用户名: 密码: 验证码:
加卸荷条件下岩体宏细观破坏机理的试验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国水利水电建设、资源开发和铁路交通的发展,遇到了大量的岩体高边坡、地下隧洞等工程开挖问题,其工程设计、施工、运营、稳定性等都直接依赖于岩体的强度、变形及破坏等特性。地下工程开挖是一个复杂的加、卸荷过程,而卸荷条件下岩体的力学特性、变形特征、本构方程等都与加荷条件下有很大的差异,因此,应用现行加荷岩体力学理论和方法研究地下工程的围岩破坏机理是不完全正确的。本文采用与隧洞真实开挖路径相一致的试验与模拟方法,从宏观和细观角度研究加、卸荷条件下岩体的力学特性、变形及破坏机理,探讨卸荷条件下的围岩稳定性分析方法和岩爆发生机理,为认识与把握开挖卸荷条件下的岩体失稳破裂机理提供依据。论文主要取得以下研究成果:
     (1)通过系统的不同应力路径下的完整岩样加、卸荷试验,研究了不同卸荷速度下岩石的变形、破坏特征及强度参数变化规律。结果表明:加荷阶段轴向应变起主导作用,卸荷阶段环向应变起主导作用;卸围压过程中,弹性模量与围压呈非线性关系降低,泊松比与围压呈非线性关系增加;在相同的初始高围压下,轴向应变的回弹值和环向应变的突跳值会随着卸荷速度的提高而增加,而在相同的初始低围压下却表现出相反的规律;岩样破坏特征分为:主剪切、共轭剪切、劈裂加剪切三种,并且与卸荷初始的围压值与卸荷速度密切相关;卸荷条件下岩样粘聚力c是降低的,内摩擦角φ是提高的;基于试验认识,采用统计分析方法,建立了一个能够反映卸荷特征的岩石本构模型,模型结果和试验曲线吻合较好。
     (2)通过对含天然节理岩样加、卸荷试验研究,揭示了加、卸荷条件下含天然节理岩样的变形、破坏特征及强度参数变化规律。结果表明:含天然节理岩样加、卸荷条件下的破坏形式分为两种,穿切节理面破坏和沿节理面破坏,穿切节理面破坏岩样的变形及强度参数特点与完整岩样的变形及强度参数特点相同;对加荷而言,夹角小于40°的岩样为穿切节理面破坏,夹角大于40°的岩样为沿节理面破坏;对卸荷而言,夹角小于35°的岩样为沿节理面破坏,夹角大于35°的岩样破坏规律不明显;在相同的加、卸荷条件下,沿节理面破坏岩样的强度明显低于穿切节理面破坏岩样的强度;卸荷破坏中,沿节理面破坏岩样卸荷开始后轴向应变出现加速发展趋势,弹性模量降低,泊松比增加。
     (3)基于大量室内试验,利用离散元程序PFC~(2D),通过FISH语言编程,实现了加、卸条件下完整岩样和含节理岩样破坏过程的细观数值模拟,研究了加、卸条件下岩样破坏过程中裂纹的产生、扩展与贯通过程。结果表明:完整岩样加、卸荷破坏过程分为4个阶段,分别为线弹性阶段、裂纹产生并扩展阶段、裂纹定向扩展阶段、裂纹沿剪切带贯通阶段;含节理岩样加、卸荷破坏过程分为3个阶段,分别为线弹性阶段、裂纹产生并沿节理方向扩展阶段、裂纹沿节理面贯通阶段;与完整岩样相比,在相同的应力路径下,含节理岩样破坏的计算时间缩短,峰值强度降低,峰值应变增大,说明节理岩体更容易发生破坏;与加荷相比,同种岩样的卸荷破坏计算时间更短,峰值强度更低,峰值应变减小,说明卸荷容易导致岩体发生突发性脆性破坏;
     (4)分别采用解析法和二分法改进的有限元强度折减法对考虑开挖卸荷的隧洞围岩稳定性进行分析,提出隧洞安全系数的概念。解析法基于卸荷岩石本构模型,推导了围岩软化区、硬化区、弹性区及衬砌内任一点的应力和位移解析公式;利用二分法改进的有限元强度折减法对不考虑开挖卸荷和考虑开挖卸荷的围岩稳定性分析计算,可以确定隧洞的破坏面和安全系数,评价隧洞的稳定性;不考虑开挖卸荷的安全系数比考虑开挖卸荷的安全系数要高,不考虑开挖卸荷的围岩稳定性分析在实际工程中是偏于不安全的。
     (5)采用卸荷三轴试验的方法来探讨岩爆问题,从定性与定量的角度对岩爆进行研究。基于卸荷试验应力-应变曲线,按能量守恒原理推导了两体系统的平衡方程,建立了两体系统动力失稳问题的折迭突变模型,给出了岩体动力失稳问题的一般方程,得到了系统失稳前后的变形突跳值和系统能量释放的一般表达式;探讨性地提出应力差强度比岩爆判据,结合有限元方法分析了不考虑开挖卸荷和考虑开挖卸荷的不同形状的隧洞岩爆级别,应力差强度比岩爆判据的岩爆级别比应力强度比岩爆判据的岩爆级别低一级,不考虑开挖卸荷的岩爆级别比考虑开挖卸荷的岩爆级别低一级,考虑开挖卸荷的有限元计算更能反映实际隧洞围岩的应力分布,更能揭示岩爆的烈度、深度及宽度。
With the deyelopment of water conservancy and hydroelectric engineering,resource development and rail traffic,a lot of excavation engineering problems exist,such as steep rock slopes and underground tunnels.The design,construction,management,and stability of excavation engineering directly depend on the rock's strength,deformation,and failure.Excavation of underground engineering is a complex loading and unloading process.And the mechanical characteristics,deformation behaviour and constitutive model are different under loading and unloading conditions.So,it is not correct to evaluate the failure mechanism of rock mass for the underground engineering by method of loading rock mass mechanics.In light of characteristics of underground engineering,the loading and unloading experiments were carried out in this thesis. Deformation and failure mechanism of rock under loading and unloading conditions were studied. The stability analysis method of surrounding rocks and the mechanism of rock burst under unloading condition were discussed.The main work can be summarized as follows:
     (1) The deformation features,mechanical parameters and failure characteristics at different unloading velocity were obtained based on the loading and unloading experimental results.It showed that the evolution of volumetric strain was determined by axial strain under loading condition.However,it was determined by lateral strain under unloading condition.Elastic modulus decreased and Poisson ratio increased during the unloading stage.The rebound value of axial strain increased,while the lateral strain jump decreased with the initial confining pressure increasing at the same unloading velocity.However,they decreased with unloading velocity increasing under the same initial high confining pressure.The failure modes of rock specimens can be classified into three types:primary shear failure,conjugate shear failure and splitting-shear failure,which are related with confining pressure and unloading velocity.The cohesion of rock decreased but the internal friction angle increased in the process of unloading.Based on the experimental results,a constitutive model was established by using statistical analysis method.The model agrees well with the experimental result.
     (2) The results of loading and unloading experiments showed the evolution of failure modes, deformation behaviors and mechanical parameters of natural jointed rock specimens.It showed that the failure modes of the specimens can be classified into two types,one is shearing-failure across the jointed plane,the other is sliding-failure along the jointed plane.Shearing-failure across the jointed plane occurred when the included angle is less than 40°,otherwise sliding-failure along the jointed plane occurred under loading condition.Sliding-failure along the jointed plane occurred when the included angle is less than 35°.otherwise the regulars of failure modes are not obvious under unloading condition.Peak strength and residual strength of shearing-failure along the jointed plane are obviously lower than those of shearing-failure across the jointed plane.Axial strains tended to develop accelerate and the strains at peak strength increased obviously in the beginning of unloading stage for the specimens with sliding-failure along the jointed plane.Elastic modulus decreased and Poisson ratio increased during the unloading stage.
     (3) Based on experimental results,the numerical simulations of failure process for intact specimens and jointed rock specimens under loading and unloading conditions by discrete element procedure PFC2D were performed.And the cracks generation,expansion and piercing process were studied. The failure processes of intact rock specimens under loading and unloading conditions can be divided into four phases,i.e.linear elastic phase,initiation and expansion phase of crack, expansion along the shear zone phase of crack,crack piercing along the shear zone phase.The failure processes of jointed specimens under loading and unloading conditions can be divided into three phases,i.e.linear elastic phase,initiation and expansion phase of cracks along joints and crack piercing along the joints phase.Compared with intact specimens,the length of time from loading to failure is shorter for jointed specimens in the same stress path,and peak strength is lower,peak strain increase.Those results show that jointed specimens is more easily failure than intact specimens. Compared with loading condition,the calculation of numerical experiments for unloading damage is shorter,the peak strength is lower,the peak strain decreases,partial crack shear zone caused by the tension cracks after rock specimens failure exists,which show that the.sudden brittle rock failure can be caused easily by unloading.
     (4) The concept of safety factor of tunnel is brought forward based on the strength reduction finite element method for elastic-plastic analysis individually.And the safety factor and the plastic zone are studied under the two conditions of considering and not considering the excavation unloading. Based on the constitutive model of unloading rock,elastic-plastic analysis was performed on the tunnel under the equal pressure.The formulas of stress and displacement of the above zones are established.Analysis on the stability of surrounding rocks were done by the strength reduction finite element method under loading and unloading conditions,which can determine the failure surface and the safety factor of tunnel,and evaluate the stability of tunnel.The safety factor not considering excavation unloading is bigger than that of considering excavation unloading.Stability analysis not considering unloading excavation is biased towards unsafe.
     (5) Rock burst was studied by using triaxial unloading tests from qualitative and quantitative aspects.The equilibrium equation was obtained based on the conservation of energy principle and the whole unloading stress-strain curve.A fold catastrophe model of rock dynamic destabilization is generalized by adopting a general form of material constitutive equation.The equations of deformation jump and energy release of the material are obtained.The stress difference-strength ratio method was put forward,and the rock burst intensity of the same size and different cave shape was calculated without considering the impact of excavation unloading and considering the impact of excavation unloading by the finite element method.Result shows that the grade of rock burst predicted by the stress difference-strength ratio method is lower than by stress-strength ratio method. The rock burst grade is lower one grade for not considering the excavation unloading.The finite element method simulation considering unloading excavation is better to reflect the actual stress distribution in the tunnel surrounding rock,and also reveals depth,width and intensity of rock burst exactly.
引文
[1]哈秋舲.岩石边坡工程与卸荷非线性岩石(体)力学[J].岩石力学与工程学报,1997,16(4):386-391.
    [2]哈秋舲,李建林,张永兴等.节理岩体卸荷非线性岩体力学[M].北京:中国建筑工业出版社,1998:40-41.
    [3]吴刚.工程岩体卸荷破坏机制研究的现状及展望[J].工程地质学报,2001,9(2):174-181.
    [4]黄润秋,黄达.卸荷条件下岩石变形特征及本构模型研究[J].地球科学进展,2008,23(5):441-447.
    [5]李晓静.深埋洞室劈裂破坏形成机理的试验和理论研究[D].济南:山东大学,2007.
    [6]王贤能,黄润秋.岩石卸荷破坏特征与岩爆效应[J].山地学报,1998,16(4):281-285.
    [7]An-Zeng Hua,Ming-Qing You.Rock failure due to energy release during unloading and application to underground rock burst control[J].Tunnelling and Underground Space Technology,2001,16:241-246.
    [8]Fei Honglu,Xu Xiaohe,Tang Chunan.Research on theory of catastrophe of rock burst in underground chamber[J].International Journal of Rock Mechanics and Mining Science,1996,33(2):611-619.
    [9]Casten.U,Fajklewicz.Z.Induced gravity anomalies and rock-burst risk in coal mines:a case history[J].International Journal of Rock Mechanics and Mining Science,1996,33(10):1-13.
    [10]JenkinS.F M,Williams.T J,Wideman.C J.Rock burst mechanism studies at the luckry Friday mine[J].International Journal of Rock Mechanics and Mining Science,1990,27(6):955-962.
    [11]Crouch S.L.A note on post-failure stress-strain path dependence in norite[J].International Journal of Rock Mechanics and Mining Science,1972,9(2):197-204.
    [12]Swanson S.R,Brown W.S.An observation of loading path independence of fracture in rock[J].International Journal of Rock Mechanics and Mining Science,1971,8(3):277-231.
    [13]陈旦熹,戴冠一.三向应力状态下大理岩压缩变形试验研究[J].岩土力学,1982,3(1):27-44.
    [14]吴玉山,李纪鼎.大理岩卸载力学特性研究[J].岩土力学,1984,5(1):30-36.
    [15]Shimamoto.T.Confining pressure reduction experiments[J].International Journal of Rock Mechanics and Mining Science,1985,22(4):227-236.
    [16]许东俊,耿乃光.岩体变形和破坏的各种应力路径[J].岩土力学,1986,7(2):17-25.
    [17]尹光志,李贺,鲜学福等.工程应力变化对岩石强度特性影响的试验研究[J]..岩土工程学报,1987,9(2):20-27.
    [18]李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报,1993,12(4):321-327.
    [19]尤明庆,华安增.岩石试样的三轴卸围压试验[J].岩石力学与工程学报,1998,17(1):24-29.
    [20]任建喜,葛修润,蒲毅彬等.岩石卸荷损伤演化机理CT实时分析初探[J].岩石力学与工程学报,2000,19(6):697-701
    [21]任建喜,罗英,刘文刚等.CT检测技术在岩石加卸载破坏机理研究中的应用[J].冰川冻土,2002,24(5):672-675
    [22]李建林,孟庆义.卸荷岩体的各向异性研究[J].岩石力学与工程学报,2001,20(3):338-341.
    [23]Lau Josep S.O,Chandler N.A.Innovative laboratory testing[J].International Journal of Rock Mechanics and Mining Science,2004,41(8):1427-1445.
    [24]S.D.Viktorov and A.N.Kochanov.Investigation into the processes of rock sample unloading after blast loading[J].Journal of Mining Sciences,2004,40(2):160-164.
    [25]高春玉,徐进,何鹏等.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(3):456-460.
    [26]陈兴周,李建林,朱岳明.单裂隙卸荷岩体力学特性分析[J].水力发电,2006,32(10):35-37.
    [27]陈景涛,冯夏庭.高地应力下岩石的真三轴试验[J].岩石力学与工程学报,2006,25(8):1537-1543.
    [28]徐光彬,金李.不同卸荷路径下节理岩体的松动机理研究[J].华北水利水电学院学报,2007,28(1):81-84.
    [29]李宏哲,夏才初,闫子舰等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报,2007,26(10):2104-2109.
    [30]汪斌,朱杰兵,邬爱清等.锦屏大理岩加、卸载应力路径下力学性质试验研究[J].岩石力学与工程学报,2008,27(10):2138-2145.
    [31]Gu Dazhao,G.R.Mostyn,M.R.Jafari.Making of the equivalent materials uesd for studying rock rippability[J].Journal of China University of Mining and Technology,1995,5(1):49-57.
    [32]吴刚.完整岩体卸荷破坏的模型试验研究[J].实验力学,1997,12(4):549-555.
    [33]吴刚.岩体在加、卸荷条件下破坏效应的对比分析[J].岩土力学,1997,18(2):13-16.
    [34]吴刚,孙钧.卸荷应力状态下裂隙岩体的变形和强度特性[J].岩石力学与工程学报,1998,17(6):615-621.
    [35]王正国.露天矿岩质边坡变形破坏模式综合研究[J].攀枝花科技与信息,1998,23(2):43-45.
    [36]李建林,王乐华.卸荷岩体的尺寸效应研究[J].岩石力学与工程学报,2003,22(12):2032-2036.
    [37]李建林,周济芳.三峡工程卸荷岩体声波测试及其参数研究[J].岩石力学与工程学报,2005,24(1):4642-4646.
    [38]李建林,王乐华.节理岩体卸荷非线性力学特性研究[J].岩石力学与工程学报,2007,26(10):1968-1975.
    [39]刘恩龙,沈珠江,陈铁林.卸荷应力路径下棒状结构体试件破损过程的试验研究[J].岩石力学与工程学报,2005,24(18):3386-3392.
    [40]刘恩龙,沈珠江.卸荷路径下棱柱状结构体试件破损过程试验研究[J].岩土力学,2006,27(8):1277-1282.
    [41]Yoshiyuki KOJIMA,Kazuhide YASHIRO.Deformation Behavior of Tunnel Lining due to Ground Surface Loading and Unloading above the Tunnel[J].QR of RTRI,2005,46(2):143-146_
    [42]王贻明,吴爱祥,张传信等.复杂条件下矿柱回采的相似材料模型试验[J].金属矿山,2006,12:10-12
    [43]GAO Feng,ZHOU Ke-ping,DONG Wei-jun,et al.Similar material simulation of time series induced caving of roof in continuous mining system for under backfill[J].Journal of Central South University of Technology,2008,15(3):256-260.
    [44]张强勇,李术才,郭小红等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,29(8):2126-2130.
    [45]刘洋,赵明阶.岩石损伤本构理论研究综述[J].山东交通学院学报,2005,13(4):40-44.
    [46]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002:112-144.
    [47]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002:180-219.
    [48]黄达.大型地下洞室开挖围岩卸荷变形机理及其稳定性研究[D].成都:成都理工大学,2007.
    [49]CAI M,H.Horii.A constitutive model of highly jointed rockmasses[J].Journal of Mechanics Material,1992,13:217-246.
    [50]CAI M,KAISER P K.Assessment of excavation damaged zone using a micromechanics model [J].Tunnelling and Underground Space Technology,2005,20:301-310.
    [51]周维垣,杨若琼,剡公瑞等.岩体边坡非连续非线性卸荷及流变分析[J].岩石力学与工程学报,1997,16(3):210-216
    [52]吴刚,孙钧.复杂应力状态下完整岩体卸荷破坏的损伤力学分析[J].河海大学学报,1997,25(3):44-49.
    [53]赵明阶,许锡宾,徐蓉.岩石在三轴加卸荷过程中的一种本构模型研究[J].岩石力学与工程学报,2002,21(10):626-631.
    [54]谢红强,何江达,徐进.岩石加卸载变形特性及力学参数试验研究[J].岩土工程学报,2003,25(3):336-338.
    [55]陈忠辉,林忠明,谢和平等.三维应力状态下岩石损伤破坏的卸荷效应[J].煤炭学报,2004,29(1):31-35.
    [56]G.Wu,L.Zhang.Studying unloading failure charactersitics of a rock mass using the distured state concept[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(3):1-6.
    [57]刘杰,李建林,黄宜胜等.卸荷岩体本构关系研究[J].地球与环境,2005,33(3):112-116.
    [58]周小平,哈秋舲,张永兴等.峰前围压卸荷条件下岩石的应力-应变全过程分析和变形局部化研究[J].岩石力学与工程学报,2005,24(18):3236-3244.
    [59]刘恩龙,沈珠江.岩土材料不同应力路径下脆性变化的二元介质模拟[J].岩土力学,2006,27(2):261-267
    [60]颜峰,姜福兴.卸荷条件下的裂隙岩体力学特性研究[J].金属:旷山,2008,6:36-40.
    [61]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979:253-260.
    [62]于学馥,郑颖人,刘怀恒等.地下工程围岩稳定性分析[M].北京:煤炭工业出版社,1984:32-35.
    [63]杨志法,尚彦军,刘英.关于岩土工程类比法的研究[J].工程地质学报,1997,5(4):299-305.
    [64]肖树芳,杨淑碧.岩体力学[M].北京:地质出版社,1987:91-118.
    [65]蒋明镜,沈珠江.关于考虑剪胀的线性软化柱形孔扩张问题[J].岩石力学与工程学报,1997,16(6):550-557
    [66]朱大勇,钱七虎,周早生等.复杂形状洞室围岩应力的弹性解析分析[J].岩石力学与工程学报,1998,17(4):402-404.
    [67]朱大勇,钱七虎,周早生等.杂形状洞室映射函数的新解法[J].岩石力学与工程学报,1999,18(3):279-282.
    [68]Guowei M,Iwasaki S,Miyamoto Y.Plastic limit analysis of circular plates with respect to unified yield criterion[J].Int.J.Solids & Structure,1998,(43):1137-1153
    [69]Ma G W,Iwasaki S,Miyamoto Y,Deto H.Dynamic plastic behavior of circular plats using the unified yield criterion[J].Int.J.Solids & Structure,1999,(36):3257-3275
    [70]Yu M H.Advances in strength theory of materials under complex stress state in the 20~(th)century[J].Applied Mechanics Reviews,2002,55(3):169-218
    [71]范文,俞茂宏,陈立伟.考虑材料剪胀及软化的有压隧洞弹塑性分析的解析解[J].工程力学,2004,21(5):16-24
    [72]任青文,邱颖.关于芬纳公式的修正[J].河海大学学报,2001,29(6):109-111
    [73]潘岳,王志强.应变非线性软化的圆形硐室围岩荷载-位移关系研究[J].岩土力学,2004,25(10):1515-1521
    [74]LIU J,FENGXT,DINGXL,et al.Stability assessment of the Three Gorges dam foundation,China,using physical and numerical modeling-part Ⅰ:physical model tests[J].International Journal of Rock Mechanics and Mining Sciences,2003,40(5):609-631.
    [75]陈陆望.物理模型试验技术研究及其在岩土工程中的应用[D].武汉:中国科学院武汉岩士力学研究所,2006.
    [76]白义如.相似材料模型位移场光学测量技术研究及应用[D].武汉:中国科学院武汉岩士力学研究所,2000.
    [77]赵震英.群洞开控围岩破坏过程试验[J].水利学报,1995,23(12):24-28.
    [78]朱维申.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1996:56-66.
    [79]李仲奎,卢达溶,中山元等.三维模型试验新技术及其在大型地下洞群研究[J].岩石力学与工程学报,2003,22(9):1430-1436.
    [80]任伟中,白世伟,孙桂风等.等厚覆盖岩层条件下地下采矿的地表及围岩变形破坏特征模型试验研究[J].岩石力学与工程学报,2005,24(21):3935-3941.
    [81]姜小兰,陈进,操建国等.锦屏一级水电站地下厂房洞室群地质力学模型试验分析[J].长江科学院院,2005,22(1):51-53.
    [82]孙红月,尚岳全,张春生.洞室围岩薄弱区三维数值模拟研究[J].岩石力学与工程学报,2004,23(13:2192-2196.
    [83]余卫平,耿克勤,汪小刚.某水电站地下厂房洞室群围岩稳定分析[J].岩土力学,2004,25(12):1955-1960.
    [84]Itasca Consulting Group Inc.FLAC3D User Manual(Version 3.1)[M].USA:Itasca Consulting Group Inc.,2008:4-46.
    [85]陈帅宇,周维垣,杨强等.三维快速拉格朗日法进行水布亚地下厂房的稳定分析[J].岩石力学与工程学报,2003,22(7):1047-1053.
    [86]王涛,陈晓玲,于利宏.地下洞室群围岩稳定的离散元计算[J].岩土力学,2005,26(12):1936-1940.
    [87]金峰,王光纶,贾伟伟.离散元-边界元动力耦合模型在地下结构动力分析中的应用[J].水利学报,2001,29(2):24-28.
    [88]Itasca Consulting Group Inc.PFC2D User Manual(Version 4.0)[M].USA:Itasca Consulting Group Inc.,2008:6-30.
    [89]Hart R,Cundall P A,Lemos J.Formulations of three-dimensional distinct element model.PART Ⅱ:Mechanical calculation of a system composed of many polyhedral blocks[J].International Journal of Rock Mechanics and Mining Sciences,1988,25(1):105-109.
    [90]邬爱清,丁秀丽,陈胜宏等.DDA方法在复杂地质条件下地下厂房围岩变形与破坏特征分析中的应用[J].岩石力学与工程学报,2006,25(1):1-8.
    [91]Shi Genhua.Manifold method[C].In Proc of The First Int Forum on DDA and Simulations of Discontinuous Media.Berkely,California,USA,1996:52-108.
    [92]Ming Lu.High- order manifold mehod with simplex integration[A].Fifth International Conference on Analysis of Discontinuous Deformation[C].Israel:Beer sheva,2002,75-83.
    [93]汪卫明,陈胜宏.岩体p型自适应块体单元法研究[J].岩石力学与工程学报,2005,24(4):559-564.
    [94]李顺才.卓士创,谢卫红.圆形巷道围岩应力场的自然边界元法[J].煤炭学报,2004,29(6):672-675.
    [95]黄岩松,周维垣.三维无单元法及其工程应用[J].水力发电学报,2005,24(6):14-19.
    [96]卢波,葛修润,孔祥礼.有限元法、无单元法及自然单元法之比较研究[J].岩石力学与工程学报,2005,24(5):780-786.
    [97]尚新生,余启华.用修正FOSM方法分析隧洞稳定的可靠性[J].岩石力学与工程学报,1997,16(4):43-50.
    [98]易念平,刘建章,马福荣等.可靠性分析在岩土工程中的应用[J].工程建设,2006,38(2):1-6.
    [99]刘志祥,李夕兵,张义平.基于混沌优化的高阶段充填体可靠性分析[J].岩土工程学报,2006,28(3):348-352.
    [100]王芝银,杨志法,王思敬.岩石力学位移反演分析回顾及进展[J].力学进展,1998,28(4):488-498.
    [101]武晓晖,宋宏伟.岩土工程反分析法的应用现状与发展[J].矿业工程,2003,1(5):29-33.
    [102]吴祥松,朱合华,叶飞.岩土工程参数反分析的可辨识性研究[J].地下空间与工程学报,2006,2(3):377-379.
    [103]Johansson E J W,Kuula H.Three-dimensional back analysis calculations of Viikinmaki underground sewage treatment plant in Helsinki[C].In Proc of 8th Int Con on Rock Tokyo,1995:597-600.
    [104]Dongill J.W,Lau J.C,Burt N.J.Toward A Theoretical Model for Progressive Failure and Soften in Rock[C].Concrete and Similar Materials.Mech.in Engng.,ASCE-EMD,1976:335-355.
    [105]凌建明,刘尧军.卸荷条件下地下洞室围岩稳定的损伤力学分析方法[J].石家庄铁道学院学报,1998,11(4):10-15.
    [106]Chiles J.P.Fractal and Geostatistical.Methods for Modeling A Fracture Network[J].Math.Geol,1988,20(6):631-654
    [107]谢和平,陈至达.分形几何与岩石断裂[J].力学学报,1998,20(3):264-271.
    [108]唐春安,徐小荷.岩石破裂过程失稳的尖点突变模型[J].岩石力学与工程学报,1990,9(2):100-107.
    [109]潘一山,章梦涛.洞室岩爆的尖角型突变模型[J].应用数学和力学,1994,15(10):893-100.
    [110]潘岳,王志强.岩体动力失稳的功、能增量—突变理论研究方法[J].岩石力学与工程学报,2004,23(9):1433-1438.
    [111]李文秀.岩石力学研究的模糊数学理论[J].力学进展,1991,21(3):342-349.
    [112]刘宁,于广明,魏金波.地下开挖对周围岩体应力环境的影响分析[J].:青岛理工大学学报,2006,27(1):28-31.
    [113]刘志祥,李夕兵.岩体声发射混沌动力学[J].中南大学学报,2004,35(4):671-675.
    [114]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000,28(4):138-139.
    [115]李造鼎,宋纳新.岩土动态开挖的灰色突变模型[J].岩石力学与工程学报,1997,16(3):252-257.
    [116]秦四清.初论岩体失稳过程中耗散结构的形成机制[J].岩石力学与工程学报,2000,19(3):265-269.
    [117]孙英学.工程岩体卸荷模型的研究与应用[J].岩土工程技术,2001,(4):241-243.
    [118]JIANG Y,YONEDA H,TANABASHI Y.Theoretical estimation of loosening pressure on tunnels in soft rocks[J].Tunnelling and Underground Space Technology,2001,16:99-105.
    [119]沈军辉,王兰生,王青海等.卸荷岩体的变形破裂特征[J].岩石力学与工程学报,2003,22(12):2028-2031.
    [120]王瑞红,李建林,刘杰等.考虑岩体开挖卸荷动态变化水电站坝肩高边坡三维稳定性分析[J].岩石力学与工程学报,2007,26(1):3515-3521.
    [121]CAI M,KAISER P K,TASAKA Y,et al.Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(5):833-847.
    [122]Varas A F,Alonso B E,Alejano L R.Study of bifurcation in the problem of unloading a circular excavation in a strain-softening material[J].Tunnelling and Underground Space Technology,2005,20(3):311-322.
    [123]Hongqiang Xie,Chuan He.Analysis of excavation stability in hard rock tunnel by brittle elastoplasticity damage FEM[J].Tunnelling and Underground Space Technology,2006,21:345-346.
    [124]张传庆,冯夏庭,周辉等.应力释放法在隧洞开挖模拟中若干问题的研究[J].岩土力学,2008,29(5):1174-1180
    [125]赵瑜,李晓红,卢义玉等.深埋隧道围岩应变软化模型参数的正交设计[J].重庆大学学报,2008,31(7):716-719.
    [126]董志宏,丁秀丽,卢波.大型地下洞室考虑开挖卸荷效应的位移反分析[J].岩土力学,2008,29(6):1562-1568.
    [127]何满潮,苗金丽,李德建等.深部花岗岩试样岩爆过程实验研究[J].岩石力学与工程学报,2007,26(5):865-876
    [128]许东俊,章光,李廷芥等.岩爆应力状态研究[J].岩石力学与工程学报,2000,19(2):169-172.
    [129]章梦涛.冲击矿压失稳理论与数值模拟计算[J].岩石力学与工程学报,1987,6(3):197-204.
    [130]潘一山,章梦涛,王来贵.地下洞室岩爆的相似材料模拟实验研究[J].岩土工程学报,1997,19(4):49-56.
    [131]缪协兴,安里千,翟明华等.岩(煤)壁中滑移裂纹扩展的冲击地压模型[J].中国矿业大学学报,1999,28(2):113-117.
    [132]祝方才.坚硬岩石的岩爆孕育过程研究[D].长沙:中南大学,2001.
    [133]陆家佑.岩爆预测的理论与实践[J].煤矿开采,1999,(3):26-29.
    [134]徐林生,王兰生.岩爆形成机理研究[J].重庆大学学报(自然科学版),2001,24(2):115-117.
    [135]潘一山,徐秉业.考虑损伤的圆形洞室岩爆分析[J].岩石力学与工程学报,1999,18(2):152-156.
    [136]蔡美峰,王金安,王双红.玲珑金矿深部开采岩体能量分析与岩爆综合预测[J].岩石力学与工程学报,2001,20(1):38-42.
    [137]刘建新,唐春安,朱万成.煤岩串联组合模型及冲击地压机理研究[J].岩土工程学报,2004,26(2):276-280.
    [138]潘岳,王志强.圆形硐室岩爆的折迭突变模型[J].岩土力学,2005,26(2):175-181.
    [139]Jaeger J C,Cook G W.Fundamentals of Rock Meckanics[M].London:Chapman and Hall Press,1979:466-470.
    [140]Vardoulakis I.Rock bursting as a surface instability phenomenon[J].International Journal of Rock Mechanics and Mining Science & Geomechanics,1984,21(3):137-144.
    [141]Linkov A M.Rock-burst and the instability of rock masses[J].International Journal of Rock Mechanics and Mining Science & Geomechanics,1996,33(7):727-732.
    [142](?)LEN(?)J,M(?)LEV A.Seismic moment tensor resolution on a local scale:simulated rockburst and mine-induced seismic events in the Kopanang Gold[J].Pure and Applied Geophysics,2006,163(8):1495-1513.
    [143]Bagde M N,PETOR(?)A V.Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(2):237-250.
    [144]Chang C,Haimson B C.True triaxial strength and deformability of the KTB deep hole amphibolite[J].Journal of Geophysial Research,2000,105(8):18999-19013..
    [145]Haimson B C,Chang C.True triaxial strength of KTB amphibolite under borehole wall conditions and its use to estimate the maximum horizontal in-situ stress[J].Journal of Geophysial Research,2002,107(B10):2257-2271.
    [146]Wang S Y,Lan K C,Au S K,et al.Analytical and numerical study on the pillar rockburst mechanism[J].Rock Mechanics and Rock Engineering,2006,39(5):445-467.
    [147]谷明成,何发亮,陈成宗.岭隧道岩爆的研究[J].岩石力学与工程学报,2002,21(9):1324-1329.
    [148]李永明,陈连城,魏胜利等.煤岩轴向应力恒定卸围压条件下力学参数的研究[J].矿业快报,2007,(4):23-25.
    [149]李宏哲,夏才初,王晓东等.含节理大理岩变形和强度特性的试验研究[J].岩石力学与工程学报,2008,27(10):2118-2123.
    [150]Hoek E.Rock Engineering[M].Canada:Evert Hoek Consulting Engineering Inc,2000:60-70.
    [151]Hoek E.Strength ofjointed rock masses[J].Geotechnique,1983,33(3):185-223.
    [152]Cundall P A,Strack O D L.A discrete numerical model for graunlar assemblies[J].Geotechnique,1979,29(1):47-65.
    [153]周健,池永,池毓蔚等.颗粒流方法及PFC2D程序[J].岩土力学,2000,21(3):271-274
    [154]朱焕春.PFC及其在矿山崩落开采研究中的应用[J].岩石力学与工程学报,2006,25(9):1927-1931.
    [155]张志刚,乔春生,李晓.单节理岩体强度试验研究[J].中国铁道科学,2007,28(4):34-39
    [156]Fakhimi A,Carvalho F,Ishida T,et al.Simulation of failure around a circular opening in rock[J].International Journal of Rock Mechanics and Mining Sciences,2002,39(4):507-515.
    [157]郑雨天.岩石力学时弹塑粘性理论基础[M].北京:煤炭工业出版社,1988:30-61.
    [158]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,2002:63-67.
    [159]赵尚毅,郑颖人,时卫民等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343-346.
    [160]赵尚毅,郑颖人,邓卫东.用有限元强度折减法进行节理岩质边坡稳定性分析[J].岩石力学与工程学报.2003,22(2):54-260.
    [161]Griffiths D V,Lane P A.Slope Stability analysis by finite elements[J].Geotechnique,1999,49(3):387-403.
    [162]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8.
    [163]Mateui T,San K C.Finite element slope stability analysis by shear strength reduction[J].Soils and Foundations,1992,32(1):59-70.
    [164]Dawson E M,Roth W H,Drecher A.Slope stability analysis by strength reduction[J].Geotechnique,1999,49(6):835-840.
    [165]徐干成,郑颖人.岩石工程中屈服准则应用的研究[J].岩土工程学报,1990,12(2):93-99.
    [166]程晔,赵明华,曹文贵.基桩下溶洞顶板稳定性评价的强度折减有限元法[J].岩土工程 学报,2005,27(1):38-41.
    [167]杨同,徐川,王宝学等.岩土三轴试验中的粘聚力与内摩擦角[J].中国矿业,2007,16(12):104-107.
    [168]王青,朱珍德,朱江棚等.长大引水隧洞岩爆的数值模拟及其应用[J].河海大学学报,2008,36(3):363-366.
    [169]张明,李仲奎.准脆性材料破裂过程失稳的尖点突变模型[J].岩石力学与工程学报,2006,25(6):1233-1239.
    [170]潘岳.岩石破坏过程的折迭突变模型[J].岩土工程学报,1999,21(3):299-303.
    [171]潘岳,刘英,顾善发.矿井断层冲击地压的折迭突变模型[J].岩石力学与工程学报,2001,20(1):43-48.
    [172]潘岳,王志强,吴敏应.岩体动力失稳终止点、能量释放量解析解与图解[J].岩土力学,2006,27(11):1915-1921.
    [173]林鹏,唐春安.二岩体系统破坏全过程的数值模拟和实验研究[J].地震,1999,19(4):413-418.
    [174]凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1987:13-17.
    [175]数学手册编写组.数学手册[M].北京:人民教育出版社,1979:88-89.
    [176]李东林,吴树仁,韩金良等.引水工程秦巴段隧洞地应力模拟及工程地质问题[J].地质与勘察,2008,44(5):81-86.
    [177]孟陆波,赵建壮.岩爆的洞室效应[J].中国地质灾害与防治学报,2008,19(2):59-62.
    [178]李宏,安其美,王海忠等.V型河谷区原地应力测量研究[J].岩石力学与工程学报,2006,25(增1):3069-3073.
    [179]严可煊.岩爆防治与对策研究[J].福建建筑,2005,28(2):60-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700