元节点荷载,求得小尺度弹性桩土系统在波浪力下的动力响应数值解,相对于6倍桩径法和忽略桩水耦合的计算结果,更准确合理。
     对于波浪荷载作用下埋置群桩的动力问题,以小尺度弹性桩在波浪力下的动力响应数值解为基础,采用规范法分析桩水相互作用的群桩效应,采用Winkler地基梁模型分析桩土相互作用的群桩效应。计算结果表明,埋置弹性群桩的受力比较复杂,其动力响应和波浪力的入射角度、桩间距、群桩排列方式都有关系。本方法综合考虑了桩水耦合振动、桩水相互作用的群桩效应、桩土相互作用的群桩效应和埋置土层等因素,真实的模拟了埋置群桩在波浪荷载下的受力状态。
     钱塘江排桩丁坝在涌潮下的动力响应问题属于“桩-土-流体”耦合振动问题的一种特殊情况。通过现场测试获得了钱塘江涌潮压力的时程曲线及其涌潮压力在竖向空间的分布,基于波浪荷载作用下埋置群桩的动力问题求解方法,将实测涌潮压力傅立叶级数展开之后,作为横向荷载输入,求得钱塘江丁坝的动力响应,并和实测数据相对比。探讨了涌潮高度,丁坝桩径,桩距,海床土参数对排桩丁坝动力响应的影响。通过研究排桩丁坝的位移和内力响应随涌潮的变化情况,得到了不同涌潮高度下丁坝响应的规律。建议了排桩丁坝的结构优化计算方法,以指导排桩丁坝的结构设计。
With the development of ocean techniques, more and more ocean constructions, such as high pile dock, ocean flat, span ocean bridge, are built. Pile foundation is the most popular foundation. The coupling vibration of "liquid-pile group-soil" has been the key problem, recently. In addition, the pile groins are the new type constructions, which were first used in Qiantangjiagn River. The strength mechanism is similar to ocean flat, high pile dock. It's urgent to solve the dynamic response to direct the project design.
     First, based on the Biot Concretion Theory and the uniform poro-elastic medium model, the dynamic response of the riverbed is deduced. The soil sketeton displacement is obtained, considered the effects of parameters of the waves and the soils, the module's change due to the waves is studied, and this work provides dependable reference to the calculation of coupling vibration of "liquid-pile group-soil".
     For the large scale embedded pile.Based on the velocity potential eigenfunction expansion, the pile and the soil are assumed as elastomer and winkler foundation, the condition that the stress and the displacement of the pile are continuous on the soil surface establishes the equations, which figure that the pile couplers the liquid, or the lateral velocity of the pile equals the lateral velocity of the liquid on the pile surface, the analytical resolution of the embedded pile's vibration in non-viscous liquid is found. The study indicates that the non-viscous liquid's acting force on the elastic pile differ the force on the rigid pile greatly, especially when the pile stiffness and the soil mudule are small. When the frequency of the incident wave approaches the natural vibration frequency, the swing of the pile reaches peak, while the acting force is relatively less.
     For the small scale embedded pile, the wave force that acts on the small scale pile adopts the modified Morison Equation. The pile-soil element model and the pile-water element model are established, by the numerical method, the dynamic response of pile to the wave load is calculated. Then this mumerical method is compared with the traditional 6-diameter method and the method that ignores the couple of water and pile.
     For the small scale embedded pile group, the wave force is calculated with criterion standard, and pile group effect is considered when the pile-soil interaction is analysed. The numeration result indicates that the strength mechanism of embedded pile group is very complex, the dynamic resoponse is relative to the factors,such as incidence angle, space between piles, and the arrange mode of piles. The method in this thesis considers the pile-water couple and the effect that the embedded soil on the pile, so the dynamic response is factually simulated.
     The dynamic response of the piling groins under the tidal bore in Qiantangjiang River is the special instance of the "pile-soil-liquid" coupling vibration problem. The tidal bore has high tide, large velocity of liquid and strong wallop, the new type hydraulic system's dynamic response emphases the particularity of the tidal bore of the Qiantangjiang River. The tidal bore pressure's history and the distribution is obtained by locate testing and numerical simulation, based on the research about the embedded pile's coupling the liquid. The measured Qiantangjiang River bore loading is presented by means of the Fourier Series transform and input as the lateral load. The dynamic response is obtained and compared with the measured data. The effect of the parameters such as tide heigh, diameter of the pile, distance of the pile, soil is discussed and the results are compared with other methods such as m method, constant method, static and dynamic FEM. The investigation indicates that the bore's frequency keeps away from the pile's natural vibration frequency. Though it has strong wallop, the static model of the bore is permitted to apply in design. If the length of pile in the sea is large and the natural vibration frequency is low, it's necessary to apply dynamic method, especially when the natural vibration frequency approaches the wave load frequency.
引文
1.Putnam JA,Loss of wave energy due to percolation in a permeable sea bottom.Trans Arm Geophys 1949;30:662-666.
    2.Sleath JFA.Wave induced pressures in beds of sand.J Hydraul Div A S C E 1970;96(2):367-378.
    3.Massel SR.Gravity waves propagated over permeable bottom.J Watways Harb Costle Engng A S C E 1976;102(2):111-121.
    4.H Moshagen AT.Wave induced pressures in Permeable seabed.J Watways Harb Costle Engng A S C E 1975;101(WW1):464-465.
    5.J H Prevost OE,K H Anderson.Discussion of wave induced pressure in permeable seabed.J Watways Harb Costle Engng A S C E 1975;101(ww4):464-465.
    6.T Yamamoto HLK,H Sellmeijer.On the response of a poro-elastic bed to water waves,journal Fluid Mechanics 1978;87(1):196-206.
    7.Madsen OS.Wave-induced pore pressure and effective stresses.Geotechnique 1978;28(4):377-393.
    8.Okusa S.Wave-induced stresses in unsaturated submarine sediments.Geotechnique 1985:35(4):517-532.
    9.张金凤,张庆河,秦崇仁.波浪作用下非均质各异性海床响应的数值分析.天津大学学报2006;39(2):159-164.
    10.王栋,栾茂田.波浪作用下粘弹性海床动力响应的数值分析.工程力学 2002;19(4):130-134.
    11.刘红军,张民生,许国辉,陈友媛,王秀海.波浪作用下海床土体强度非均匀数值分析.岩土工程学报 2008;30(6):924-929.
    12.章根德,顾小芸.有限厚度砂床对波浪荷载的响应.力学学报 1993;25(1):56-68.
    13.Havelock TH.The Pressure of water waves upon a fixed obstacle.1963;London.p 409-421.
    14.Maccamy R C R FRA.Wave forces on pile:A diffraction Theory.1954.Army Coastal Engineering Research Center.
    15.Garrentt CJR.Wave forces on a circular dock.Journal of Fluid Mechanics 1971;46(1):129-139.
    16.Yeung RW.Added mass and damping of a vertical cylinder in finite-depth waters.Applied Ocean Research 1981;3(3):119-133.
    17.Malenica S PJC,Molin B.Wave and current forces on a verticle cylinder free to sruge and sway.Applied Ocean Research 1995;17:79-90.
    18.Hulme A.The wave forces Acting on a floating hemisphere undergoing forced periodic oscillation.Journal of Fluid Mechanics 1982;121:443-463.
    19.Lopes D B S,Sarmento A J N A.Hydrodynamics Coefficients of a submerged Pulsating sphere in finite denth.Ocean Engineering 2002:29:1391-1398.
    20.周叮.考虑液面波动和液体压缩时一侧受液作用悬臂梁的横振分析.应用力学学报1994;11(2):106-111.
    21.张绍文倪.水中悬臂结构振动与水动力特性研究.大连理工大学学报 1996;36(3):329-333.
    22.Yeung RW.Numerical Methods in Free surface flowsMethods in Free surface flows.Ann.Rev.Fluid Mech.1982;4:395-442.
    23.Mei CC.Numerical methods in water wave diffraction and radiation.Ann.Rev.Fluid Mech.,1978;10:393-416.
    24.Mei CC.The applied dynamic of ocean surface wave.New York:John Wiley and Sons,lnc.,;1983.
    25.Hardow F H JEW.The MAC Method,a Computing Technique for Solving Viscous,lncompressible.Transient Fluid Problems Involving Free Surface.;1965;LA.p 3452-3459.
    26.Wang Y X STC.Computation of Wave Breaking On Sloping Beach by VOF Method.1993;Singapore.p 6-11.
    27.邹志利,邱大洪,王永学.VOF法模拟波浪槽中二维非线性波.水动力学研究与进展 Ser.A 1996;11(1):93-103.
    28.Spring B H MPL.Interaction of plane waves with vertical cylinders.Copenhagen;1974.
    29.Linton C M EDV.The Interaction of waves with arrays of vertical circular cylinders.Journal of fluid mechanics 1990;215:549-569.
    30.朱大同.2002.海洋工程波浪对阻抗型圆柱群的绕射;20(4):5-10.
    31.Dobry R GG Simple method for dynamic stiffness and damping of floating pile groups.Geotechnique 1998;38(4):557-574.
    32.B H Spring PLM.Interaction of plane waves with vertical cylinders.1974;Copenhagen.p 1828-1845.
    33.C M Linton DVE.The Interaction of waves with arrays of vertical circular cylinders.Journal of fluid mechanics 1990;215:549-569.
    34.缪国平刘.大直径圆柱上的二阶波浪力.中国造船 1978;98:12-24.
    35.Bullnell MJ.Forces on cylinder arrays in oscillating flow.In:Paper O,editor;1977;Houston,TX.
    36.Sarpkaya TC,M,Ozkaynak,S.Hydrodynamic interferences of two cylinders in harmonic flow.In:Paper O,editor;1980;Houston,TX.
    37.Chakrabarti S,K.Wave forces on vertical array of tubes.Civil Engineering in the Ocean 1979(ⅣASCE):241-259.
    38.Y E Mostafa MH,EI Naggar.Response of Fixed Offshore Platforms to Wave and Current Loading Including Soil-Structure Interaction.Soil Dynamic and Earthquake Enginnering 2004(24):357-368.
    39.刘笑海王.结构-波浪-海床耦合系统中大圆筒结构的波压力响应.水利学报 2003(4):67-74.
    40.杨升田.导管架海洋平台自振特性的简化计算方法.应用力学学报 2000;10(3):12-16.
    41.孙树民.独桩平台振动控制.中国海上油气(工程) 2000;12(6):12-16.
    42.LU Jianhui PL.Study on vibration control of fixed-type steel offshore oil platform.Ship Building of China 2000;41(3):63-68.
    43.Li H J HSJ,Tomotsuka,Takayama.The optimal design of TMD for offshore structure.China Ocean Engineering 1999;38(2):133-144.
    44.Makris.N,Gazetas G,.Displacement phase differences in a harmonically oscillating pile.Geotechnique 1993;43(I):135-149.
    45.王腾,董胜,李华军.考虑桩土作用独桩海洋平台横向振动特性研究.中国海洋大学学报2000;34(2):318-324.
    46.杨永楚,蒋纬.用挂桩法保护钱塘江丁坝坝头的研究和实践.河口与海岸工程 1993;3:29-37.
    47.邵卫云,毛根海,刘国华.钱塘江涌潮压力的动态观测与分析研究[J].浙江大学学报(工学版) 2002;36(3):247-251.
    48.蔡袁强,阮连法,吴世明,等.软粘土地基基坑开挖中双排桩式围护结构的数值分析及应用.建筑结构学报 1999;20(4):65-71.
    49.周胜等.钱塘江水下防护工程的研究与实践.水利学报 1992(1):20-30.
    50.陈希海、庄娟芳.钱塘江海塘织物模袋混凝土护坦涌湖压力测试与分析:浙江省河口海岸研究所.
    51.林炳尧.涌潮作用下丁坝护面板水动力分析.河口与海岸工程 1998;4:83-95.
    52.朱军政.涌潮翻越丁坝过程数值试验初步研究.河口与海岸工程 2000;1:21-30.
    53.赵谓军严.宣伟丽.林炳尧.涌潮河口桩式丁坝的护滩保塘效果分析.水利学报2006;37(6):699-703.
    54.杨火其,王文杰等.强潮河口排桩式丁坝局部冲刷试验研究.水道港口 2001;22(31:122-127.
    55.邵卫云,毛根海.钱塘江涌潮压力的分析与研究.水动力学研究与进展:A辑2002;17(5):604-610.
    56.吴济难,孔祥柏.淹没丁坝动水压力的基本特性及计算方法探讨.水利水运科学研究1997;2:154-159.
    57.陈海军.钱塘江排桩式丁坝上涌潮压力的现场测试及数值分析.杭州:浙江大学:2006.
    58.宋洋.涌潮冲击排桩式丁坝的数值模拟和动力性状研究.杭州:浙江大学:2006.
    59.梁昆淼.数学物理方法:人民教育出版社:1979.
    60.AbuI-AZM WAN.Interference effects between flexible cylinders in wave.Ocean Engineering 1987;14(1):19-38.
    61.N.Makris GG.Dynamic pile-soil-pile interaction,Part Ⅱ:Lateral and seismic response.Earthquake eng.struct.dyn 1992;21:145-162.
    62.Yamamoto Tokuo KHL.On the response of a poro-elastic bed to water waves.Journal of Fluid Mechanics 1978;87(1):193-206.
    63.邱大洪,孙昭晨.波浪渗流力学.北京:国防工业出版社:2006.
    64.Yamamoto T,Sellmeiher H L,Hijum E V.On the response of a porous-elastic bed on water waves.Journal of Fluid Mechanics 1978;87(1):193-206.
    65.顾淦臣.土石坝地震工程:河海大学出版社:1989.
    66.Hardin.BO BW.Vibration modulus of normally consolidated clay.Soil Mechanics and Foundations Division,ASCE,1968;94(2):353-369.
    67.Hardin.BO BW.Vibration modulus of normally consolidated clay(closure).Soil Mechanics and Foundations Division,ASCE,1969;95(6):1531-1537.
    68.Morison J R MPOB,J w Johnson and S A Schaff.Forces exerted by surface waves on piles.Petro Trans.,Am.lnst of Mining Eng 1950;189.
    69.J.A.Eicher HG,D.S.Jeng.Stress and deformation of offshore piles under structural and wave loading.Ocean Engineering 2003;30:369-385.
    70.Sommerfeld A.Partial differential eqluations in physics.New York:Academic Press:1949.
    71.田子谦,李黎,陈志军.自由表面效应对结构动力响应的影响.华中科技大学学报2004;21(4):75-77.
    72.K.Venkataramana SY,Yoshikazu Yamada.Hydrodynamic coefficients for slender circular columns oscillating under sinusoidal wave action.Proc.of JSCE(Hydraulic and Sanitary Eng.)1988;399:185-191.
    73.郑忠双.极端环境下海洋结构物随机响应分析及动力可靠性研究:2001.
    74.冯永正,王立忠,陈云敏.瑞利波作用下双层地基中群桩横向动力响应.振动工程学报2001;14(3).
    75.蒋东旗.远场地震作用下桩基的横向地震响应研究.杭州:浙江大学:2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700