用户名: 密码: 验证码:
混凝土温湿型裂缝开裂过程细观数值模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土的温度和湿度问题贯穿其整个服役期间。一方面,当混凝土处于变温环境时,结构除了承受外荷载的作用,还在很大程度上受到温度应力的影响作用;另一方面,当混凝土的湿度高于外界环境的湿度时,其中蕴含的水份则会向外界环境扩散,造成水份的损失,进而产生干缩效应。混凝土结构的应力状态受温度和湿度变化的影响显著,而且往往导致威胁结构完整性和稳定性的裂缝。因此,混凝土中温湿型裂缝发生发展过程的研究有助于了解裂纹扩展的内在机理,为工程施工提供必要的指导作用。到目前为止,混凝土温湿扩散特性研究的数值模型大多是基于材料在宏观层次均匀性假设基础上发展起来的,通过将实验室尺度的试验结果作为输入参数进而对更大尺度宏观结构温湿扩散特性进行分析。这种简化在研究混凝土结构稳定性的数值分析时是非常必要的,但难以研究混凝土材料在温湿变化条件下的裂纹萌生、扩展及贯通的整个断裂过程。目前,国际上有关混凝土材料性能的研究更倾向于从细观角度出发,建立能反映混凝土内部状态随外界环境而变化的数值模型。尽管如此,混凝土温湿扩散特性分析的细观数值模型还相对欠缺,尤其是温湿型裂缝萌生、扩展和贯通整个过程的研究更是少见。因此,本文从混凝土的细观结构入手,应用统计分布方法、传热传质理论以及损伤力学原理建立了混凝土温度-应力-损伤耦合以及湿度-应力-损伤耦合作用数值模型,并通过RFPA分析系统实现。本文主要的研究内容如下:
     (1)从混凝土的细观结构出发,假设混凝土是由砂浆基质、骨料颗粒以及两者之间的粘结带组成的三相复合材料,针对其中的每一相材料均采用Weibull统计分布方法进行其细观非均匀特性的表征。在此基础上,结合现有的温湿扩散相关理论,建立了混凝土的温度、湿度和应力之间相互作用的理论模型,并对模型中各参数之间的联系进行了探讨和标定,为后续的研究工作提供参考依据。
     (2)探讨了细观单元的损伤与温湿扩散过程之间的相互影响关系。在此基础上,运用有限元和有限差分方法建立了能研究混凝土类非均匀材料渐进破坏过程的温度、湿度和应力之间相互作用的数值模型。为了加快计算的速度和效率,二维数值模型采用基于多核PC机的并行计算技术,而三维数值模型则采用基于MPI的局域网并行计算技术。
     (3)运用数值模型进行了混凝土在细观层次上的温度传导特性分析,并通过宏观平均热学性能与细观热学特性的对比分析,探讨了损伤对混凝土热传导性能的影响;通过对热膨胀性能存在差异的试样内温度裂缝扩展过程的分析,揭示了混凝土的非均匀特性对其力学性能的影响;此外,文中还对温度裂缝与其它形式裂缝开裂过程的不同,以及水工结构工程中的温度探漏方法的原理进行了探讨。
     (4)运用数值模型分析了湿度、温度、骨料等参数对混凝土湿度扩散特性的影响作用;通过研究细观非均匀性对砂浆和混凝土湿度扩散性能造成的影响作用,建立了宏细观之间的联系;研究了裂缝和裂缝深度对湿度扩散的影响作用,进而探讨了湿度裂缝的萌生、扩展和贯通全过程的湿度扩散特性;最后,通过湿度的变化引起混凝土表面裂纹萌生和扩展过程的数值模拟分析,探讨了混凝土结构在湿度多变环境中的失效机制。
     (5)在三维数值模型的基础上探讨了温度变化引起的结构表面网状裂缝的萌生、扩展和贯通过程,再现了表面龟裂现象,揭示了裂缝的插入过程以及裂纹最终达到饱和状态现象的内在机理;同时,借助数值模型研究了不同的约束条件以及不同的材料均匀程度对网状裂缝形成过程的影响。
The influences of temperature and humidity on the mechanical behavior of concrete structure exist throughout its period of service.On the one hand,the change of temperature results the structure not only subjected to external loads,but also bearing the effects of thermal stress;on the other hand,as the environmental humidity is lower than that of concrete, the concrete would loss its water and then have a drying effect.The deformations of concrete caused by change in temperature and humidity significantly affect its stress state,and often leading to cracks which would influence the integrity and stability of structures.Therefore, investigations on the initiation and propagation processes of thermo-hygro type of cracks are helpful to understand the failure mechanism of structure,as well as providing the necessary guidance for engineering.Up to now,the classic macroscopic heat and mass transfer models, which characterize the concrete as a continuum material at macroscopic level,use the tested data at laboratory scale as input parameters to analyze the thermo,hygro and mechanical response of structures with greater size.This kind of homogenization is very important to study the stability of concrete structures.However,it is difficult to use these models to study the complete initiation,propagation and coalescence of fracture processes in concrete structures as they subjected to external loading,temperature and humidity variation.At present,the international investigations on thermo-mechanical behavior of concrete structure are prefer to set up the numerical model on the bases of mesoscopic level,which are able to reflect the variation of internal states of material with the change of environment.However, there are a few numerical studies on heat and mass transfer characteristics of concrete at mesoscopic level,especially lack of investigations on the initiation,propagation and coalescence processes of thermo-hygro type of cracks.Accordingly,in this paper,a numerical model is proposed to investigate the thermo-mechannical-damage coupling processes during the initiation,propagation and coalescenece processes of thermo-hygro type of cracks.The work in the present paper can be summarized as follows:
     (1) In order to reflect the heterogeneity feature of concrete at mesoscopic level,the concrete is firstly assumed to be a three-phase composite composed of matrix,coarse aggregates and bonding interface between them,and additionally the thermo,hygro and mechanical parameters of each phase are assumed to be conform to the Weibull distribution law.And then the mathematical model of thermo,hygro,mechanical interaction in concrete is established on the basis of heat and mass transfer theory.Additionaly,the parameters among these equations are discussed and calibrated for the following studies.
     (2) The damage mechanics is used to establish the relationship between damage processes and thermo-hygro diffusion of meso-elements.And then the numerical model,which is able to reflect the heterogeneity feature and failure processes of material,is proposed on the bases of finite element method at spatial scale and finite difference method at time scale.In order to speed up the computing efficiency,the numerical model use the paralle computing method on multi-core PC for two-dimensional model,while the three-dimensional numerical model use the LAN- and MPI-based parallel computing technology.
     (3) The numerical model is used to analysis the feature of thermal transfer in concrete at the mesoscopic level.The discussion of different thermo-mechanical performances between macro and mesoscopic level of concrete indicate that the mesoscopic-based numerical model is more efficient than that of macroscopic-based model to analsy the thermal behavior of heterogeneous materials.The crack growth processes of sample with multi-phases but different in thermal expansion coefficient indicate that heterogeneity of material significantly influence the behavior of concrete.In addition,the different crack growth processes casued by thermal stress and other external loads,as well as the temperature indication method in seepage monitoring of hydraulic structures engineering are also discussed.
     (4) The numerical mode is used to analysis the influences of humidity,temperature and coarse aggregate on the humidity diffusion in concrete;Studies about the influence of heterogeneity degree of material on its effective diffusion coefficient is well to establish the relationship of mass diffusion between macro- and mesoscopic level;The effects of existing crack on mass diffusion has also been carried out,and then the analysis of crack depth,as well as cracks caused by change of humidity effect on humidity diffusion process are disscussed; Finally,the cracks initiation,propagation and coalsescence process in mortar overlays caused by hygro-stresses are numerically simulated to reveal the failure mechanism of concrete structure as it subjected to changes in humidity.
     (5) The initiation,propagation and coalescenes processes of surface cracks at three-dimention caused by variation of temperature are numerically simulated,which is helpful to understand the formation of honeycomb cracks of solids.The effect of restriction condition and heterogeneity feature of material on crack growth mechanism is also studied by the three-dimensional numerical model.
引文
[1]Jing L R,Feng X T.Numerical modeling for coupled thermo-hydro-mechanical and chemical processes(THMC) of geological media-International and Chinese experiences[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(10):1704-1715.
    [2]罗嗣海,钱七虎,李金轩,周文斌.高放废物深地质处置中的多场耦合与核素迁移[J].岩土力学,2005,26(Supp.1):264-270.
    [3]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999.
    [4]Venturelli,J & Leger.P.Seasonal temperature and stress distribution in concrete gravity dams.Department of Civil Engineering.Ecole Polytechnique,Montreal,Quebec.Reprot EPM/GCS 1992-08.
    [5]董福品,董哲仁,鲁一晖.坝后压力管道结构中钢筋的温度应力研究[J].水利水电技术.1997,11(28):64-67.
    [6]叶永,寇国祥,田斌,伏义淑.钢衬钢筋混凝土压力管道温度应力研究[J].三峡大学学报.2004,26(4):328-331.
    [7]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003.
    [8]刘光廷,黄达海.混凝士温湿耦合研究[J].建筑材料学报,2003,6(2):173-181.
    [9]刘光廷,黄达海.混凝土湿热传导与湿热扩散特性试验研究(Ⅰ)—试验成果及其分析[J].三峡大学学报(自然科学版),2002,24(2);97-106.
    [10]刘光廷,焦修刚.混凝土的热湿传导耦合分析[J].清华大学学报(自然科学版),2005,44(12):1653-1655.
    [11]李守义,陈尧隆,王长江.碾压混凝土坝渗流对温度应力的影响[J].西安理工大学学报,1996,12(1):41-46.
    [12]李荣涛,李锡夔.混凝土中化学-热-湿-力耦合过程的数值方法[J].力学学报,2006,38(4):471-479.
    [13]赵吉坤,张子明,祁顺彬.混凝土破裂过程细观损伤与渗流耦合模拟[J].河海大学学报(自然科学版),2008,36(1):71-75.
    [14]柴军瑞.混凝土坝渗流场与稳定温度场耦合分析的数学模型[J].水利发电学报,2000,68(1):27-35.
    [15]Feraille-Fresnet A,Tamagny P,ehrlacher A.Thermo-hydro-chemical modeling of a porous medium submitted to high temperature:An application to an axisymmetrical structure[J].Mathematical and Computer Modelling,2003,37(5-6):641-650.
    [16]Gawin D,Pesavento F,Schrefler B A.Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation[J].Computer Methods in Applied Mechanics and Engineering,2003,192(13-14):1731-1771.
    [17]Rutqvist J,Borgesson L,Chijmatsu M,et al.Thermo-hydro-mechanics of partially saturated geological media:govening equations and formulation of four finite element models[J].International Journal of Rock Mechanics and Mining Sciences,2001,38(1):105-127.
    [18]Bonaldi P,Faneili M,Ginsepptti G.Automatic observation and instantaneous control of dam safety[J],ISMES,1980.
    [19]Dormstadter J.Corres in Concrete[A].Case study at the Birecik Gravity Dam in south-east Anatolia[C].Dam Engineer,1999,10(1):55-65.
    [20]唐春安,朱万成.混凝土损伤与断裂——数值试验.北京:科学出版社,2003.
    [21]朱万成,赵启林,唐春安,卓家寿.混凝土断裂过程的力学模型与数值模拟.力学进展,2002,4:579-598.
    [22]Kaplan M.F.Crack propagation and the fracture of concrete[y].ACI Journal,1961,58(11):591-610
    [23]徐世琅.混凝土断裂韧度的概率统计分析.水利学报,1984,10:41-58.
    [24]徐世琅,赵国藩.混凝土断裂韧度的概率模型研究.土木工程学报,1988,21(4):9-23.
    [25]ISRM(Ouchterlong,F.Coordinator) Suggested methods for determining the fracture toughness of rock[J].International Joumal of Rock Mechanics and Mining Science and Geomechanical Abstract,1988,25:71-96
    [26]于骄中,谯常忻,周群力.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1988
    [27]Kesler C,Naus D J,Lott J L.Behavior of materials[C].In:Conf.The Structure of Concrete.London,Sept.,1965,Cement and Concrete Association,London,1968:176-189
    [28]Bazant Z P,Chen E P.Scaling of structural failure[y].Applied Mechanical Review,1997,50(10):593-627
    [29]Wittmann F H.Structure of Concrete with respect to crack formation.In:Fracture Mechanics of Conctete.Eds.By Wittmann,F.H.,1989
    [30]Mevile A M.Properties of Concrete(Third Edition).London:Pitman Publishing Limited,1981.
    [31]Hillerborg A,Modeer M,Peterson P E.Analysis of crack formation and crack growth in concrete by means of fracture mechanics and f'mite elements[J].Cement and Concrete Research,1976,6:773-782
    [32]Chiaia B,vervuurt A,Van Mier J G.Lattice model evaluation of progressive failure in disordered particle composites[y].Engineering Fracture Mechanics,1997,57(2/3):301-318
    [33]Schlangen E,Garboczi E J.Fracture simulations of concrete using lattice models:computational aspects[J].Engineering Fracture Mechanics,57(2/3):319-332
    [34]Cundall P A.A computer model for simulating progressive large scale movements in bloacky rock systems.Proc.Int.Syrup.Rock Fracture,ISRM,Nancy,France:2-8.
    [35]Zhong X X,Chang C S.Micromechanical modeling for behavior of cementitious granular materials[y].Journal of Engineering Mechanics,ASCE,1999,125(11):1280-1285
    [36]Mohamed A R,Hansen W.Micromechanical modeling of concrete response under static loading-Part Ⅰ:Model development and validation[J].ACI Materials Journal,1999,96(2):196-203
    [37]邢继波,俞良群,王永嘉.三维梁-颗粒模型与岩石材料细观力学行为模拟[J].岩石力学与工程学报,1999,16(6):627-630
    [38]黄克智,徐秉业.固体力学发展趋势[M].北京:北京理工大学出版社,1995,196-198
    [39]Durut(u|¨)rk Y S.The variation of thermal conductivity with pressure in rocks and the investigation of its effect in underground mines[D].Cumhuriyet University,Sivas,Turkey,1999.
    [40]Demirci A,G(o|¨)rg(u|¨)l(u|¨) K,Durut(u|¨)rk Y S.Thermal conductivity of rocks and its variation with uniaxial and triaxial stress[J].International Journal of Rock Mechanics & Mining Sciences,2004,41:1133-1138.
    [41]Skrzypek J,Ganczarski A.Modeling of material damage and failure of structures[J].Spinger-Verlag Berlin Heidelberg,1999.
    [42]Leitner A.The fire catastrophe in the Tauern Tunnel:experience and conclusions for the Austrian guidelines[J].Tunnelling and Underground Space Technology,2001,16(3):217-223.
    [43]Ellicott G.Solutions for explosive problems[J].Tunnels & Tunnelling International,2005,(1):44-45.
    [44]Kingery W D.Factors affecting thermal stress resistance of ceramic materials[J],Journal of the American Ceramic Society,38:3-17.
    [45]方泽鹏.混凝土火灾致伤的原因及损伤检测[J].土工基础,2002,16(2):75-77.
    [46]Griggs D T.Deformation of rocks under high confining pressure[J].J.Geol.,1936,44:541-577.
    [47]Schneider U.Concrete at high temperatures-a general review[J].Fire Safety Journal,1988,13:55-68.
    [48]袁勇.混凝土结构早期裂缝控制[M].北京:科学出版社,2004.
    [49]Faria R,Azenha M,Figueiras J A.Modelling of concrete at early ages:Application to an externally restrained slab[j].Cement & Concrete Composites,2006,28:572-585.
    [50]Radlinska A,Pease B,Weiss J.A preliminary numerical investigation on the influence of material variability in the early-age cracking behavior of restrained concrete[J].Materials and Structures,2007,40:375-386.
    [51]Ren(?) de Borst,van de Boogaard A H.Finite-element modeling of deformation and cracking in early-age concrete[J].Journal of Engineering Mechanics,1994,120(12):2519-2543.
    [52]Gawin D,Pesavento F,Schrefler B A.Modelling creep and shrinkage of concrete by means of effective stresses[J].Materials and Structures,2007,40:579-591.
    [53]Nilsson M.Thermal cracking of young concrete-Partial coefficients,restraint effects and influence of casting joints[D].Lule(?):Lue(?) University of Technology,2000.
    [54]Hattel J H,Thorborg J.A numerical model for predicting the thermomechanical conditions during hydration of early-age concrete[J].Applied Mathematical Modelling,2003,27:1-26.
    [55]ACI Committee 440.Guide for the design and construction of concrete reinforced with FRP bars.American Concrete Institute,Detroit,May 2001.
    [56]Challal O,Benmokrane B.Physical and mechanical performance of an innovative glass fiber reinforced plastic rod for concrete and grouted anchorages.Canad J Civil Eng,1993,20(2):254-268.
    [57]Masmoudi R,Zaidi A,G(?)rard P.Transverse thermal expansion of FRP bars embedded in concrete[J].Journal of Composites for construction,2005,9(5):377-387.
    [58]Abdalla H.Concrete cover requirements for FRP reinforced members in hot climates[J].Composite Structures,2006,73:61-69.
    [59]Galati N,Nanni A,Dharani L R,et al.Thermal effects on bond between FRP rebars and concrete[J].Composites:Part A,2006,37:1223-1230.
    [60]Aiello M A.Concrete cover failure in FRP reinforced beams under thermal loading[J].Journal of Composites for construction,1999,3(1):46-52.
    [61]Kim K H,Jeon S E,Kim J K,Yang S.An experimental study on thermal conductivity of concrete[J].Cem Concr Res 2003,33(3):363-371.
    [62]Arioz O.Effects of elevated temperatures on properties of concrete[J].Fire Saf J,2007,42(8):516-522.
    [63]Wong J M,Glasser F P,Imbabi M S.Evaluation of thermal conductivity in air permeable concrete for dynamic breathing wall construction[J].Cem Concr Compos,2007,29(9):647-655.
    [64]Demirboga R.Influence of mineral admixtures on thermal conductivity and compressive strength of mortar[J].Energy Build,2003,35(2):189-192.
    [65]Dcmirbo(?)a R,G(u|¨)l R.Thermal conductivity and compressive strength of expanded perlite aggregate concrete with mineral admixtures[J],Energy Build,2003,35(11):1155-1159.
    [66]吕培印,宋玉普.不同温度下混凝土抗拉疲劳性能试验研究[J].工程力学,2003,20(2):80-86.
    [67]Ba(?)ant ZP,Kaplan MF.Concrete at high temperatures-Material properties and mathematical models[M].Longman,Harlow,1996.
    [68]周虎鑫,陈荣生,何兆益.水泥砼路面温度翘曲应力分析[J].重庆交通学院学报,1995,14(4):28-351.
    [69]Gurung N.A laboratory study on the tensile response of unbound granular base road pavement model using geosynthetics[J].Geotextiles and Geomembranes,2003,21:59-68.
    [70]Huang Y H.Pavement Analysis and Design[M].Prentice-Hall,London,1993.
    [71]Nazarian S,Alvarado G.Impact of temperature gradient on modulus of asphaltic concrete layers[J].Journal of Materials in Civil Engineering,2006,18(4):492-499.
    [72]Masson J F,Collins P,Lowery M.Temperature control of hot-poured sealants during the sealing of pavement cracks[J].Construction and Building Materials,2005,19:423-429.
    [73]《Construction Technology Laboratories,Inc and Applied Pavement Technology,Inc》.The concrete pavement technology program(CPTP).U.S.Department of Transportation,Federal Highway Administration,2004.
    [74]严宗达,王洪礼.热应力[M].北京:高等教育出版社,1993.
    [75]李维特,黄保海,毕仲波.热应力理论分析及应用[M].北京:中国电力出版社,2004.
    [76]郑健龙,关宏信.温缩型反射裂缝的热粘弹性有限元分析[J].中国公路学报,2001,14(3):1-5.
    [77]王向东,徐道远,朱为玄.混凝土结构的损伤模型及损伤场分析[J].北方交通大学学报,2003,27(1):32-35.
    [78]王振波.混凝土温度损伤模型研究[D].南京:河海大学,2001.
    [79]Heueckel T,Peano A,Pellegrint R.A constitutive law for thermo-plastic behaviour of rocks:an analogy with clays[J],Surveys in Geophys,,1994,15(4):643-671.
    [80]王崇革,刘泉声,刘双跃,蒋宇静.单轴应力下岩石的热-粘弹塑性模型研究[J],岩石力学与工程学报,2002,21(增2):2341-2344.
    [81]刘泉声,许锡昌.温度作用下脆性岩石的损伤分析[J],岩石力学与工程学报,2000,19(4):408-411.
    [82]Gawin D.Modelling damage processes of concrete at high temperature with thermodynamics of multi-phase porous media[J].Journal of Theoretical and Applied Mechanics.2006,44(3):505-532.
    [83]Nowinski J L.Theory of Thermoelasticity with Applications[M].Sijthoff & Noordhoff International Publishers B.V.,1978.
    [84]Fredich J T & Wong T F.Micromechanics of thermally induced cracking in three crustal rocks[J],Journal of geophys research,1986,91:12743-12764.
    [85]Wang H F,Bonnet B P,Carlson S R,Kowallis B J,Heard H C.Thermal stress cracking in granite[J],Journal of geophys research,1989,94:1745-1758.
    [86]Darot M.et al.Permeability of thermally cracked granite[J],Geophys research letters,1992,19:869-872.
    [87]Geraud Y,Mazerolle F,Raynaued S.Comparison between connected and overall porosity of thermally stressed granites[J].Journal ofstruct geol,1992,14:981-990.
    [88]Holmoy K H.Blindheim O T.Fire resistance of sprayed concrete[C].Int.Symp.On Rock Support-Applied Solutions for Underground Structures,June 22-25,1997,Lillehammer,Norway,Proceedings,pp 514-527.
    [89]康健,赵明鹏,赵阳升.随机非均质弹性力学模型与岩石热破裂门槛值的数值试验研究[J],岩石力学与工程学报,2004,23(14):2331-2335.
    [90]康健.随机介质固热耦合数学模型与岩石热破裂数值实验[D],阜新:辽宁工程技术大学,2004.
    [91]麦家煊,李惠娟,裴文林.用断裂力学法研究混凝土表面温度裂缝问题[J].水力发电学报,2002,2:31-36.
    [92]曾四平,郭少华,陈绍名,付军.RCC-AC路面温度荷载型断裂的有限元分析[J].中南大学学报(自然科学版),2005,36(1):149-153.
    [93]Abdel-Fattah H,Hamoush S A.Variation of the fracture toughness of concrete with temperature[J].Construction and Building Materials,1997,11(2):105-108.
    [94]Kim K W,Hussein M E.Variation of fracture toughness of asphalt concrete under low temperature[J].Construction and Building Materials,1997,11(7-8):403-411.
    [95]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [96]陈剑文,杨春和,高小平,李晓红,姜德义.盐岩温度与应力耦合损伤研究[J].岩石力学与工程学报,2005,24(11):1986-1991.
    [97]李永池,张伟,黄承义,李晓杰.损伤材料的热塑性本构关系及对柱壳破裂问题的应用[J].中国科学技术大学学报,1999,29(3):260-268.
    [98]高小平,杨春和,吴文,刘江.温度效应对盐岩力学特性影响的试验研究[J].岩土力学,2005.26(11):1775-1778.
    [99]Nechnech W,Meftah F,Reynouard J M.An elasto-plastic damage model for plain concrete subjected to high temperatures[J].Engineering Structures,2002,24:597-611.
    [100]Gawin D.Modelling damage processes of concrete at high temperature with thermodynamics of multi-phase porous media[J].Journal of theoretical and applied mechanics,2006,44(3):505-532
    [101]Loland K E.Continuous damage model for load response estimation of concrete[J].Cement and Concrete Research,1980,10:392-492.
    [102]Mazars J.Application de le mecanique de lendonnagement an comportement non lineaire de structure[J],These de doctorat detat,Univ,Pris 6,ENSET,Mai.1984.
    [103]余天庆.混凝土的分段线性损伤模型[J].岩石、混凝土断裂与强度,1985,2:14-16.
    [104]钱济成,周建方.混凝土的两种损伤模型及应用[J].河海大学学报,1989,3:40-47.
    [105]G(o|¨)rg(u|¨)l(u|¨) K,Durut(u|¨)rk Y S,Demirei A,Poyraz B.Influences of uniaxial stress and moisture content on the thermal conductivity of rocks[J].International Journal of Rock Mechanics & Mining Siciences,2008,45(8):1439-1445.
    [106]富文权,韩素芳.混凝土工程裂缝分析与控制[M].北京:中国铁道出版社.2003.
    [107]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997.
    [108]潘家铮.水工建筑物的温度控制[M].北京:水力电力出版社,1990.
    [109]朱伯芳.朱伯芳院士文选[M].北京:中国电力出版社,1997.
    [110]Vetrop,J.A,Yeh,C.H.& Paul,W.J.Evaluation of cracks in a multiple arch dam[J].Dam Engineering,1990,1(1):5-12.
    [111]Femando A.Branco and Pedro A.Mendes.Thermal actions concrete bridge design[J].ASCE journal of structural engineering.1993,119(8):2313-2331.
    [112]Mitchell,L.J.Thermal expansion tests on aggregates,neat cement,and concrete proceedings.ASTM,1953,53:963-977.
    [113]张子明,宋智通,黄海燕.混凝土绝热温升和热传导方程的新理论[J].河海大学学报.2002,30(3):1-6.
    [114]林志海,覃维祖.用虚拟仪器技术检测混凝土的绝热温升[J].混凝土与水泥制.2002,2:9-11.
    [115]龚召熊,张锡祥,肖汉江,汪安华.水工混凝土的温控与防裂[M].北京:中国水利水电出版社,1999.
    [116]Demirbo(?)a R.Influence of mineral admixtures on thermal conductivity and compressive strength of mortar[J].Energy Build,2003,35(2):189-192.
    [117]Bouguerra A,Ledhem A,Barquin F,Dheilly R M,Queneudec M,Effect of microstructure on the mechanical and thermal properties of lightweight concrete prepared from clay,cement,and wood aggregate[J].Cem Concr Res,1998,28(8):1179-1190.
    [118]Morabito P.Measurement of the thermal properties of different concretes[M].High Temp High Press,1989,21(1):51-59.
    [119]Carson J K,Lovatt S J,Tanner D J,Cleland A C.An analysis of the influence of material structure on the effective thermal conductivity of theoretical porous materials using finite element simulations[J],lnt J Refrig,2003,26(8):873-880.
    [120]Torquato S.Bounds on the thermal conductivity of disordered heterogeneous media[C].Proc.ASME-JSME Thermal Engng Joint Conf,1897,2:359-367.
    [121]Ingersoll J G.Analytical determination of soil thermal conductivity and diffusivity[J].Sol Energy Eng Trans ASME,1988,110(4):306-312.
    [122]Bakker K.Using the finite element method to compute the influence of complex porosity and inclusion structures on the thermal and electrical conductivity[J].Int J Heat Mass Transfer,1997,40(15):3503-3511.
    [123]Carson J K,Lovatt S J,Tanner D J,Cleland A C.An analysis of the influence of material structure on the effective thermal conductivity of theoretical porous materials using finite element simulations[J].International Journal Refrigeration,2003,26:873-880.
    [124]Cambou B.Application of first order uncertainty analysis in the finite element method in linear elasticity[A].Proc.Second Int.Conf.on Applications of statistics and probability in Scil and Struct.Engng.London England,1971,117-122.
    [125]Vanmarcke E.Random Fields:Analysis and Synthesis[M].Cambridge:MIT Press,1983.
    [126]Der Kiureghian A.Finite element methods in structural safety studies[J].Structural Safety Studies(Ed.James,Yao T P),1986,40-52.
    [127]刘宁,刘光廷.大体积混凝土结构随机温度徐变应力计算方法研究[J].力学学报,1997,29(2):189-202.
    [128]刘宁,刘光廷.大体积混凝土结构温度场的随机有限元算法[J].清华大学学报(自然科学版),1996,36(1):41-47.
    [129]王同生.混凝土结构的随机温度应力[J].水利学报,1985,1:23-31.
    [130]刘宁,吕泰仁.随机有限元及其工程应用[J].力学进展,1995,25(1):114-126.
    [131]刘光廷,黄达海.混凝土湿热传导与湿热扩散特征性实验研究(Ⅰ)-试验设计原理[J].三峡大学学报(自然科学版),2002,24(1):12-18.
    [132]Selih J,Sousa A C M,Bremner T W.Moisture and heat flow in concrete walls exposed to fire[J].Journal of Engineering Mechanics,1994,120(10):2025-2043.
    [133]Huang C L D.Multiphase moisture transfer in porous media subjected to temperature gradient[J].International Journal of Heat and Mass Transfer,1979,22:1295-1309.
    [134]黄士元.混凝土的耐久性与混凝土结构物的安全性[J].混凝土与水泥制品,1996,1:429.
    [135]Christopher H,Hoff W D,Skeldon M.The sorptivity of brick:dependence on the initial water[J].Journal of Phys.D Appl.Phys,1983,16:1875-1880.
    [136]Paul U J.Plastic shrinkage cracking and evaporation[J].ACI.J,1998,95:365-375.
    [137]雷隽卿.平面粘弹性体热-湿应力有限元及其应用研究.北京:中国农业大学,2000.
    [138]付志一,华云龙.谷粒的热-湿应力分析.应用力学学报,2001,18(2):94-97.
    [139]Kham A A,Cook W D.Thermal properties and transient thermal analysis of structure members during hydration[J].ACI Material Journal,1998,95:293-302.
    [140]孙宁,杜小兵.智能湿度测量仪[J].武汉水利电力大学学报,1999,1:56-58.
    [141]Mikhailov M D.Exact solutions of temperature and moisture distribution in a porous half space with moving evaporation front[J].Int J Heat and Mass Transfer,1975,18:797-805.
    [142]Spoken G A,Plumb O A.Capillary pressure in softwood[M].Wood Sci Technol,1981,15:189-199.
    [143]Ilic M,Turner I W.Drying of a wet porous material[J].J Appl Math Modeling,1984,10:16-24.
    [144]王朝晖,施明恒.微波冷冻干燥过程的升华冷凝现象[J].中国科学(E辑),1998,28(3):225-231.
    [145]王建,戴会超,顾时冲.混凝土湿度运移数值计算综述[J].水力发电学报,2005,24(4):85-89.
    [146]Philip J R,de Vries D A.Moisture movement in porous material under temperature gradients.In:Trans Ami Geophys Union.1957,38(2):222-232.
    [147]黄达海,刘光廷.混凝土等温传湿过程的试验研究.水利学报,2002,6:96-100.
    [148]虞维平.含湿多孔介质的热湿迁移特性[D].北京:清华大学,1987.
    [149]Bazant Z P,Wittman F H.Creep and shrinkage in concrete structures[M].New York:Wiley,1980.
    [150]Ichikawa Y,England G L.Prediction of moisture migration and pore pressure build-up in concrete at high temperatures[J].Nuclear Engineering and Design,2004,228(1-3):245-259.
    [151]Luikov A V.Systems of differential equations of heat and mass transfer in capillary porous bodies (Review)[J].Int J of Heat and Mass Transfer,1985,18:1-14.
    [152]Kim J K,Lee C S.Moisture diffusion of concrete considering self-desiccation at early ages[J].C C R,1999,29:1921-1927.
    [153]王新友,蒋正武,高相东等.混凝土中水份迁移理论与模型研究评述[J].建筑材料学报,2002,5(1):66-71.
    [154]蒋正武.高性能混凝土中水份扩散与自收缩研究[D].上海:同济大学,2002.
    [155]蒋正武,王培铭.等温干燥条件下混凝土内部相对湿度的分布.武汉理工大学学报,2003,25(7):18-21.
    [156]Isgor O B,Razaqpur A G.Finite element modeling of coupled heat transfer,moisture transport and carbonation processes in concrete structures[J].Cement & Concrete Composites,2004,26:57-73.
    [157]Papadakis V,Vayenas CG,Fardis M N.Fundamental modeling and experimental investigation of concrete carbonation[J].ACI Mater J,1991,88(4):363-73.
    [158]Neville A.Properties of concrete[M].Fourth ed New York,USA:John Wiley and Sons lnc;1996.
    [159]Martin-P(?)rez B,Pantazopoulou S J,Thomas M D A.Numerical solution of mass transport equations in concrete structures[J].Computers and Structures,2001,79(13):1251-1264.
    [160]Puatatsananon W,Saouma V E.Nonlinear coupling of carbonation and chloride diffusion in concrete[J].Journal of Materials in Civil Engineering,2005,17(3):264-275.
    [161]Saetta A,Scotta R,Vitaliani R.Coupled environmental-mechanical damage model of RC structures.Journal of Engineering Mechanics,1999,125(8):930-940.
    [165]Saetta A V,Schrefler B A,Vitaliani R V.2-D model for carbonation and moisture/heat flow in porous materials[J].Cement and Concrete Research,1995,25(8):1703-1712.
    [163]Saetta A V,Scotta R,Vitaliani R.Mechanical behavior of concrete under physical-chemical attacks[J].Journal of Engineering Mechanics,1998,124(10):1100-1109.
    [164]Saetta A V,Vitaliani R V.Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures Part Ⅰ:Theoretical formulation[J].Cement and Concrete Research,2004,34:571-579.
    [165]Saetta A V.Deterioration of Reinforced Concrete Structures due to Chemical-Physical Phenomena:Model-Based[J].Journal of Materials in Civil Engineering,2005,17(3):313-319.
    [166]Arfvidsson J,Claesson J.Isothermal moisture flow in building materials:modelling,measurements and calculations based on Kirchhoff's potential[J].Building and Environment,2000,35(6):519-536.
    [167]Dantas L B,Orlande H R B,Cotta R M.An inverse problem of parameter estimation for heat and mass transfer in capillary porous media[J].International J of Heat and Mass Transfer,2003,46(9):1587-1598.
    [168]CEB-FIP Mode Code 1990-Design Code.Bulletin Information,1993,213-214.
    [169]Alvaredo A M,Wittmann F H.Shrinkage and crack of common concrete and high durability concrete[A].Highperformance concrete material properties and design[C].1997,44-53.
    [170]Chen D,Mahadevan S.Cracking Analysis of Plain Concrete under Coupled Heat Transfer and Moisture Transport Processes[J].Journal of Structural Engineering,2007,133(3):400-410.
    [171]Granger L,Torrenti J M,Acker P.Thoughts about drying shrinkage:Experimental results and quantification of structural drying creep[J].Mater.Struct.,1997,30(204):585-598.
    [172]McDonald D B,Roper H.Prediction of drying shrinkage of concrete from internal humidities and finite element techniques[J].Creep and shrinkage of concrete,Z.P.BaTant and I.Carol,eds.,E&FN Spon,London,1993.
    [173]Torrenti J M,Granger L,Diruy M,Genin P.Modeling concrete shrinkage under variable ambient conditions[J].ACI Mater.J.,1999,96(1):35-39.
    [174]梅明荣,任青文.混凝土结构的干缩应力研究综述.水利水电科技进展,2002,22(3):59-62.
    [175]马跃先,陈晓光.水工混凝土的湿度场及干缩应力研究.水力发电学报,2008,27(3):38-42.
    [176]Agnes N.Determination of E-modulus of young concrete with nondestructive methods[J].J of Material in Civil Engineering,1997,9(4):15-20.
    [177]林绍忠,苏海东.大体积混凝土结构仿真应力分析快速算法及应用.长江科学院院报,2003,20(6):19-22.
    [178]钟登华,练继亮,朱慧蓉.混凝土坝浇筑过程三维动态可视化仿真.天津大学学报,37(1):45-49.
    [179]周伟,常晓林,刘杏红,范五一,丁福珍.基于温度应力仿真分析的碾压混凝土重力坝诱导缝开裂研究.岩石力学与工程学报,2006,25(1):122-127.
    [180]朱伯芳.多层混凝土结构仿真应力分析的并层算法.水力发电学报,1994,3:21-30.
    [181]姜袁,黄达海.混凝土坝施工过程仿真分析若干问题探讨.武汉水利电力大学学报,2000,33(3):64-68.
    [182]Vandewalle L.Concrete creep and shrinkage at variable ambient conditions[A].Creep,shrinkage and durability mechanics of concrete and quasi-brittle materials[C].2001,721-727.
    [183]Man Y H,Lytton R L.Theoretical prediction of drying shrinkage of concrete[J].Journal of Materials in Civil Engineering,1995,7(4):204-207.
    [184]Shimomura T,Maekawa K.Analysis of the drying shrinkage behaviour of concrete using a micromechanical model based on the micropore structure of concrete[J].Magazine of Concrete Reseach,1997,49(181):303-322.
    [185]Granger L,Torrenti J M,Aker P.Thought about drying shrinkage:Experimental results and quantification of structural drying creep[J].Materials and Structures,1997,30(12):588-598.
    [186]Neubauer C M,Lennings H M,Garboczi E J.A three-phase model of the elastic and shrinkage properties of mortar[J].Advanced Cement Based Materials,1996,4(1):6-20.
    [187]Sadonki H,van Mier J G M.Meso-level analysis of moisture flow in cement composites using a lattice-type approack[J].Material and Structures,1997,30:579-587.
    [188]Harada S,Suzuki Y and Maekawa K.Coupling analysis of cement heat generation and diffusion for mass concrete.Computer Aided Amalysis and Design of Concrete Stgructure,edited by N.Bicanic and H.Mang.Proceedings of SCI-C 1990.Second International Conference held in Zell am Sea,Austria.785-796.
    [189]朱岳明,刘有志,曹为民,吴健.混凝土湿度和干缩变形及应力特性的细观模型分析.水利学报,2006,37(10):1163-1168.
    [190]刘有志,张国新,朱岳明.基于细观损伤模型的混凝土湿度及干缩特性研究.工程力学,2008,25(7):196-200.
    [191]郭少华.混凝土破坏理论研究进展.力学进展,1993,2:520-527.
    [192]Chatterji S.Aspects of the freezing process in a porous material-water system Part 1.Freezing and the properties of water and ice.Cement.and Concrete Research,1999,29:627-630.
    [194]杨卫.细观力学和细观损伤力学.力学进展,1992,1:1-9.
    [195]白洁,夏蒙棼,柯莩久,白以龙.损伤统计演化方程的性质和数值模拟.力学学报,1999,1:38-48.
    [196]冯西桥,余寿文.准脆性材料细观损伤力学.北京:高等教育出版社,2002.
    [197]Ashraf RM and Will H.Micromechanical Modeling of Concrete Response under Static Loading-Part Ⅰ:Model Development and Validation.ACI Materials Journal.1999,96(2):196-203.
    [198]Charbel F,Luis C.A general approach to nonlinear FE computations shared-memory mutiprocessors[J].Comp.Methods Appl.Mech.Engng.,1989,72:153-171.
    [199]Wilson E L.Linear and nonlinear finite element analysis on multiprocessor computer systems[J].Communications Appl.Numer.Methods,1988,4:425-434.
    [200]张汝清.并行计算结构力学[M].重庆:重庆大学出版社,1993.
    [201]金先龙,李渊印.结构力学并行计算方法及应用[M].北京:国防工业出版社,2008.
    [202]陈国良.并行算法与实践[M].北京:高等教育出版社,2003.
    [203]吴礼发,谢立,孙钟秀.基于ATM局域网的并行计算中的通信问题的研究[J].小型微型计算机系统,1997,18(6):1-7.
    [204]卢小勇,方立.局域网上并行计算方法研究[J].计算技术与自动化,2001,20(3):41-44.
    [205]彭旭东,何丕廉.基于局域网的并行计算负载平衡[J].天津理工大学学报,2006,22(3):55-58.
    [206]姜任秋.热传导、质扩散与动量传递中的瞬态冲击效应[M],北京:科学出版社,1997.
    [207]Robert C,Jaroslava D,Rovnaikova P.The effects of thermal load and frost cycles on the water transport in two high-performance concretes.Cement and Concrete Research,2001,31(1):129-140.
    [208][美]柯斯乐 EL.扩散:流体系统中的传质[M].王宇新,姜忠义译,北京:化学工业出版社,2002.
    [209]秦庆华,杨庆生.非均匀材料多场耦合行为的宏细观理论[M].北京:高等教育出版社,2006.
    [210]Levine I N.Physical chemistry.Fifth Edition,McGraw Hill,New York,2002.
    [211]Bazant Z P,Wu S T.Creep and shrinkage law for concrete at variable humidity[J].Journal of the engineering mechanics division,1974,100:323-346.
    [212]Bazant Z P,Panula L.Practical prediction of time-dependent deformations of concrete[J].Part Ⅰ:Shrinkage,Part2:Creep,Materials and Constructions,1978,11(65):307-328.
    [213]方肇洪.测定多孔介质湿迁移特性的积分效应法[D].北京:清华大学,1987.
    [214]Bazant Z,Najjar L J.Nonlinear water diffusion in nonsaturated concrete.Mater Struct,1972,5(25):3-20.
    [215]Xi Y,Bazant Z P,Molina L,Jennings H M.Moisture diffusion in cementitious materials:Adsorption isotherm.Adv.Cem.Based Mater,1994,1,248-257.
    [216]Ababneh A,Benboudjema F,Xi Y P.Chloride penetration in nonsaturated concrete[J].Journal of Materials in Civil Engineering,2003,15(2):183-191.
    [217]Kodikara J,Chakrabarti S.Modeling of moisture loss in cementitiously stabilized pavement materials[J].Int.J.Geomech,2005,5(4):295-303.
    [218]Gul R,Uysal H,Demirbog R.Investigation of the thermal conductivity of lightweight concrete made with Kocapmar's pumice aggregate[J].Advances in Civil Engineering:Ⅲ.Technical Congress,METU,Ankara,Turkey,Vol.2 1997:553-562.
    [219]Short A,Kinniburg W.Lightweight concrete[M].Great Britain,Galliard,Great Yormouth,1978.
    [220]Steiger R W,Hurd M K.Lightweight insulating concrete for floors and roof decks[J].Constr.1978,23(7):411-422.
    [221]Cesar Augusto Constantino Obon,Investigation of the maturity concept as a new quality control/quality assurance measure for concrete[D].The University of Texas at Austin,1984.
    [222]Ashworth T,Ashworth E.Insulation Materials.Testing and applications,in:R.S.Graves,D.C.Wysocki,ASTM pecial Technical Publication,vol.116,ASTM,Philadelphia,PA,1991:415-429.
    [223]FIP State of Art Report.Principles of thermal insulation with respect to lightweight concrete,FIP/8/1,C and CA,Slought,England,1978.
    [224]Schnider U.Behavior of concrete at high temperatures heft 337,Deutscher Aussehuss fur stahlbeton,Berlin,1982.
    [225]Morabito P.Measurement of thermal properties of different concrete[J].High Temp.,High Press,1989,21(1):51-59.
    [226]dos Santos W N.Effect of moisture and porosity on the thermal properties of conventional refractory concrete[J].Journal of the European Ceramic Society,2003,23:745-755.
    [227]Poon C S,Shui Z H,Lam L.Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures[J].Cement and Concrete Research,2004,34:2215-2222.
    [228]南建林,过镇海,时旭东.混凝土的温度—应力耦合本构关系[J].清华大学学报(自然科学版),1997,37(6):87-90.
    [229]Chang Y F,Chen Y H,Sheu M S,Yao G C.Residual stress-strain relationship for concrete after exposure to high temperatures[J].Cement and Concrete Research,2006,36(10):1999-2005.
    [230]Pearce C J,Nielsen C V,Bicanic N.Gradient enhanced thermo-mechanical damage model for concrete at high temperatures including transient thermal creep[J].Int.J.Numer.Anal.Meth.Geomech.,2004,28:715-735.
    [231]Tenchev R,Purnell P.An application of a damage constitutive model to concrete at high temperature and prediction of spalling[J].International Journal of Solids and Structures,2005,42:6550-6565.
    [232]Jonasson J E.Modelling of temperature,moisture and stresses in young concrete[J].PhD thesis,Lulea University of Technology,Lulea,1994.
    [233]Incropera F P,DeWitt D P.Introduction to heat transfer[M].New York:John Wiley & Sons,Inc,2001.
    [234]Silveira A.The influence of thermal solicitations on the behaviour of reinforced concrete bridges[D].PhD thesis,LNEC,Lisbon,1996.
    [235]Branco F,Mendes P,Mirambell E.Heat of hydration effects in concrete structures[J].ACI Mater J,1992,89(2):139-45.
    [236]Christensen R M.Mechanics of composite materialsfM].New York:Wiley,1979.
    [237]Martys N S,Torquato S,Bentz D P.Universal scaling of fluid permeability for sphere packing[J].Phys.Rev.E,1994,50(1):403-408.
    [238]Xi Y,Ba(?)ant Z P,Molina L,Jennings H.Moisture diffusion in cementitious materials:Moisture capacity and diffusivity[J].J.Ad.Cementitious Mater,1994,1,258-266.
    [239]Saetta A V,Schrefler B A,Vitaliani R V.The carbonation of concrete and the mechanism of moisture,heat and carbon dioxide flow through porous materials[J].Cement and Concrete Research,1993,23:761-772.
    [240]Mart(?)n-P(?)rez B.Service Life Modeling of R.C.Highway Structures Exposed to Chlorides[D].University of Toronto,Canada,1999.168pp.
    [241]晁鹏飞,郑建岚,王雪芳.高性能混凝土水份扩散数值解法[J].福州大学学报(自然科学版),2007,35(6):997-309.
    [242]Wong S F,Wee T H,Lee S L.Study of water movement in concrete[J].Magazine of Concrete Research,2001,53(6):205-220.
    [243]Yuan Y,Wan Z L.Prediction of cracking within early-age concrete due to thermal,drying shrinkage and creep behavior[J].Cement and Concrete Research,2002,32:1053-1059.
    [244]Akita H,Fujiwara T,Ozaka Y.A practical procedure for the analysis of moisture transfer within concrete due to drying[J].Magazine of Concrete Research,1997,49(179):129-137.
    [245]Tang L,Nilsson L O.A numerical method for prediction of chloride penetration into concrete structures.In H.Jennings,J.Kropp,and K.Scrivener(eds.),The modeling of Microstructure and Its Potential for Studying transport Properties and Durability(pp.539-552).The Netherlands:Kluwer Academic Publishers.
    [246]焦修刚,刘光廷,李鹏辉,黄达海.混凝土温湿度耦合方程组的数值解法[J].三峡大学学报(自然科学版),2005,27(4):329-332.
    [247]Ababneh A N.The coupled effect of moisture diffusion chloride penetration and freezing-thawing on concrete durability[D].Denver:University of Colorado,2002.
    [248]马怀发,陈厚群,黎保琨.混凝土细观力学研究进展及评述[J].中国水利水电科学研究院学报,2004,2(2):124-130.
    [249]高政国,刘光廷.二维混凝土随机骨料模型研究[J].清华大学学报(自然科学版),2003,43(5):710-714.
    [250]党发宁,韩文涛,郑娅娜,梁昕宇,陈厚群.混凝土破裂过程的三维数值模型[J].计算力学学报,2007,24(6):829-833.
    [251]van Mier J G M.Fracture Processes of Concrete-Assessment of Material Parameters for Fracture Models[M].CRC Press,1997.
    [252]Horsch T,Wittmann F H.Three-dimensional numerical concrete applied to investigate effective properties of composite materials[A].Proceeding of the fourth international conference on fracture mechanics of concrete and concrete structures[C].Cachan,France,2001.57-64.
    [253]Schlangen E,van Mier J G M.Lattice model for numerical simulation of concrete fracture[A].International conference on dam fracture[C].Denver,Colorado,USA,1991.513-527.
    [254]Schlangen E,Garbocai E J.Fracture simulations of concrete using lattice models:computational aspects[J].Engng.Frac.Mech.,1997,57(2/3):319-322.
    [255]Torquato S.Random heterogeneous materials,microstmcture and macroscopic properties.Springer-Verlag,New York,2002.
    [256]Muhammad S.Heterogeneous materials.Springer-Verlag,New York,2003.
    [257]钟红,林皋,李建波,胡志强.高拱坝地震损伤破坏的数值模拟[J].水利学报,2008,39(7):848-853.
    [258]Surma F,Geraud Y.Porosity and thermal conductivity of the Soultz-sous-For(?)ts granite.Pure appl.Geophys.,2003,160:1125-1136.
    [259]Memat-Masser S,Hori M.Micromechanics:overall properties of heterogeneous materials.North-Holland,Amsterdam,1993.
    [260]Mura T.Micromechanics of defeats in solids,Martinus Nijhoff,Dordrecht,1957.
    [261]杨庆生.复合材料细观结构力学与设计[M].北京:中国铁道出版社,2000.
    [262]杨卫.宏细观断裂力学[M].北京:国防工业出版社,1995.
    [263]Weibull W.The phenomenon of rupture in solids[J].Ingeniors Vetenskaps Academien,1939,Handlingar 151 and.153:1-55.
    [264]Mihashi H,Izumi M.A stochastic theory of concrete fracture[J].Cement and Concrete Research,1977,7:411-422.
    [265]Burr N J,Dougill J W.Progressive failure in a model heterogeneous medium[J].Journal of Engineering Mechanics,ASCE,1977,103(3):365-376.
    [266]Nicholson D W,Ni P.Extreme value probabilistic theory for mixed mode brittle fracture[J].Engineering Fracture Mechanics,1997,58(1):121-132.
    [267]Van Mier J G M,Van Vliet M R A,Wang T K.Fracture mechanisms in particle composites:statistical aspects in lattice type analysis[J].Mechanics of Materials,2002,34(11):705-724.
    [268]尹双增.断裂损伤理论及应用[M].北京:清华大学出版社,1992.
    [269]尹双增.断裂判据与在混凝土工程中的应用[M].北京:科学出版社,1996.
    [270]杜成斌,孙立国.任意形状混凝土骨料的数值模拟及其应用[J].水利学报,2006,37(6):663-667.
    [271]马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟[J].水利学报,2004,10:27-35.
    [272]于庆磊.基于数字图像的岩石类材料破裂过程分析方法研究[D].沈阳:东北大学,2007.
    [273]钟红.高拱坝地震损伤开裂的大型数值模拟[D].大连:大连理工大学,2008.
    [274]唐欣薇.基于宏细观力学的混凝土破坏行为研究[D].北京:清华大学,2008.
    [275]Reddy J N.An introduction to the finite element method,2nd ed.,McGraw-Hill International Editions,New York,1993.
    [276]Bathe K J.Finite element procedures in engineering analysis,Prentice-Hall,Englewood Cliffs,New Jersey,1982.
    [277]Lorrain M,Loland K E.Damage theory applied to Concrete[M].Fracture-mechanics of concrete,FH Wittmann(ed.).1983.
    [278]钱济成,周建方.混凝土的两种损伤模型及其应用[J].河海大学学报,1989,3:40-47.
    [279]Berthelot J M,Robert J L.Damage evolution of concrete test specimens related to failure analysis[J].Journal of Engineering Mechanics,ASCE,116(3):587-604.
    [280]李杰.混凝土随机损伤力学的初步研究[J].同济大学学报(自然科学版),2004,32(10):1270-1277.
    [281]葛修润,任建喜,蒲毅彬,马巍,孙红.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004.
    [282]曲蒙.早龄期混凝土损伤断裂的数值分析[D].杭州:浙江大学,2006.
    [283]唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].北京:科学出版社,2003.
    [284]林皋,李建波,赵娟,梁正召.单轴拉压状态下混凝土破坏的细观数值演化分析[J].建筑科学与工程学报,2007,24(1):1-6.
    [285]马怀发,陈厚群,周永发,黎保琨.大坝混凝土试件三维细观力学并行计算研究[J].工程力学,2007,24(10):74-79.
    [286]Mehta P K,Monteiro P J M.Concrete—structure,properties and materials(Second edition)[M],Prentice Hall,Englewood Cliffs,New Jersey,1993,pp.69-70.
    [287]徐世良.数学物理方法解题分析[M].南京:江苏科学技术出版社,1983.
    [289]马怀发,陈厚群,吴建平,黎保琨.大坝混凝土三维细观力学数值模型研究[J].计算力学学报,2008,25(2):241-247.
    [290]Parkus H.Thermoclasticity[M],Springer-Verlag,1976.
    [291]Wang X S,Wu B S,Wang Q Y.Online SEM investigation of microcrack characteristics of concretes at various temperatures.Cement and Concrete Research.2005,35:1385-1390.
    [292]Zeng D,Katsube N,Soboyejo W.Thermo-mechanical response of heterogeneous materials with randomly distributed transforming particles[J].Computational Mechanics,1999,23:457-465.
    [293]Rossettos J N,Shen X.On the axial and interracial shear stresses due to thermal mismatch in hybrid composite sheets[J].Composites Science and Technology,1995,54:417-422.
    [294]Folias E S,Hohn M,Nicholas T.Predicting crack initiation in composite material systems due to a thermal expansion mismatch[J].International Journal of Fracture,1998,93:335-349.
    [295]I(?)igo A C,Vicente-Tavera S.Surface-inside(10cm) thermal gradients in granitic rocks:effect of environmental conditions.Building and Environment.2002,37:101-108.
    [296]Zhou Y C,Hashida T.Coupled effects of temperature gradient and oxidation on thermal stress in thermal barrier coating system.International Journal of Solids and Structures.2001,38:4235-4264.
    [297]Meguid S A,Hu G D.A new finite element for treating plane thermomechanical heterogeneous solids.International Journal for Numerical Methods in Engineering.1999,44:567-585.
    [298]M(u|¨)ller W H.Cracks around heterogeneities in solids:a symbiotic or parasitic relationship?Computational Materials Science.1994,3:186-198.
    [299]Neumann S,Herrmann K P,M(u|¨)ller W H.Stress/strain computation in heterogeneous bodies with discrete Fourier transforms-different approaches.Computational Materials science.2002,25:151-158.
    [300]You L H,You X Y.A unified numerical approach for thermal analysis of transversely isotropic fiber-reinforced composites containing inhomogeneous interphase.Composites:Part A:applied science and manufacturing.2005,36:728-738.
    [301]Lien H P,Wittmann F H.Mass transfer in inhomogeneous porous media under thermal gradients.Nuclear Engineering and Design.1988,179:179-189.
    [302]唐雪松,蒋持平,郑健龙.考虑温度效应的弹性损伤一般理论[J].应用力学学报.2002,19(1):1-4.
    [303]许锡昌.花岗岩热损伤特性研究[J].岩土力学.2003,24(Supp.):188-191.
    [304]玄东兴,水中和,曹蓓蓓.水泥基材料组分热变形差异性研究[J].武汉理工大学学报,2007,29(1):30-32.
    [305]Meyers S L.Thermal expansion characteristics of hardened cement paste and concrete[J].Proc Highway res Board,1950,30:193-200.
    [306]Cruz C R,Gillen M.Thermal expansion of Portland cement paste,mortar and concrete at high temperatures[J].Fire Mater 1950;4(2):66-70.
    [307]Goltermann P.Mechanical predictions on concrete deterioration.Part 2:Classification of crack patterns.ACI Mater J 1995;92(1):58-63.
    [308]Zhou Y C,Song S G,Duan Z P,et al.Thermal damage and fracture of particular- reinforced metal matrix composites induced by laser beam[J].Journal of engineering materials and technology,2001,123(3):251-260.
    [309]Lu T C,Yang J,Suo Z,et ai.Matrix cracking in intermetallic composites caused by thermal expansion mismatch.Acta Metallurgica et Materialia,1991,39.1883.
    [310]全国第三届大坝安全学术讨论会论文[C],南京河海大学出版社,1996.
    [311]董海洲.堤坝渗漏热源法及示踪理论研究[D].南京:河海大学,2004.
    [312]董海洲,陈建生.利用温度示踪方法探测基坑渗漏[J].岩石力学与工程学报,2004,23(12):2085-2090.
    [313]肖才忠,潘文昌.由温度场研究坝基渗流初探[J].人民长江,1999,30(5):21-23.
    [314]王志远,王占锐,王燕.一项渗流监测新技术—排水孔测温法[J].大坝观测与土工测试,1997,21(4):5-7.
    [315]Hart R D,John C M ST.Formulation of a fully-coupled thermal-mechanical-fluid model for non-linear geologic systems[J].Int J Rock Mech Min Sic.&Geomech.Abstr.,1986,23(3):213-224.
    [316]Guvanasen V,Chan T.A three-dimensional numerical model for thermo-hydro- mechanical deformation with hysteresis in a fractured rock mass[J].Int.J.Rock.Mech.Sic.,2000,37(1/2):89-106.
    [317]鼎言.略论土质堤坝渗漏的主要成因及其相应对策[J].浙江水利水电专科学校学报,2002,14.
    [318]Tang C A,Tham L G,Lee P K K,et al.Coupled analysis of flow,stress and damage(FSD) in rock failure.International Journal of Rock Mechanics & Mining Sciences,2002,39:477-489.
    [319]Tang C A.Numerical simulation on progressive failure leading to collapse and associated seismicity.International Journal of Rock Mechanics and Mining Science,1997,34(2):249-261.
    [320]Ishida T,Suemune K,Fukui H,Kinoshita N.Effect of thermal stress in fracturing by expansive cement agent in comparison with a borehole pressurizing test and a heater test[C].The 40th U.S.Symposium on Rock Mechanics:Rock Mechanics for Energy,Mineral and Infrastructure Development in the Northern Regions,Alaska,June 25-29,2005.
    [321]Bruno M S.Pore pressure influence on tensile fracture propagation in sedimentary rock[J].Int.J.Rock.Mech.Sci.& geomech.Abstr.,1991,28(4):261-273.
    [322]Ishida T,Chen Q,Mizuta Y.Effect of injected water on hydraulic fracturing deduced from acoustic emission monitoring[J].Pure and Applied Geophysics,1997,150:627-646.
    [323]Doe T W,Boyce G.Orientation of hydraulic fractures in salt under hydrostatic and non-hydrostatic stress[J].Int.J.Rock Mech.Sci.& Geomech,1989,26(6):605-611.
    [324]Dowding C H,Labuz J F.Fracturing of rock with expansive cement[J].Journal of Geotechnical Engineering,ASCE,108:1288-1299.
    [325]Soeda K,Harada T.The mechanics of expansive pressure generation with expansive demolition agents[J].Concrete Library of JSCE,1994,23:121-135.
    [326]Swanson D E,Labuz J F.Behavior of a calcium oxide-based expansive cement[J].Concrete Science and Engineering,1:166-172.
    [327]唐烈先,唐春安,唐世斌,崔英浩,宋力.静态破碎的物理与数值试验[J].岩土工程学报,2005,27(4):437-441.
    [328]Ishida T,Taguchi M,Suemune K,Fukui H,Mizuta Y.Fracturing mechanism by expansive cement agent deduced from acoustic emission monitoring[C],In Proceedings of 2002 ISRM Regional Symposium(3rd Korea-Japan Joint Symposium) on Rock Engineering Problems and Approaches in Underground Construction,Seoul,Korea,22 24 July 2002,eds.Sang-Yeul Choi et al.841-846.
    [329]Ishida,T.,N.Kinoshita and N.Wakabayashi.Acoustic emission monitoring during thermal cracking of a granite block heated in a center hole[C].In:Proc,eedings of the 3rd Asian Rock Mechanics Symposium,Kyoto,Japan,30 November 2 December,2004,eds.Y.Ohnishi and K.Aoki,133 138,Millpress Science Publishers.
    [330]Van Mier J G M,Sadouki H.Analysis of moisture flow and shrinkage cracking in concrete at the macro- and meso-level[A].Finite elements in engineering and science[C],1997,437-444.
    [331]Lyubimove T Y,Pinus E R.Crystallization structure in conerete contact zone between aggregate and cement in concrete[J].ColloidT.,1962,24:491-498.
    [332]Diamond S,Huang J D.The ITZ in concrete-a different view based on image analysis and SEM observations[J].Cement & Concrete Composites,2001,23:179-188.
    [333]陈惠苏,孙伟,Stroevcn Piet.水泥基复合材料界面对材料宏观性能的影响[J].建筑材料学报.2005,8(1):51-62.
    [334]王瑶,周继凯,沈德建,王岩.混凝土中骨料-浆体界面过渡区的力学性能研究综述[J].水利科学进展,2008,28(2):89-94.
    [335]Bazant Z P.Material models for structural analysis-mathematical modelling of creep and shrinkage of concrete[M].1988,New York:Wiley.
    [336]Martinola G,Sadouki H,Wittmann F H.Numerical model for minimizing risk of damage in repair system[J].Journal of Materials in Civil Engineering,2001,13(2):121-129.
    [337]Timm D H,Voller V R.Field Validation and Parametric Study of a Thermal Crack Spacing Model[C].2003,The annual meeting of the association of asphalt paving technologists,Lexington,Kentucky.
    [338]George,K P.Cracking in cement-treated bases and means for minimizing it[J].Highway Research Record,1968,255.
    [339]赵峥嵘.公路隧道内混凝土路面板裂缝间距与宽度的计算[J].中外公路,2005,25(1):23-25.
    [340]杨红霞.基岩上混凝土板体裂缝间距与宽度的计算[J].辽宁交通科技,2004,2:11-13.
    [341]David H T.A phenomenological model to predict thermal crack spacing of asphalt pavements[D].University of Minnesota,2001.
    [342]Shen W X,David J K.Thermal cracking of viscoelastic asphalt-concrete pavement[J].Journal of Engineering Mechanics,2001,(7):700-709.
    [343]Beushausen H,Alexander M G.Localised strain and stress in bonded concrete overlays subjected to differential shrinkage[J].Materials and Structures,2007,40:189-199.
    [344]Amba J C,balayssac J P,D(?)trich(?) C H.Characterisation of differential shrinkage of bonded mortar overlays subjected to drying[J].Materials and Structures,2009,DOI 10.1617/sl1527-009-9489-8.
    [345]Beushausen H Alexander M G.Failure mechanisms and tensile relaxation of bonded concrete overlays subjected to differential shrinkage[J].Cement and Concrete Research,2006,36:1908-1914.
    [346]Banthia N,Gupta R.Plastic shrinkage cracking in eementitious repairs and overlays[J].Materials and Structures,DOI.10.1617/sl1527-008-9403-9.
    [347]Martinola G,Wittmann FH.Application of fracture mechanics to optimize repair mortar systems.In:Wittmann FH,editor.Fracture Mechanics of Concrete Structures.Freiburg:AEDIFICATIO Publishers;1995.p.1481-6.
    [348]Sadouki H,van Mier J G M.Simulation of hygral crack growth in concrete repair systems[J].Material and Structures,1997,30,518-526.
    [349]Bolander Jr J E,Berton S.Simulation of shrinkage induced cracking in cement composite overlays[J].2004,26(7):861-871.
    [350]Timm D H,Voller V R.Field validation and parametric study of a thermal crack spacing model[J].Journal of the Association of Asphalt Paving Technologists,2003,72:356-387.
    [351]Bai T,Pollard D D,Gao H.Explanation for fracture spacing in layered materials[J].Nature,2000,403:753-756.
    [352]Guzina B B,Timm D H,Voller V R.Crack spacing in strained films[J].Journal de physique,Ⅳ 120,201-208.
    [353]Ochiai S,Iwamoto S,Tomida T,Nakamura T,Okuda H,Tanaka M,Hojo M.Multiple-cracking phenomenon of the galvannealed coating layer on steels under thermal and tensile stresses[J].Metallurgical and Materials Transactions,2005,36A(7):1807-1816.
    [354]Tang C A,Liang Z Z,Zhang Y B,et al.Fracture spacing in layered materials:a new explanation based on two-dimensional failure process modeling[J].Am.J.Sci.,2008,308:49-72.
    [355]Shorlin K A,de Bruyn J R,Graham M,Morris S W.Development and geometry of isotropic and directional shrinkage-crack patterns[J].Physical Review E,2000,61(6):6950-6957.
    [356]Gao S,Nakasa K,Kato M.Analysis and simulation of cracking patterns in coating under biaxial tensile or thermal stress using analysis/FEM strain-accommodation method[J].Engineering Fracture Mechanics,2003,70:1573-1591.
    [357]Andersons J,Leterrier Y.Coating fragmentation by branching cracks at large biaxial strain[J].Probabilistic Engineering Mechanics,2007,22:285-292.
    [358]唐春安,张永彬.掩体间隔破裂机制及演化规律初探[J].岩石力学与工程学报,2008,27(7):1362-1369.
    [359]Tang C A,Zhang Y B,,Liang Z Z,et al.Fracture spacing in layered materials and pattern transition from parallel to polygonal fractures[J].Physical Review E,2006,73(5):1-9.
    [360]Horning T Sokolov I M,Blumen A.Patterns and scaling in surface fragmentation processes[J].Physical Review E,1996,54(4):4293-4298
    [361]U.S.Department of Transportation-Federal Highway Administration.Computer-based guidelines for concrete pavements,Volume Ⅱ:Design and construction guidelines and HIPERPAV Ⅱ user's manual.2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700