用户名: 密码: 验证码:
岩石蠕变实验及非定常参数粘弹模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球介质的流变模型一般认为都是定常的,即模型参数不随时间的增长而变化,但实际上,地球介质在构造运动等因素的作用下,其力学参数随时间的变化十分明显,故引入非定常参数粘弹模型,本文将围绕这一点进行研究和探索。
     分别选取了断层泥、大理岩、花岗岩和砂岩作为试样进行了一系列的蠕变实验,有恒定荷载、多级加载等实验方式,实验持续时间从几小时到几天、几十天,温度从常温到500℃。
     在对实验数据的处理过程中发现岩石蠕变曲线的反演具有蠕变模型的不唯一性和蠕变参数随时间变化的不唯一性。对于同一组实验数据,可以用标准线性体、伯格斯体和对数模型等三种模型来反演,得到的理论曲线和实测曲线非常相似,相关系数很高,体现了岩石蠕变曲线的反演具有蠕变模型的不唯一性。但当实验数据被分成长短不同的时间段时,即实验在假定的时间段内结束,反演得出模型的力学参数都随时间而变化,并不是定值常数,体现了岩石蠕变曲线的反演具有蠕变参数随时间变化的不唯一性。
     为了获得合理的蠕变模型,提出了辨别模型优劣的两个标准,即“吻合”和“预测”:首先由模型所计算出的理论数据要能很好的吻合过去的实验数据,即和实测数据有很高的相关系数和很小的均方差;其次模型要具有较好的预测未来蠕变变化趋势的能力。为此将实验数据分成长短不同的两个时间段来处理,用第一段的实验数据反演计算,并将时间外延到第二段的时间长度绘出理论曲线,再和第二段的实测曲线作比较,这样的目的既比较了模型和实测数据的“吻合”程度,又能在第二阶段的比较中,检验模型的“预测”能力,两者相结合就能找出合理的蠕变模型。对于第一个标准,已有大量的研究,但对第二个标准则讨论较少。
     非定常参数粘弹模型即修正后的标准线性体能够同时满足“吻合”和“预测”2个判别标准。标准线性体模型用来表示地球介质的粘弹性较好,它在短时间内,表现出明显的弹性性质,而在较长时间内,表现出明显的流变特性。对实验所得的蠕变曲线进行分段处理,反演得出非定常参数模量比C或模量E_2和粘滞系数η或弛豫时间Υ随时间的变化规律,就可以确定修正函数的具体形式,引入非定常参数粘弹模型。对于具体的地球物理问题如冰后期地面回升的观测数据,非定常参数粘弹模型能很好地模拟该数据,并且能够简易地计算出软流层的粘滞系数。
     这种修正的本质其实就是对牛顿流体假定(n=1)的修正,是时间尺度对岩石力学参数影响的一种补偿。
It is generally considered that the rheological model of the Earth's media is steady, that is,the parameters of the model do not increase with time changes.In nature, the mechanical parameters change clearly with time because of the Earth's tectonic movement and other factors.Therefore,the non-constant viscoelastic creep model is introduced and the paper will focus on this research and exploration.
     A series of creep experiments have been carried out on fault gouges,marbles, granites and sandstones with step-loading and cyclic multi-level loading methods.The duration of experiments ranges from several hours to dozens of days,and the temperature is between normal temperature to 500℃.
     In the process of experimental data,it is found that there is non-uniqueness in inversion of creep curve and parameters of rock.For the same set of experimental data,three models Standard Linear Model(SLM),Burgers and Logarithm can be used to inverse the dataset.The theoretical curves obtained by inversion are similar with the measured curves and they are highly correlated.This means that the creep curve has non-uniqueness in creep model.However,when the length of the experimental data was divided into different time segments,that is,the experiment ended at the assumption time and inverse the different segments.The mechanical model parameters of inversion obtained are not constant values and vary with time.So the creep curves have non-uniqueness in the model parameters too.
     In order to obtain reasonable creep model,two pieces of criterion are put forward to identify excellent model,they are "match" and "prediction".First of all,the data generated by the model should be a good match to the experimental data in the past. That is,there is a high correlation coefficient and small standard deviation.The other is the model should have the ability to predict better the future of creep.For this reason the experimental data will be divided into several different lengths of time.The first segment of experimental data is used to inverse and draws the theoretical curves;the second segment of experimental data is for comparison.The purpose of this division is not only comparison the degree of "match" between models and measured data in the first segment,but also checking up the "prediction" ability in the comparison of the second segment.It will be able to find a reasonable creep model by combination.For the first criteria,there are many studies,but there is little discussion on the second one.
     The non-constant viscoelastic creep model namely modified standard linear model can at the same time meet the two criterions:"match" and "prediction".It is better to use the standard linear model(SLM) simulating the earth medium crust.In a short period of time it shows elasticity,and it shows rheological properties in a long time.Inverse the different segments dataset and obtain the modulus ratio C or the modular E_2 and the viscosity coefficientηor the relaxation timeτwhich change as time regularly. Then we can determine the specific form of correct function and introduce a viscoelastic model of variable parameters.The modified standard linear model can better meet the criterions "match" and "prediction".In fact,the essence of this modification is to change Newtonian(n = 1 ) assumption by compensating for the effect of time scale on rock mechanical parameters.For large-scale geophysical measured data such as the postglacial rebounding of ground,the non-constant viscoelastic creep model can well simulate the data and calculate the viscosity coefficient.
引文
包雪阳,施行觉,温丹,等.2005.岩石模量与应变振幅关系的实验研究及理论解释[J].中国地震,21(4):508-518.
    陈宝华.2002.地震学育即将完成阶段的岩石蠕变[J].世界地震译丛.
    陈颙,黄庭芳.2001.岩石物理学[M].北京:北京大学出版社.
    陈运泰,林邦慧,林中洋,等.1975.根据地面形变的观测研究1966年邢台地震的震源过程[J].地球物理学报,18(3):164-182.
    陈祖安.2002.循环加载高压流变实验中塑性应变分析[J].地球物理学进展,17(3):414-417,423.
    邓荣贵,周德培,张倬元,等.2001.一种新的岩石流变模型[J].岩石力学与工程学报,20(6):780-784.
    傅容珊,黄建华.2001.地球动力学[M].北京:高等教育出版社.
    何昌荣,周永胜,桑祖南.2002.攀枝花辉长岩半脆性--塑性流变的实验研究[J].中国科学D辑,32(9):717-726.
    胡连英,徐学思.2001.江苏溧阳地震孕育和发生的地质因素剖析[J].江苏地质,25(1):11-16.
    江燕,臧绍先.2002.多矿物岩石流变规律的研究进展及存在问题[J].地球物理学进展,17(3):456-463.
    李昶,臧绍先.2001.岩石层流变学的研究现状及存在问题[J].地球物理学进展,16(2):99-108.
    李云鹏,王芝银,丁秀丽.2005.流变荷载试验曲线的模型识别及其应用[J].石油大学学报(自然科学版),29(2):73-77.
    凌贤长,蔡德所.2002.岩体力学[M].哈尔滨:哈尔滨工业大学出版社.
    马胜利,马瑾.2003.我国实验岩石力学与构造物理学研究的若干新进展[J].地震学报,25(5):528-534.
    沈振中,徐志英.1997.三峡大坝地基花岗岩蠕变试验研究[J].河海大学学报,25(2):1-7.
    石耀霖,朱守彪.2003。中国大陆震源机制深度变化反映的地壳-地幔流变特征[J].地球物理学报,46(3):359-365.
    宋治平,尹祥础,梅世蓉.2003.地震孕育体源流变模型(一)-位移场[J].地震学报,25(6):574-582.
    孙钧.2007.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,26(6):1081-1106.
    田建明,徐徐,谢华章,等.2004.江苏及南黄海地区历史地震类型分布特征[J].中国地震,26(4):432-439.
    王庆良,巩守文,张希等.1997.由1990年共和7.0级地震震后垂直形变求得的地球介质有效弛豫时间和粘滞系数[J].Journal of Geophysical Research,19(5):480-486.
    王绳祖.1995.高温高压岩石力学-历史、现状、展望[J].地球物理学进展,10(4):1-31.
    王芝银,李云鹏.2008.岩体流变理论及其数值模拟[M].北京:科学出版社.
    王子潮,王绳祖.1989.岩石幂次蠕变律常数的实验测定[J].岩石力学与工程学报,8(3):191-200.
    魏荣强,臧绍先.2006.岩石破裂强度的温度和应变率效应及其对岩石圈流变结构的影响[J].地球物理学报,49(6):1730-1737.
    温丹,施行觉.2004.结合内时理论研究岩石衰减与应变振幅的关系[J].实验力学,19(1):19-23.
    徐志英.1993.岩石力学[M].北京:水利电力出版社.
    许力生,陈运泰.1997.用数字化宽频带波形资料反演共和地震的震源参数[J].地震学报,19(2):113-128.
    许锡昌,刘泉声.2000.高温下花岗岩基本力学性质初步研究[J].岩土工程学报,22(3):332-335.
    杨恒,白武明.2000.岩石圈流变实验研究的进展[J].地球物理学进展,15(2):79-89.
    尹祥础.1985.固体力学[M].北京:地震出版社.
    余怀忠,尹祥础,梁乃刚.2004.利用损伤力学模型研究地震前兆现象[J].地球物理学进展,19(2):404-413.
    臧绍先,李昶,魏荣强.2002.岩石圈流变机制的确定及影响岩石圈流变强度的因素[J].地球物理学进展,17(1):50-60.
    臧绍先,周蕙兰,魏荣强,等.2003.地球内部结构和物质性质的研究[J].地震学报,25(5):492-502.
    张国民,李丽.2003.地壳介质的流变性与孕震模型[J].地震地质,25(1):1-10.
    张雅玲,马文静,徐兰芬,等.1995.共和地震序列的特征[J].高原地震,7(3):58-64.
    重庆建筑工程学院,同济大学.1981.岩体力学[M].北京:中国建筑工业出版社.
    周辉.2000.大陆岩石圈流变动力学研究进展[J].地学前缘,7(suppl).
    周永胜,何昌荣.1999.用高温高压岩石蠕变实验解释岩石圈流变时存在的若干问题的讨论[J].国际地震动态.
    周永胜,何昌荣.2003.地壳主要岩石流变参数及华北地壳流变性质研究[J].地震地质,25(1):109-122.
    周永胜,何昌荣.2004.岩大陆岩石圈流变研究进展与高温高压流变实验现状[J].地球物理学进展,19(2):246-254.
    Amitrano D,Helmstetter A.2006.Brittle creep,damage,and time to failure in rocks [J].J.Geophys.Res.,111(B11):B11201-1-B11201-17.
    Balme M R,Rocchi V,Jones C,et al.2004.Fracture toughness measurements on igneous rocks using a high-pressure,high-temperature rock fracture mechanics cell [J].Journal of Volcanology and Geothermal Research,132(2):159-172.
    Barry V.1989.A relation to describe rate-dependent material failure[J].Science,243(4888):200-203.
    Beaumont C,Jamieson R A,Nguyen M H,et al.2001.Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J].Nature,414(6865):738-742.
    Boidy E,Bouvard A,Pellet F.2002.Back analysis of time-dependent behaviour of a test gallery in claystone[J].Tunnelling and Underground Space Technology,17.
    Boukharov G,Chanda M,Boukharov N.1995.The three processes of brittle crystalline rock creep[J].Int.J.Rock Mech.Sci.,32(4):325-335.
    Boutelier D,Schrank C,Cruden A.2008.Power-law viscous materials for analogue experiments:New data on the rheology of highly-filled silicone polymers[J].Journal of Structural Geology,30.
    Biirgmannl R,Dresen G.2008.Rheology of the lower crust and upper mantle:evidence from rock mechanics,geodesy,and field observations[J].Annu.Rev.Earth Planet.Sci.,36.
    Bystricky M,Kunze K,Burlini L,et al.2000.High Shear Strain of Olivine Aggregates:Rheological and Seismic Consequences[J].Science,290(5496):1564-1567.
    Challamel N,Lanos C,Casandjian Charles.2005.Creep damage modelling for quasibrittle materials[J].European Journal of Mechanics A/Solids,24.
    Chen Z,Bai W.2006.Fault creep growth model and its relationship with occurrence of earthquakes[J].Geophys.J.Int.,165.
    Cohen S C.1984.Postseismic deformation due to subcrustal viscoelastic relaxation following dip-slip earthquakes[J].J.Geophys.Res.,89.
    Covey-Crump S J.2001.Variation of the Exponential and Power Law Creep Parameters with Strain for Carrara Marble Deformed at 120° to 400 ℃[J].Geophys.Res.Lett.,28(12):2301-2304.
    Davis N,Kronenberg A,Newman J.2008.Plasticity and diffusion creep of dolomite[J].Tectonophysics,456.
    Deng J,Gurnis M,Kanamori H,et al.1998.Viscoelastic Flow in the Lower Crust after the 1992 Landers California,Earthquake[J].Science,282(5394):1689-1692.
    Donald L,Turcotte G S.1982 Geodynamics[M].New York:John Wiley and Sons Inc.
    Ershov A V,Stephenson R A.2006.Implications of a visco-elastic model of the lithosphere for calculating yield strength envelopes[J].Journal of Geodynamics,42.
    Fabre G,Pellet F.2006.Creep and time-dependent damage in argillaceous rocks[J],International Journal of Rock Mechanics and Mining Sciences,43.
    Forno G D,Gasperini P.2007.Modelling of mantle postglacial relaxation in axisymmetric geometry with a composite rheology and a glacial load interpolated by adjusted spherical harmonics analysis[J].Geophys.J.Int.,169.
    Fu Z,Guo H,Gao Y.2008.Creep Damage Characteristics of Soft Rock under Disturbance Loads[J].Journal of China University of Geosciences,19(3):292-297.
    Gasperini P,Forno G D,Boschi E.2004.Linear or non-linear rheology in the Earth' s mantle:the prevalence of power-law creep in the postglacial isostatic readjustment of Laurentia[J].Geophys.J.Int.,157.
    GEO/EAR.2003.New Departures in Structural Geology and Tectonics.http://pangea.stanford.edu/dpollard/NSF/main.html.
    Gleason G C,Tullis J.1995.A flow law for dislocation creep of quartz aggregates determined with the molten salt cell[J].Tectonophysics,247(1-4):1-23.
    Goetze C.1978.The mechanisms of creep in olivine[J].Mathematical and physical sciences,288.
    Golshani A,Oda M,Okui Y,et al.2007.Numerical simulation of the excavation damaged zone around an opening in brittle rock[J].International Journal of Rock Mechanics and Mining Sciences,44.
    Handy M,Brun J-P.2004.Seismicity,structure and strength of the continental lithosphere[J].Earth and Planetary Science Letters,223.
    Hashiba K,Okubo S,Fukui K.2006.A new testing method for investigating the loading rate dependency of peak and residual rock strength[J].Int.J.Rock Mech.Sci.,43(6):894-904.
    Herwegh M,Berger A.2004.Deformation mechanisms in second-phase affected microstructures and their energy balance[J].Journal of Structural Geology,26.
    Herwegh M,de Bresser J,ter Heege J.2005.Combining natural microstructures with composite flow laws:an improved approach for the extrapolation of lab data to nature[J].Journal of Structural Geology,27.
    Heusermann S,Rolfs O,Schmidt U.2003.Nonlinear finite-element analysis of solution mined storage caverns in rock salt using the LUBBY2 constitutive model[J].Computers and Structures,81.
    Hieronymus C.2006.Time-dependent strain localization in viscous media with statedependent viscosity[J].Physics of the Earth and Planetary Interiors,157.
    Hsu Y-J,Yu S-B,Chen H-Y.2008.Coseismic and postseismic deformation associated with the 2003 Chengkung,Taiwan,earthquake[J].Geophys.J.Int.,176(47):420-430.
    Jamieson R,Beaumont C,Nguyen M,et al.2002.Interaction of metamorphism,deformation and exhumation in large convergent orogens[J].Journal of Metamorphic Geology,20(1):9-24.
    Katayama I,ichiro Karato S.2008.Low-temperature,high-stress deformation of olivine under water-saturated conditions[J].Physics of the Earth and Planetary Interiors,168.
    Kenis 1,Urai J L,van der Zee W,et al.2005.Rheology of fine-grained siliciclastic rocks in the middle crust-evidence from structural and numerical analysis[J].Earth and Planetary Science Letters,233.
    Lau J,Chandler N.2004.Innovative laboratory testing[J].International Journal of Rock Mechanics and Mining Sciences,41.
    Li Y,Xia C.2000.Time-dependent tests on intact rocks in uniaxial compression[J].Int.J.Rock Mech.Sci.,37(3):467-475.
    Mackwell S J,Zimmerman M E,LKohlstedt D.1998.High-temperature deformation of dry diabase with application to tectonics on Venus[J],Journal of Geophysical Research,103(B1):975-984.
    Main I G.2000.A damage mechanics model for power-law creep and earthquake aftershock and foreshock sequences[J].Geophys.J.Int.,142.
    Meidav T.1964.Viscoelastic properties of the standard linear solid[J].Geophysical Prospecting,12(1):80-99.
    Meissner R.1998.Weakness of the lower continental crust:a condition for delamination,uplift,and escape[J].Tectonophysics,296(1-2):47-60.
    Napier J A L,Malan D F.1997.A viscoplastic discontinuum model of time-dependent fracture and seismicity effects in brittle rock[J].International Journal of Rock Mechanics and Mining Sciences,34(7):1075-1089.
    Naumann M,Hunsche U,Schulze O.2007.Experimental investigations on anisotropy in dilatancy,failure and creep of Opalinus Clay[J],Physics and Chemistry of the Earth,32.
    Okubo S,Fukui K,Hashiba K.2008.Development of a transparent triaxial cell and observation of rock deformation in compression and creep tests[J].International Journal of Rock Mechanics and Mining Sciences,45.
    Persaud M,Pfiffner O.2004.Active deformation in the eastern Swiss Alps:post-glacial faults,seismicity and surface uplift[J].Tectonophysics,385.
    Pouilloux L,Kaminski E,Labrosse S.2007.Anisotropic rheology of a cubic medium and implications for geological materials[J].Geophys.J.Int.,170.
    Reilinger R.1986.Evidence for postseismic viscoelastic relaxation following the 1959 M=7.5 Hebgen Lake,Montana Earthquake[J].J.Geophys.Res.,91.
    Renner J,Evans B,GSiddiqi.2002.Dislocation creep of calcite[J].Journal of Geophysical Research,107(B12):ECV6.1-ECV6.16.
    Rossi M,Vidal O,Wunder B,et al.2007.Influence of time,temperature,confining pressure and fluid content on the experimental compaction of spherical grains[J].Tectonophysics,441.
    R(u|¨)mpker G,Wolf D.1996.Viscoelastic relaxation of a Burgers half-space:implications for the interpretation of the Fennoscandian uplift[J].Geophys.J.Int.,124.
    Rybacki E,Dresen G.2004.Deformation mechanism maps for feldspar rocks[J].Tectonophysics,382.
    Scheidegger A E.1986.地球动力学原理[M].北京:地震出版社.
    Shao J,Chau K,Feng X.2006.Modeling of anisotropic damage and creep deformation in brittle rocks[J].International Journal of Rock Mechanics and Mining Sciences,43.
    Shi X,Wen D,Bao X,et al.2006.Application of rock creep experiment in calculating the viscoelastic parameters of earth medium[J].Science in China Series D:Earth Sciences,49(5):492-498.
    Shin K,Okubo S,Fukui K,et al.2005.Variation in strength andcreep life of six Japanese rocks[J].Int.J.Rock Mech.Sci.,42(2):251-260.
    Thatcher W,Matsuda T,Kato T,et al.1980.Lithosphere loading by the 1896 Riku-u earthquake,northern Japan:implications for plate flexure and asthenosphere rheology[J].J.Geophys.Res.,85.
    Tsai L,Hsieh Y,Weng M,et al.2008.Time-dependent deformation behaviors of weak sandstones[J].International Journal of Rock Mechanics and Mining Sciences,45.
    Tutuncu A N,Podio A L,Gregory A R,et al.1998.Nonlinear viscoelastic behavior of sedimentary rocks,Part I:Effect of frequency and strain amplitude[J].Geophysics,63(1):184-194.
    Wang G.2004.A new constitutive creep-damage model for salt rock and its characteristics[J].International Journal of Rock Mechanics and Mining Sciences,41(3):1-7.
    Wu P.1999.Modelling postglacial sea levels with power-law rheology and a realistic ice model in the absence of ambient tectonic stress[J].Geophys.J.Int.,139.
    Wu P.2002.Effects of mantle flow law stress exponent on postglacial induced surface motion and gravity in Laurentia[J].Geophys.J.Int.,148.
    Zang S,Li C,Ning J,et al.2003.A preliminary model for 3-D rheological structure of the lithosphere in North China[J].Science in China(Series D),46(5):461-473.
    Zhang Z X,Yu J,KOU S Q,et al.2001.Effects of high temperatures on dynamic rock fracture[J].International Journal of Rock Mechanics and Mining Sciences,38(2):211-225.
    Zhou H,Jia Y,Shao J.2008.A unified elastic-plastic and viscoplastic damage model for quasi-brittle rocks[J].International Journal of Rock Mechanics and Mining Sciences,45(8):1237-1251.
    Zulauf J,Zulauf G.2004.Rheology of plasticine used as rock analogue:the impact of temperature,composition and strain[J].Journal of Structural Geology,26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700