用户名: 密码: 验证码:
配电楼—电气设备系统的地震反应及减震控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的快速发展,人类的用电需求越来越大,而作为电力网络重要组成部分的变电站配电楼系统,在整个电网中起到了枢纽的作用,是保障电网安全运行的关键环节。国内外众多破坏性地震实例表明,强烈地震对配电楼系统的破坏会引发整个电力系统的破坏,从而导致严重的次生灾害和惨重的经济损失,对国计民生和经济建设影响极大。近些年来,世界各国都加强了对电力系统地震灾害的研究工作,但对配电楼系统的地震反应研究尚欠深入,诸多问题亟待解决。
     本文首次考虑主体结构-电气设备相互作用,对我国变电站配电楼系统的地震反应进行了深入系统的研究,分析了配电楼系统的动力特性,研究了单向、多维地震动以及近断层地震动影响等不同类型地震动输入情况下配电楼系统的地震反应,进而采用隔震技术进行了配电楼系统的减震控制研究,根据分析结果对现行《建筑抗震设计规范》和《电力设施抗震设计规范》相关条文提出了完善建议。主要研究内容如下:
     针对国内电力行业常用的两种配电楼系统,建立了考虑主体结构-电气设备相互作用的三维动力分析模型。根据主体结构型式和电气设备摆放特点分析了配电楼系统的动力特性,考察了电气设备与结构楼层质量比等因素对系统自振周期的影响,并与传统结构设计方法所得结果进行对比,得到了配电楼系统的动力特性规律。
     筛选出Ⅰ~Ⅳ类场地共10条有代表性的实震记录作为地震动输入,采用时程分析法研究了地震动单向、多维输入情况下配电楼系统弹性及弹塑性阶段的地震反应。通过对框架柱底部剪力、柱顶水平位移、柱顶水平加速度以及电气设备水平加速度等地震反应结果的分析,进行了主体结构层间位移角限值及电气设备动力放大系数的修正。
     首次研究了建造于近断层处配电楼系统的抗震性能,选取了100条近断层地震记录作为地震动输入,对配电楼系统主体结构和电气设备的地震反应及破坏特征进行了分析,结果表明近断层处配电楼系统的地震破坏更大。
     为了确保配电楼系统的正常使用,采用基础隔震技术对配电楼系统开展了减震控制研究,分析了基础隔震配电楼系统主体结构和电气设备的地震反应。结果表明,采用基础隔震措施能够有效地减小配电楼和电气设备的地震反应,从而为同类生命线工程应用隔震技术提供了重要的借鉴和参考价值。
With the rapid development of the national economy,the demand of power energy increased largely.As an important part of the power system,switch building played a key role to ensure safe operation of power system.Many examples of devastating earthquake at home and abroad indicated that a strong earthquake on switch building would lead to the destruction of the entire power system.Furthermore;it should leading to serious secondary disasters and heavy economic losses to the national economy,and people's economic construction and greatly affected.In recent years,countries around the world have strengthened earthquake research of power system,but limited in switch building seismic research and many needs to be sorted out.
     In this paper,it's the first time to study earthquake response of switch building system from different perspectives.Considering the interaction of main structure and electrical installations,the dynamic characteristic of switch building was analyciZed,the earthquake response under the conditions of one dimension earthquake wave input, multiply dimensions wave input and near-fault ground motion input was studied. Furthermore,the seismic control of switch building was studied by using isolation technology.According to the results,some proposals were put forward to Code for Seismic design of buildings and Code for design of seismic of electrical installations. The main conclusions are shown as foliowing.
     Based on two main type switch buildings recommended by power system,the three-dimensional calculation models considering interaction of main structure-electrical installations were set up.The dynamic characteristics of models were calculated under different conditions such as main structure type and electrical installations setting type.It was discovered dynamic characteristics rules by the ratio of installations quality and floor quality.
     10 earthquakes waves representing ClassⅠ~ClassⅣsite were selected to research the switch buildings system elasticity response and elastoplasticity response under small earthquake condition and strong earthquake condition.According to some response value such as shear force at the end of column,horizontal displacement and accelerate at the top of column,and accelerate of electrical installations,the suggestion values of story drift angle limitation and dynamic magnification factor of electrical installations under multi-dimensions earthquake input were supplied.
     It was the first time to study switch building seismic performance under the condition of near-fault ground motion.The 100 near-fault ground motion records in Chichi earthquake(Taiwan) and Northridge earthquake(American) were selected to analysis the response of switch building.The results showed that destructive caused by near-fault ground motion records was dramatically than that of normal area records.
     In order to ensure normal work of switch building,the isolation technology as seismic control method was used to analysis earthquake response of main structure and electrical installations in switch building.The results showed that the earthquake response reduced greatly.The research results can be referenced by similar lifeline system.
引文
[1]赵成刚,冯启民.生命线地震工程[M].北京:地震出版社,1994.
    [2]张文勤.电力系统基础[M].北京:中国电力出版社,1998.
    [3]柳春光,林皋,李宏男等.生命线地震工程导论[M].大连:大连理工大学出版社,2005.
    [4]刘恢先.唐山大地震震害[M].北京:地震出版社,1986.
    [5]城市与工程减灾基础研究论文集编辑委员会.城市与工程减灾基础研究论文集[M].北京:中国科学技术出版社,1995.
    [6]Lee Benuska.Loma Prieta Earthquake reconnaissance report[J].Earthquake Spectra,1990,(6):315-337.
    [7]Anshel J.Schiff.Characterizing power systems for seismic response or risk analysis[R].Proceedings from the Sixth Japan-U.S.workshop on earthquake resistant design of lifeline facilities and countermeasures for soil liquefaction,1996:697-710.
    [8]罗奇峰.日本兵库县南部地震中生命线系统的震害及其震后恢复[J].灾害学,1997,12(1):43-48.
    [9]中国赴日地震考察团.日本阪神大地震考察[M].北京:地震出版社,1995.
    [10]中国电力报社,电力快讯[J].1996,5(24):20.
    [11]邹其嘉,孙振凯,毛国敏.电力系统地震易损性研究[J].自然灾害学报,1994,3(2):81-90.
    [12]文波,牛荻涛.变电站抗震性能研究综述[J].工程抗震与加固改造,2007,29(6):73-77.
    [13]李杰,何军,李天.大型电力网络系统抗震可靠度分析[J]哈尔滨建筑大学学报,2002,35(1):7-11.
    [14]Ang A.H.S,Pires J.,Seismic Probabilistic Assessment of Electric Power Transmission Systems[A].Proc.of 10~(th) World Conference of Earthquake Engineering.Madrid,Spain,1992.
    [15]李兴源.高压直流输电技术的运行和发展[M].北京:科学技术出版社,1998.
    [16]陈丽娟,贾立雄.2005年全国输变电设施和城市用户供电可靠性分析[J].中国电力,2006,39(7):1-7.
    [17]韩伟,王柏臣.盘点电力2006[J].电力设备,2006,12(7):99-111.
    [18]GB50011-2001建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.
    [19]盛学庆.110kV湖内变电所土建设计探讨[J].浙江电力,2002,1:52-54.
    [20]李天等.电力系统地震灾害分析[J].世界地震工程,2000,16(4):19-24.
    [21]GB50260-96电力设施抗震设计规范[S].北京:中国计划出版社,1996.
    [22]姚保华,谢礼立,袁一凡.生命线工程系统相互作用及其分类[J].世界地震工程,2001,17(4):48-52.
    [23]何仰赞,温增银.电力系统分析(上册)[M].武汉:华中理工大学出版社,1995.
    [24]王锡凡.现代电力系统分析[J].北京:科学出版社,2003.
    [25]王永滋等.变电所所址选择与总布置[M].北京:水利电力出版社,1986.
    [26]Chang,S.E.,Rose,A.,Shinozuka,M.,Svekla,W.,and Tierney,K.J.Modeling Earthquake Impact on Urban Lifeline Systems:Advances and Integration[R].Research Progress and Accomplishments 1999-2000,MCEER.2000.
    [27]国家电网公司变电站典型设计工作组.国家电网公司变电站典型设计[M].北京:中国电力出版社,2005.
    [28]冯波.无人值班变电站的土建设计[J].山西建筑,2001,27(1):17-18.
    [29]夏岩.变电站主控楼抗震设计的几点思考[J].山西焦煤科技,2004,3:44-46.
    [30]罗学琛.SF6气体绝缘全封闭组合电器(GIS)[M].北京:中国电力出版社,999.
    [31]张斌.GIS系统在220kV配电装置中的应用[J].轻金属,2004,8:52-54.
    [32]唐志坚.无人值班变电站的规划与设计[J].电力系统自动化,1996,20(2):36-38.
    [33]李杰,李国强.地震工程学导论[M].北京:地震出版社,1991.
    [34]郭增建、陈鑫连主编,城市地震对策[M].北京:地震出版社,1991.
    [35]蒋溥,梁小华.关于工程地震实践若干问题[J].工程地质学报,1998,6(1):1-6.
    [36]郭振岩.变压器抗地震性能的研究[J].变压器,2005,42(8):13-31.
    [37]杨亚弟,李桂荣.电气设施抗震研究概述[J].世界地震工程,1996,12(2):20-22,54.
    [38]董伟民,周韦瑞.断路器及其减震体系的抗震研究[J].地震工程与工程振动,1982,2(1):53-66.
    [39]张陵,肖临善.基础隔震时瓷质电气设备的地震反应分析[J].西安冶金建筑学院学报,1994,26(4):430-435.
    [40]周怡光,章在墉.生命线系统的地震危害性分析[J].世界地震工程,1988,4(1):19-24,38.
    [41]吴际舜.电力系统静态安全分析[M].上海:上海交通大学出版社,1985.
    [42]Duke C,Moran C F.Guidelines for evolutions of lifeline earthquake engineering[C].Proceedings of U.S.National Conference on Earthquake Engineering,1975,367-376.
    [43]William U.Savage,Stuart P.Nishenko,Douglas G.Honegger etc.Guideline for Assessing the Performance of Electric Power Systems in Natural Hazard and Human Threats Events[J].Electrical Transmission Line(ASCE),2006:39-46.
    [44]张治勇等.火力发电厂抗震研究状况[J].世界地震工程,2000,15(1):34-39.
    [45]T T Soong,B F Spencer,JR,Active,Semi-Active and Hybrid Control of Structures [A].Proc.of 12~(th) World Conference of Earthquake Engineering,Auckland,New Zealand,2000:2834.
    [46]中村秋夫,冈本浩,曹祥麟.东京电力公司的特高压输电技术应用现状[J].电网技术,2005,29(6):1-5.
    [47]IEEE Standard 693,IEEE Recommended Practice for Seismic Design of Substations [S].Institute of Electrical and Electronic Engineers,Inc.,345 East 47th Street,New York,NY,10017,USA,1997.
    [48]O'Rourke T D.Lessons learned for lifeline engineering from major urban earthquake[A].Proc.of 11~(th) World Conference on Earthquake Engineering,No.2172,1996.
    [49]Applied Technology Council(ATC),Seismic Evaluation and Retrofit of Existing Concrete Buildings[R].ATC 40,1996.
    [50]Z.Cagnan,R.Davidson.Post-Earthquake Lifeline Service Restoration Modeling[J].Earthquake Engineering(ASCE),2003.
    [51]Federal Emergency Management Agency(FEMA),Earthquake Loss Estimation Methodology- HAZUS99[R].Technical Manual.Federal Emergency Management Agency,1999.
    [52]H.M.Hwang,Chou T.Evaluation of Seismic Performance of an electric Substation using event tree/fault tree technique[J].Probabilistic Engineering Mechanics.1988,13(2).
    [53]Kiureghian A D,Sackman A L,Hong K J.Interaction in interconnected electrical substation equipment subjected to earthquake ground motions[R].PEER 1999/01,1999.
    [54]Anagnos T.Development of an Electrical Substation Equipment Performance Database for Evaluation of Equipment Fragilities[R].Proceedings Fifth National Conference on Lifeline Earthquake Engineering,Seattle.1999.
    [55]Anagnos,T.Improvement of Fragilities for Electrical Substation Equipment[A].Proceedings Fifth National Conference on Lifeline Earthquake Engineering,Seattle.1999.
    [56]Song Junho,Der Kiureghian Armen,Reliability of Electrical Substation Equipment Connected by Rigid Bus[A].13~(th)wcee,Canada,2004,No:186.
    [57]Hong K.J.,Der Kiureghian A.Interaction,Effect on Cable-Connected Electrical Equipment[A].13~(th)wcee,Canada,2004,No:186.
    [58]Bellorini S,Salvetti M,Zafferani G.Seismic qualification of transformer high voltage bushings[J]Transactions on Power Delivery,IEEE 1998.
    [59]Der Kiureghian A,Sackman JL,Hong KJ.Seismic Interaction in Linearly Connected Electrical Substation Equipment[J].Earthquake Engineering and Structural Dynamics 2001,30(3):327-347.
    [60]Takayuki Shimazu,Naoki Shimazu.Regional Assessment of Earthquake Hazard [J].Earthquake Egineering(ASCE),2003.
    [61]Yoshiharu Shumuta.Seismic risk management system for electric power facilities[J].Earthquake Egineering(ASCE),2003.
    [62]Minori Nishi,Jun Yamamoto,etc.Open-Distributed SCADA System for the Okutataragi Power Station and Substation[J].Waterpower(ASCE),1999.
    [63]中岛立生.输电技术的发展现状和展望[J].国际电力,1998(3):38-44.
    [64]Fouad H.Fouad,Harry Durden,Elizabeth Calvert.Analysis of Substation Deadend Concrete Structures[J].Structures(ASCE),2000.
    [65]Gilani AS,Whittaker AS,Fenves GL,Fujisaki E.Seismic Evaluation and Retrofit of 230-kV Porcelain Transformer Bushings[R].PEER 1999/14.Pacific Earthquake Engineering Research Center,University of California,Berkeley,1999.
    [66]Ashrafi S.A.Issues of Seismic Response and Retrofit for Critical Substation Equipment[C].Masters Thesis,New Jersey Institute of Technology,2003.
    [67]傅修恒.GW6、GW9型高压隔离开关模拟地震试验及其抗震能力分析[R].沈阳高压开关厂.1989.
    [68]国家地震局工程力学研究所,西北电力设计院,西安高压电瓷厂.单柱式电气设备支架动力响应放大系数试验研究报告[R].《电气设施抗震设计规范》(电气部分)专题之十一,1988.
    [69]曲乃泗,沈聿修,张钟鼎等.少油断路器的动力地震响应[A].设备抗震学术会议报告汇编.1987.
    [70]西北电力设计院.设备支架、导线对电气设备动力特性影响的初步探讨[A].《电力设施抗震设计规范》(电气部分)专题之九.1986.
    [71]周书瑞.500千伏超高压避雷器实型地震实验[A].设备抗震学术会议报告汇编[R].1987.
    [72]张其浩.电力系统地震灾害的预测及其防灾对策[R].北京:国际地震局工程力学研究所研究报告,1994.
    [73]张仲孝.关于提高电气设备抗震能力问题的探讨[J].工程抗震,1994(2):43-46.
    [74]李天,李杰,沈祖炎.高压变电站抗震可靠性分析(一)[J].地震工程与工程振动,2000,20(3):43-49.
    [75]李天,李杰,沈祖炎.高压变电站抗震可靠性分析(二)[J].地震工程与工程振动,2000,20(4):56-60.
    [76]李杰,生命线工程的研究进展与发展趋势[J].土木工程学报,2006,39(1):1-6.
    [77]陈淮,李杰.电力设备抗震可靠性分析[J].世界地震工程,2000,20(2):34-38.
    [78]华北电力设计院有限公司.高压电气设备减震技术规定(报批稿)[S].北京:中国电力出版社.1986.
    [79]郭惠勇,张陵.电力电容器组架结构抗震性能的优化分析和计算[J].工程抗震,2002,12(4):31-36.
    [80]李亚琦,电瓷型高压电气设备体系抗震性能分析[D].中国地震局地球物理研究所,2002.
    [81]杨亚弟,张其浩,等.FZ-110J型避雷器体系抗震分析[J].地震工程与工程振动.1988,8:45-48.
    [82]张其浩,杨亚弟,等.绝缘子拉杆式电气设备的抗震分析[J].世界地震工程.1989,17:13-17.
    [83]张伯艳,杜修力.500kV高压开关抗震性能计算分析[J].工程抗震,1999,(2):34-37.
    [84]刘晓明,曹云东.220kV高压SF6电流互感器抗震性能分析[J].变压器,2001,38(2):21-24.
    [85]陈淮,孙增寿等.高压变电器抗震可靠度分析[J].世界地震工程,2001,17(4):104-106.
    [86]郭振岩,变压器抗地震性能的研究[D].沈阳工业大学,2004.
    [87]尹荣华,李东亮等.高压输电塔震害及抗震研究[J].世界地震工程,2005,21(1):51-54.
    [88]李天祺.能源供应系统地震灾害研究[D].中国地震局工程力学研究所,2007.
    [89]柳春光,林皋,李宏男等.生命线地震工程导论[M].大连:大连理工大学出版社,2005.
    [90]文波,牛荻涛.电力系统抗震可靠性研究与分析综述[J].灾害学,2007,22(4):86-90.
    [91]李宏男,柳春光.生命线工程系统减灾研究趋势与展望[J].大连理工大学学报,2005,45(6):931-936.
    [92]苏幼坡,刘天适,刘瑞兴.生命线地震工程的研究进展[J].世界地震工程,2003,19(2):151-155.
    [93]李杰,生命线工程的研究进展与发展趋势[J].土木工程学报,2006,39(1):1-6.
    [1]T.T.Soong.State-of-the-art Review Seismic Response of Secondary systems[J].Engineering Structure,Vol(10),1988,10(4):218-228.
    [2]M.L.Lai,T.T.Soong.Seismic Design Considerations for Secondary Structural Systems[J].ASCE,ST117(2),1991.
    [3]Kiureghian A.Seismic interaction in linearly connected electrical substation equipment[J].Earthquake Engineering and Structural Dynamics,2001,30(3):327-347.
    [4]Stepp J C.Industrial facilities[J].Earthquake Spectra,1991,7:159-192.
    [5]Swan S W.Industrial facilities[J].Earthquake Spectra,1990,6:315-338.
    [6]Filiatrault A.,Kremmidas S.Seisemic interacton of interconnected electrical substation equipment[J].Journal of Structural Engineering,2000,(10):1140-1149.
    [7]F.G.Fan,G.Ahmadi.Seismic analysis of multiply supported secondary system with dynamic intereaction effect[J].Earthquake Engineering and Structural Dynamics,1987,15:1005-1022.
    [8]韩淼,秦丽.多点连接二次结构地震响应的研究方法[J].北京建筑工程学院学报,2003,19(4):13-17.
    [9]朱伯龙,张琨联.建筑结构抗震设计原理[M].上海:同济大学出版社,2000.
    [10]Luis,Suarez E Singh M.P.Floor response spectra with struetur-equipment interae-tion effeets by a mode synthesis approach[J].Earthquake Engineering and Structural Dynamics,1987,15(2):141-158.
    [11]殷学纲,陈淮,赛开林.结构振动分析的子结构方法[M].北京:中国铁道出版社,1991.
    [12]崔俊芝,梁俊.现代有限元软件方法[M].北京:国防工业出版社,1995.
    [13]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997.
    [14]朱伯芳.有限单元法原理与应用[M].北京:水利电力出版社,1979.
    [15]林均岐,二级结构地震反应的实验研究[J].地震工程与工程振动,2001(9):16-19.
    [16]王勖成,邵敏.有限单元法基本原理与数值方法[M].北京:清华大学出版社,1988.
    [17]包世华,方鄂华.高层建筑结构设计(第二版)[M].北京:清华大学出版社,1990.
    [18]沈聚敏,王传志,江见鲸.钢筋砼有限元与板壳极限分析[M].清华大学出版社,1993,11.
    [19]O.C监凯维奇.有限元法[M].北京:科学出版社,1985.
    [20]李田.结构时程动力分析中的阻尼取值研究[J].土木工程学报,VOL.30,No.3:68-73.
    [21]朱镜清,周建.复杂介质体系阻尼矩阵的合理形成方法[J].力学与实践,1992,VOL.14,NO.4:15-16.
    [22]王光远.建筑结构的振动[M].北京:科学出版社,1978.
    [23]钟万勰.结构动力方程的精细时程积分法[J],大连理工大学学报,34(2),1994.2 131-136.
    [24]E.L.Wilson.著,北京金土木公司译.结构静力与动力分析—强调地震工程学的物理方法[M].北京:中国建筑工业出版社,2006:145-152.
    [25]Clough G.W.,Benuska K.L.,and Wilson E.L.Inelastic earthquake response of tall buildings[A].Proc.of 3~(rd) World Conference on Earthquake Engineering[C].New Zealand,1965,Vol.11:68-69.
    [26]Takeda T.,Sozen M.A.,Nielsen N.N.Reinforced concrete response to simulated earthquake[J].Journal of the Structural Division,ASCE,1970,96(12):253-257.
    [27]Sadii Mehdi,Sozen M.A.,Simple and complex model for nonlinear seismic response of reinforced concrete structures[R].Structural Research Series No.465,Civil Engineering Studies,University of Illinois at Urbana-Campaign,Urbana,Illinois,Augest,1979.
    [28]Roufaiel M.S.L.,Meyer C.Analytical Modeling of Hysteretic Behavior of R/C Frames[J].Journal of Structural Engineering,March 1987,Vol.113,No.3:429-444.
    [29]Kunnath S.K.,Reinhorn A.M.,Park Y.J.Analysis Modeling of Inelastic Seismic Response of R/C Structures[J].Journal of Structural Engineering,ASCE,April,1990,Vol.114,No.4:996-1017.
    [30]Kabeyasawa T.,Shiohara H.,Otani S.,et.al.Analysis of the Full-scale Seven-story Reinforced Concrete Test Structure[J].Journal of the Faculty of Engineering,the University of Tokyo,Vol.ⅩⅩⅩⅦ,No.2,1983,pp:431-478.
    [31]Eto H.,Tadeda T..Elasto Plastic Earthquake Response Analysis of Reinforced Concrete Frame Structure[R].Annual Meeting,Architectural Institute of Japan,1973,pp:1261-1262.
    [1]龙驭球,包世华.结构力学教程[M].北京:高等教育出版社,1988.
    [2]M.帕兹著,李裕澈等译.结构动力学—理论与计算[M].北京:地震出版社,1993.
    [3]管迪华.模态分析技术[M].北京:清华大学出版社,1996.
    [4]徐植信,胡再尤.结构地震反应分析[M].北京:高等教育出版社,1993.
    [5]徐建.建筑振动工程手册[M].北京:中国建筑工业出版社,2002.11.
    [6]李国豪.工程结构抗震动力学[M].上海:上海科学技术出版社,1980.
    [7]北京金土木软件技术有限公司编.SAP2000中文版使用指南[M].北京:人民交通出版社,2006.
    [8]R.K.Goel,A.K.Chopra.Inelastic seismic response of one-story,asymmetric-plan systems:effects of stiffness and strength distribution[J].Earthquake Engineering and Structural Dynamics,1990,19(2):949-970.
    [9]朱伯龙,董振祥.钢筋混凝土非线性分析[M].上海:同济大学出版社,1985.
    [10]杨茀康.结构动力学[M].北京:人民交通出版社,1987.
    [1]胡聿贤.地震工程学[M].北京:地震出版社,1988.
    [2]周锡元,王广军,苏经宇.场地·地基·设计地震[M].北京:地震出版社,1990.
    [3]地震工程概论编写组.地震工程概论[M].北京:科学出版社,1985.
    [4]中国赴日考察团.日本阪神大地震考察[M].北京:地震出版社,1990.
    [5]薄景山,李秀玲,李山有.场地条件对地震动影响研究的若干进展[J].世界地震工程,2003,19(2):11-15.
    [6]时振梁,张少泉,赵荣国等.地震工作手册[M].北京:地震出版社,1990.
    [7]Iwan W.D.Drift spectrum:Measure of demand for earthquake ground motions[J].Journal of Structural Engineering,1997,123(4):397-404.
    [1]刘季.在多维地震动复合作用下结构的反应和建筑结构扭转地震效应[J].哈尔滨建筑工程学院学报,1986,2:59-70.
    [2]刘季.建筑结构地震扭转效应的反应谱解析方法[J].哈尔滨建筑大学学报,1980,1:32-40.
    [3]刘季.结构多维地震反应的组合问题[J].哈尔滨建筑大学学报,1987,2:67-75.
    [4]魏琏,王森.论水平地震作用下对称和规则结构的抗扭设计[J].建筑结构,2005,(35)5:13-17.
    [5]吴晓云,陈森,魏琏.论地震作用下多层平扭耦联建筑的刚心.地震工程与工程振动,1998,8(4):33-44.
    [6]T.Paulay.Torsional mechanisms in ductile building systems[J].Earthquake Engineering and Structural Dynamics,1998,27(6):1101-1121.
    [7]J.L.Humar,P.Kumar.Effect of orthogonal inplane structural elements on inelastic torsional response[J].Earthquake Engineering and Structural Dynamics,1999,28(4):1071-1097.
    [8]李宏男,杨浩.多维地震作用下偏心结构动力反应的Simulink仿真分析[J].防灾减灾工程学报,2004,(04).
    [9]李宏男.结构多维抗震理论[M].北京:科学出版社,2006.
    [10]李宏男,王强,李兵.钢筋混凝土框架柱多维恢复力特性的试验研究[J].东南大学学报(自然科学版),2002,05:23-26.
    [11]GB50260-96电力设施抗震设计规范[S].北京:中国建筑工业出版社,1996.
    [1]Anderson J C,Bertero V V.Uncertainties in establishing design earthquake[J].Journal of Structural Engineering,1987,113(8):1709-1724.
    [2]Hall J F,Heaton T H,Hailing MW et al.Near-source ground motion and its effects on flexible buildings[J].Earthquake Spectra,1995,11(4):569-605.
    [3]Somerville Pet al.Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity.[J]Seismological Research Letters,1997,68(1):199-222.
    [4]Wang G Q,Zhou X Y,Zhang P Z et al.Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi,Taiwan,earthquake[J].Soil Dynamics and Earthquake Engineering,2002,22:73-96.
    [5]Hall J F,Heaton T H,Halling M Wet al.Near-source ground motion and its effects on flexible buildings[J].Earthquake Spectra,1995,11(4):569-605.
    [6]Malhotra P K.Response of buildings to near-field pulse-like ground motions[J].Earthquake Engineering and Structural Dynamics,1999,28:1309-1326.
    [7]Liao W I,Loh C H,Wan S.Earthquake response of RC moment frames subjected to near-fault ground motions[J].The Structural Design of Tall Buildings,2001,10:219-229.
    [8]Mavroeidis G P,Dong G,Papageorgiou A S.Near-fault ground motions,and the response of elastic and inelastic single-degree-of-freedom system[J].Earthquake Engineering and Structural Dynamics,2004,33(9):1023-1049.
    [9]Akkar S,Yazgan U,Gulkan P.Drift estimates in frame building subjected to near-fault motions.Journal of Structural Engineering,2005,131(7):1014-1024.
    [10]李爽,谢礼立.地震动参数及结构整体破坏相关性研究.哈尔滨工业大学学报,2007,39(4):505-560.
    [11]刘启方,袁一凡,金星等.近断层地震动的基本特征.地震工程与工程振动,2006,26(1):1-10.
    [12]翟长海,谢礼立.估计和比较地震动潜在破坏势的综合评述.地震工程与工程振动,2002,22(5):1-7.
    [13]Giovenale P,Comell C A,Esteva L.Comparing the adequacy of altemative ground motion intensity measures for the estimation of structural responses[J].Earthquake engineering and Structural Dynamics,2004,33:951-979.
    [14]王亚勇,李虹.考虑场地特征的强地面运动参数的统计分析[J].地震工程与工程震动,1986,6(3):67-76.
    [15]杨迪雄,李刚.近断层地震动的强度度量参数研究[J].地震工程与工程振动,2008,28(4)-31-36.
    [16]Riddell R.On ground motion intensity indices[J].Earthquake Spectra,2007,23(1):147-173.
    [17]韦韬,赵风新,张郁山.近断层速度脉冲的地震动特性研究[J].地震学报,2006,28(6):629-637.
    [18]王国权.921台湾集集地震的近断层地面运动特征[D].北京:中国地震局地质研究所,2001.
    [19]王建民,朱晞.地面运动强度度量参数与双线性单自由度系统变形需求的相关性研究[J].地震学报,2006,28(1):76-84.
    [20]Bray J D,Rodriguez-Marek A.Characterization of forward-directivity ground motions in the near-fault region[J].Soil Dynamics and Earthquake Engineering,2004,24(5):815-828.
    [1]王亚勇.汶川地震建筑震害启示—三水准设防和抗震设计基本要求[J].建筑结构学报,2008,29(4):26-33.
    [2]胡聿贤等.地震工程的跨世纪发展[J].工程抗震,1,1999:3-9.
    [3]李宏男,肖诗云,霍林生.汶川地震震害调查与启示[J].建筑结构学报,2008,29(4):26-33.
    [4]文波,张俊发,刘云贺.多向地震作用下隔震配电建筑物的非线性动力反应分析[J].地震工程与工程振动,2006,26(5):158-163.
    [5]武田寿一.建筑物隔震、防震与控振[M].北京:中国建筑工业出版社,1997.
    [6]唐家祥,刘再华.建筑结构基础隔震[M].武汉:华中理工大学出版社,1993.
    [7]周福霖.工程结构减震控制[M].北京:地震出版社,1994.
    [8]刘文光,周福霖,庄学真等.铅芯夹层橡胶隔震垫基本力学性能研究[J].地震工程与工程振动,1999,19(1):93-99.
    [9]CECS126:2001.叠层橡胶垫隔震技术规程[S].北京:中国工程建设标准化协会,2001.
    [10]文波.隔震技术在变电建筑物中的应用研究[D].西安理工大学,2004.
    [11]杨迪雄,李刚,程耿东.隔震结构的研究概况和主要问题[J].力学进展,2003,33(3):302-312.
    [12]徐忠根,周福霖.我国首栋橡胶垫隔震住宅楼动力分析[J].世界地震工程,1996,12(1):38-42.
    [13]唐家祥,李黎,李英杰等.叠层橡胶基础隔震房屋结构设计与研究[J].建筑结构学报,1996,17(2):37-47.
    [14]文波,张俊发,韩永兴等.变电站配电楼的隔震设计研究[J].建筑结构,2005,35(11):25-28.
    [1]赵道揆,焦悦琴等.电气设备的震害及分析[J].世界地震工程,1986,2(3):22-32.
    [2]李国豪.工程结构抗震动力学[M].上海:上海科学技术出版社,1980.
    [3]陈寿梁,魏琏.抗震防灾对策[M].郑州:河南科学技术出版社,1986.
    [4]中国地震局工程力学研究所.建筑工程抗震性态设计通则[S].北京:中国计划出版社,2004.
    [5]建筑地震破坏等级划分标准[R].北京:中华人民共和国建设部,1990.
    [6]吕西林,王亚勇等.建筑结构抗震变形验算[J].建筑科学,2002,18(1):11-15.
    [7]钟益村,王文基,田家骅.钢筋混凝土结构房屋变形性能基容许变形指标[J].建筑结构,1984,15(4):36-39.
    [8]王选民,邹银生.复杂高层建筑结构地震作用的计算[J].建筑结构学报,1998,19(2):17-21.
    [9]A.K.Mittal,Ashok K.Jain.Effective.strength eccentricity concept for inelastic analysis of asymmetric structures[J].Earthquake Engineering and Structural Dynamics.1995,volume(64):69-84.
    [10]R.D.Bertero.Inelastic torsion for preliminary seismic design[J].Journal of Structural Engineering.1995,volume(121):1183-1189.
    [11]文波,牛荻涛,韩永兴等.陕西省供电系统在5.12汶川大地震中破坏及震害评估[J].建筑结构,2008,38(10):54-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700