用户名: 密码: 验证码:
纳米流体固着液滴蒸发等流动与传热问题的LBM分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
换热工质的传热性能是阻碍换热效率提高、影响换热设备高效紧凑性能的一个主要因素,提高液体导热系数的一种有效方式是在液体中添加金属、非金属或聚合物固体粒子。然而在液体中添加毫米或微米级的粒子在实际应用中容易引起磨损、堵塞等不良结果,大大限制了其在工业实际中的应用。纳米材料科学的迅速发展给强化传热领域带来了新的机遇,有学者提出了一个崭新的概念--纳米流体:即以一定的方式和比例在液体中添加纳米级金属或非金属氧化物粒子,形成一类新的传热冷却工质。
     纳米流体作为一种新型传热工质,能够有效提高热交换设备的传热性能,大大提高热交换设备的高效低阻紧凑等性能指标。纳米流体液滴蒸发形式的换热将广泛应用于车辆、航天航空、船舶、电子等领域,其蒸发过程是涵盖了多组分流体动力学、传热传质学、材料科学及自由界面行为动力学等多种学科领域的综合性问题,掌握该过程中的热质传递机理有着重要的学术意义和应用价值。本文以纳米流体固着液滴在加热平壁表面的蒸发为研究对象,用格子Boltzmann(LB)力矩模型模拟了过程中的液滴演变和纳米颗粒尺寸对形变的影响,实验比较了乙醇-铝纳米流体液滴和纯乙醇液滴的蒸发中基部直径和接触角的变化特点。
     格子Boltzmann方法作为一种处于宏观流体动力学和分子动力学之间的介观方法,与传统的计算流体力学方法相比,具有许多独特的优势,如计算效率高、边界条件容易实现、具有完全并行性等,模型简单而物理图像清晰,因而易于理解和编程。由于它的微观特性,它可以方便地描述不同相之间的相互作用,使之在模拟复杂流动问题上具有常规宏观方法所没有的优势,从而为研究两相流及多相流系统和复杂边界问题提供了一种有效途径。格子Boltzmann力矩模型提供了多个可调参数,即多松弛因子,可以满足不同流体动力学系统的稳定性和物理要求。同时,由于力矩有诸如动量、能量等的明确的物理意义,故该模型可以容易地将力、热作用加入力矩中加以考虑。
     本文围绕格子Boltzmann方法展开讨论,首先简要介绍了该方法的历史,基本思想和特点。鉴于纳米液滴的蒸发过程是一个多组分多相同时存在的复杂过程,故本文的模拟从简单的单组分单相模型入手由浅入深循序渐进地展开。首先由单组分单相模型着手,建立格子Boltzmann力矩模型模拟顶盖驱动的矩形腔内两侧壁存在温差时的混合对流过程,从方法上掌握重力、浮升力等力的作用对速度和温度分布的作用方式,实现速度温度场的耦合模拟。然后利用单组分多相模型模拟液滴碰撞固体壁面的动力学过程,解决自由界面的迁移问题和柱坐标系的采用在格子Boltzmann方法中的实现问题。在此基础上,在柱坐标系下采用多组分多相模型模拟了纳米液滴在加热表面的蒸发过程,得到了该过程中纳米流体液滴的动态演变,表明蒸发过程出现基部直径保持不变液滴高度降低的销联阶段和液滴后退的解销阶段,最终形成纳米颗粒的环形沉积,并且纳米颗粒大小环形沉积具有影响,探讨了纳米粒子在纳米液滴蒸发中的作用机理。
     实验观察了纳米流体固着液滴在水平加热平面蒸发的过程,并与模拟结果作出比较。通过液滴形状分析法,实验观测了乙醇-铝纳米流体液滴和乙醇液滴的蒸发过程,由实验数据可明显看出与模拟结果相一致的特征,即蒸发经历了销联和解销两个阶段。在销联阶段,同纯乙醇液滴相比,由于纳米流体的粘性较大,使其蒸发速率降低。纳米粒子在液滴边缘的沉积改变了固液界面张力,这使接触角增大,故纳米流体液滴的初始接触角比纯乙醇的大,同时液滴开始后退的临界接触角纳米流体的比纯乙醇的小,所以纳米流体液滴保持销联的阶段比乙醇的长,即乙醇的后退阶段长,而该阶段的蒸发速率急剧降低,故对相同体积的液滴而言,纳米流体的整体蒸发速率比纯乙醇的高。
     将模拟计算的结果与实验结果进行了比较,两者高度一致,表明了模拟的正确性。
The heat transfer performance of the fluid is the main factor that hinders the heat transfer efficiency,high compactness and effectiveness of heat exchangers.One effective method to increase the thermal conductivities of fluids is to add solid metallic,non-metallic and polymeric particles into the conventional fluids.However,the millimeter or micro-sized particles,which are added into the fluid,may cause severe problems in heat transfer equipment such as clogging when they pass through micro channels and erosion of components and pipe lines.All the problems limit the application of such suspentions.The fast development of nano material science brings opportunity to enhancement of heat transfer. A innovative concept of nanofluid is put forward,which refers to a two-phase mixture with its continuous phase being generally a liquid and the dispersed phase constituted of the 'nanoparticles' i.e.extremely fine metallic or nonmetallic particles of nanometer dimensions. The nanofluid forms a new type of coolant.
     As an innovative heat transfer substance,nanofluid can effectively enhance the heat transfer performance of the device and make the device more compact with high efficiency. The evaporation of nanofluid droplet will be widely applied in the field of vehicle,spaceflight, voyage,shipping and electron.The hydrokinetics,the theory of heat and mass transfer,the material science and the behavior dynamics of free interface are involved in the process of the nanofluid droplet evaporation.It is academically significant and has invaluable application to master the heat and mass transfer mechanism in this process.In this paper,the profile evolvement of nanofluid droplet during the process of evaporation on heated fiat substrate is simulated with Lattice Boltzmann moment model.The effect of nanoparticle size on the evolvement is analyzed.The changing characteristics of base diameter and contact angle for ethanol-aluminum nanofluid droplet are experimentally compared with that for pure ethanol.
     As a mesoscopic method between the macroscopic fluid dynamics and the molecule dynamics,Lattice Boltzmann method has many unique advantages compared to the traditional computational hydrodynamics methods,such as high efficiency,easily handle boundary condition and absolutely parallel computation.It is easy to understand and to write program. An important advantage of the Lattice Boltzmann method is that microscopic physical interactions between different phase particles can be conveniently incorporated into the numerical model,which is lacked in the conventional methods,so that it could supply an effective way to investigate multiphase flow and complex boundary condition problems. Lattice Boltzmann moment model supplies several controllable parameters as multi relaxation parameters,which can satisfy the physical requests and keep stability for different hydrokinetic systems.In addition,the extemal forces and thermal action can be facilitated treated in such moment model.
     The development,the characteristics and the main idea of Lattice Boltzmann method are introduced in this paper.In view of the evaporation process of nanofluid droplet being complex,where multi-component and multi-phase are coexist,the simulation begins at the simple single component single phase(SCSP) model,then it proceeds systematically to complex multi-component and multi-phase(MCMP) model.To begin with,SCSP model is built to simulate the mixed convection in lid driven rectangular when there is temperature difference between the two side walls.The couple of velocity and temperature is accomplished.And the simulation of effects of forces such as gravity and buoyancy on the velocity and temperature distribution is methodological realized.Next,based on the single component multi-phase(SCMP) model,the dynamic behavior of droplet impinging on substrate is simulated at cylindrical coordinate,and the moving interface between the liquid and the gas is successfully simulated as well.In the end,the evaporation process of nanofluid droplet on heated substrate is simulated with MCMP model and the evolution of nanofluid droplet is obtained.The results show that during the evaporation the droplet experiences the pinning stage,where the base diameter keeps constant and the height decreases,and the depinning stage,where the droplet recoils.A ring-shaped nanoparticle stain is formed and it is affected by the size of nanoparticle.The mechanism of nanoparticle acting on the evaporation is discussed.
     The evaporation process of nanofluid droplet on heated substrate is experimentally investigated,and the results are compared with the simulation results.By analyzing the shapes,the evaporation process of ethanol-aluminum nanofluid droplet is compared with that of ethanol droplet.Same as what concluded from simulation results,the experimental results show that the evaporation experiences pinning and depinning stage.In the pinning stage,the evaporation speed of nanofluid droplet is lower than that of ethanol droplet due to its larger viscosity.The deposition of nanoparticles at the rim changes the interface tension between the solid sustrate and the liquid droplet,which leads to a larger contact angle.As the result,the initial contact angle of nanofluid droplet is larger than that of ethanol droplet.Meanwhile,the critical angle when the droplet begins to recoil is smaller for nanofuild than for ethanol,so the nanofluid droplet pinning stage is longer than ethanol pinning stage.That is,the ethanol depinning stage is longer,when the evaporation speed is sharply decreased.Therefore,for the same droplet volume,the whole evaporation speed of nanofluid is faster than that of ethanol.
     The simulation is proved be valid by comparison the simulation results and experimental results.
引文
[1]Chen S,Chen H,Martinez D,et al.Lattice Boltzmann model for simulation of magneto hydrodynamics.Phys.Rev.Lett.,1991,67(27):3776.
    [2]Qian Y H,d' Humi(?)res D,Lallemand P.Lattice BGK models for Navier-Stokes equation.Europhys.Letters,1992,17(6):479.
    [3]Vergassola M,Benzi R,Succi S.On the hydrodynamic behavior of the lattice Boltzmann equation.Europhys.Letters,1990,13(5):411.
    [4]Succi S.The Lattice Boltzmann Equation.Oxford:Clarendon Press;New York:Oxford University Press.2001,[5]Frisch U,d'Humi(?)res D,Hasslacher B,et al.Lattice Gas hydrodynamics in two and three dimensions,Complex Systems,1987,1(4):649.
    [6]KrafczykM,Rank E.A parallelized lattice-gas solver for transient Navier-Stokes-flow:implementation and simulation results.Int.J.for Numer.Meth.In Eng.,1995,38:1243.
    [7]Wolfram S.Cellular automaton fluids 1:basic theory.J.Stat.Phys.,1986,45(3/4):471.
    [8]Nobile E.Simulation of the time-dependent flow in cavities with the additive-correction multigrid method.Part II:Application.Numer.Heat Transf,Part B,1996,Vol.30:351-370.
    [9]SchreiberR,Keller HB.Driven cavity flows by efficient numerical techniques,J.Comput.Phys.,1983,Vol.49:310-333.
    [10]Erturek E,Corke T C,G(?)kc(?)l C.Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers.Int.J.Numer.Meth.Fluids,2005,Vol.48:747-774.
    [11]Chai Z H,Shi B C,Zheng L.Simulating high Reynolds number flow in two dimensional lid-driven cavity by multi-relaxation-time Lattice Boltzmann method.Chinese physics,2006,Vol.15,No.8:1855-1863.
    [12]Xu Aiguo,GonnellaG,Lamura A.Phase-separating binary fluids under oscillatory shear.Phys.Rev.E,67,2003,056105.
    [13]Vladimirova N,Malagoli A,Mauri R.Two-dimensional model of phase segregation in liquid binary mixtures.Phys.Rev.E,60,1999,6968.
    [14]Suppa D,Kuksenok O,BalazsAC,et al.Phase separation of a binary fluid in the presence of immobile particles:A lattice Boltzmann approach.J.Chem.Phys.,2002,116(14):6305.
    [15]Shan X,Doolen G D.Diffusion in a multicomponent lattice Boltzmann equation model.Phys.Rev.E 54,1996:3614-3620.
    [16]Latva-Kokko M,Rothma D H.Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids.Phys.Rev.E,71(5),2005,056702.
    [17]Raiskinm(?)ki P,Koponen A,Merikoski J,et al.Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method.Computational Materials Science,2000,18:7.
    [18]Iwahara D,Shinto H,Miyahara M,et al.Liquid drops on homogeneous and chemically heterogeneous surfaces:a two-dimensional lattice Boltzmann study.Langmuir,2003,19:9086.
    [19]Palmer B J,Rector D R.Lattice-Boltzmann algorithm for simulating thermal two-phase flow.Phys.Rev.E,61(5),2000:5295.
    [20]Ladd A J C.Numerical simulations of particulate suspensions via a discretized Boltzmann equation,Part 1-2,Theoretical foundation.Journal of Fluid Mechanics,1994,271:285.
    [21]Succi S,Foti E,Higuera F.Simulation of Three-Dimensional Flows in Porous Media with the Lattice Boltzmann Method.Europhys.Lett.,1989,10(5):433.
    [22]Heijs A W J,Lowe C P.Numerical evaluation of the permeability and the Kozeny constant for two types of porous media.Phys.Rev.E,1995,51:4346.
    [23]Alexander F,Chen S,Sterling J.Lattice Boltzmann thermo-hydrodynamics,Phys.Rev.E,1993,47,R2249.
    [24]He X,Chen S,Doolen G D.A novel thermal model for the lattice Boltzmann method in incompressible limit.J.Comput.Phys.,1998,146:282.
    [25]Tang G H,Tao W Q,He Y L.Simulation of fluid flow and heat transfer in a plane channel using the lattice Boltzmann method.Int.J.Mod.Phys.B,2003,17(1-2):183.
    [26]S Chen,Doolen G D.Lattice methods and their applications to reacting systems.Comput.Chem.Eng.,1995,19:617-646.
    [27]Filippova O,Hanel D.A novel lattice BGK approach for low Mach number combustion.J.Comput.Phys.,2000,158:139-160.
    [28]Miller W,Succi S,Mansutti D.A lattice Boltzmann model for anisotropic liquid-solid phase transition.Phys.Rev.Lett.,2001,86(16):3578-3581.
    [29]Chen S Y,Doolen G R.Lattice Boltzmann method for fluid flows.Annu.Res.Fluid Mech.,1998,30:329-364.
    [30]He X Y,Luo L S.Lattice Boltzmann model for the incompressible Navier-Stokes equation.J.Stat.Phys.,1997,88:927-944.
    [31]Guo Z L,Shi B C,Wang N C.Lattice BGK model for incompressible Navier-Stokes equation.J.Comput.Phys.,2000,165:288-306.
    [32]Lallemandand P,Luo L S.Theory of the lattice Boltzmann method:Dispersion,dissipation,isotropy,Galilean invariance,and stability.Phys.Rev.E.,2000,61:6546—6562.
    [33]d'Humieres D,Ginzburg I,et al.Multiple-relaxation-time lattice Boltzmann models in three dimensions.Phil.Trans.R.Soc.Lond.A,2002,360:437—451.
    [34]Peng Yih-Ferng,Shiau Yuo-Hsien,Robert R Hwang.Transition in a 2-D lid-driven cavity flow.Computers & Fluids,2003,Vol.32,No.3:337-352.
    [35]Hou S,Zou Q,Chen S,ea al.Simulation of cavity flow by the Lattice Boltzmann Method.J.Comp.Phys.,1995,Vol.118:329-347.
    [36]Ghia U.,Ghia K N,Shin C Y.High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method.J.Comp.Phys.,1982,Vol.48:387-411.
    [37]SchreiberR,Keller H B.Driven cavity flows by efficient numerical techniques.J.Comput.Phys.,1983,Vol.49:310-333.
    [38]Vanka S P.Block-implicit multigrid solution of Navier-Stokes equations in primitive variables,J.Comput.Phys.,1986,Vol.65:138-158.
    [39]Wu J S,Shao Y L.Simulation of lid-driven cavity flows by parallel lattice Boltzmann method using multi-relaxation-time scheme.Int.J.Numer.Meth.Fluids,2004,Vol.46:921-937.
    [40]Patil D V,Lakshmisha K N,Rogg B.Lattice Boltzmann simulation of lid-driven flow in deep cavities,Computers and Fluids,2006,Vol.35:1116-1125.
    [41]Cheng M,Hung K C.Vortex structure of steady flow in a rectangular cavity.Computers & Fluids,2006,35:1046-1062.
    [42]Jeffrey R Koseff,Ajay K Prasad.Combined forced and natural convection heat transfer in a deep lid-driven cavity flow.Int.J.Heat and Fluid Flow,1996,Vol.17,No.5:460-467.
    [43]McNamara G R.,Alder B J.Analysis of the lattice Boltzmann treatment of hydrodynamics.Physica A,1993,194:218-288.
    [44]McNamara G R,Garcia A L,Alder B J.Stabilization of thermal lattice Boltzmann models.J.Stat.Phys.,1995,81:395-408.
    [45]Mezrhab A,Jami M,Bouzidi M,et al.Analysis of radiation-natural convection in a divided enclosure using the lattice Boltzmann method,Computers & Fluids,2007,Vol.36:423-434.
    [46]Kao P H,Yang R J.Simulating oscillatory flows in Rayleigh-Benard convection using Lattice Boltzmann method.Int.J.Heat Mass Transfer,2007,Vol.50:3315-3328.
    [47]Kuznik F,Vareilles G,Rusaouen G,et al.A double-population lattice Boltzmann method with non-uniform mesh for the simulation of natural convection in a square cavity.Int.J.of heat and Fluid Flow,2007,28:862-870.
    [48]Shankar P N,Deshpade M D.Fluid mechanics in the driven cavity.Ann Rev Fluid Mesh,2000,32:337-52.
    [49]Harlow F H,Shannon J P.The splash of a liquid droplet.J.Appl.Phys,1967,38:3855-3866.
    [50]Hatta N,Fujimoto H,Takuda H.Deformation process of a water droplet impinging on a solid surface.Journal of Fluids Engineering,1995,Vol.117:394-401.
    [51]Trapaga G,Szekely J.Mathematical modeling of the isothermal impingment of liquid droplets in spraying processes.Metall.Trans.B,1991,22:901-914.
    [52]Fukai J,Zhao Z,Miyatake O.Modelling of the deformation of a liquid droplet impinging upon a flat surface.Phys.Fluids A,1993,5(11):2588-2599.
    [53]Fukai J,Shiba Y,Yamamoto T et al.Wetting effects on the spreading of a liquid droplet colliding with a flat surface:experiment and modelling.Phys.Fluids A,1995,7(2):236-247.
    [54]Davidson M R.Boundary integral prediction of the spreading of an inviscid drop impacting on a solid surface.Chem.Eng.Sci.,2000,55:1159-1170.
    [55]Pasandideh-Fard M,Chandra S,Mostaghimi J.A three-dimensional model of droplet impact and solidification.Int.J.Heat and Mass Transfer,2002,45:2229-2242.
    [56]Perot B,Nallapati R.A moving unstructured staggered mesh method for the simulation of incompressible free-surface flows.J.Comput.Phys,2003,184:192-214.
    [57]Hitoshi Fujimoto,Yu Shiotani,Albert Y Tong,et al.Three-dimensional numerical analysis of the deformation behavior of droplets impinging onto a solid substrate.International Journal of Multiphase Flow,2007,33:317-332.
    [58]Gunstensen A K,Rothman D H,Zaleski S,et al.Lattice Boltzmann model of immiscible fluids.Phys.Rev.A,1991,43:4320-4327.
    [59]Shan X,Chen H.Lattice Boltzmann model for simulation flows with multiple phases and components.Phys.Rev.E,1993,47:1815-1819.
    [60]Shan X,Chen H.Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation.Phys.Rev.E,1994,49:2941-2948.
    [61]Shan X,Doolen G D.Multicomponent lattice-Boltzmann model with interparticle interaction.J.Stat.Phys.,1995,81:379-393.
    [62]Swift M,Osborn W,Yeomans J.Lattice Boltzmann simulation of nonideal fluids.Phys.Rev.Lett.,1995,75:830-833.
    [63]Swift M,Orlandini S,Osborn W,et al.Lattice Boltzmann simulations of liquid-gas and binary-fluid systems.Phys.Rev.E,1996,54:5041-5052.
    [64]Nourgaliev R,Dinh T,Theofanous T,et al.The lattice Boltzmann equation method:theoretical interpretation,numerics and implications.Int.J.Multiphase Flow,2003,29:117-169.
    [65]He X,Chen S,Zhang R.A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability.J.Comput.Phys.,1999,152:642-663.
    [66]He X,Zhang R,Chen S,et al.On the three-dimensional Rayleigh-Taylor instability.Phys.Fluids,1999,11(5):1143-1152.
    [67]Briant A J,Papatzacos P,Yeomans J M.Lattice Boltzmann simulations of contact line motion in a liquid-gas system.Philos.Trans.Roy.Soc.London A,2002,360:485-495.
    [68]BriantAJ,Wagner A J,YeomansJM.Lattice Boltzmann simulations of contact line motion:I.Liquid-gas systems.Phys.Rev.E,2004,69,031602.
    [69]BriantAJ,Yeomans J M.Lattice Boltzmann simulations of contact line motion:Ⅱ.Binary fluids.Phys.Rev.E,2004,69,031603.
    [70]Dupuis A,Yeomans J M.Modeling droplets on superhydrophobic surfaces:equilibrium states and transitions.Langmuir,2005,21:2624-2629.
    [71]Kusumaatmaja H,Dupuis A,Yeomans J M,Lattice Boltzmann simulations of drop dynamics.Math.Comput.Simul.,2006,72:160-164.
    [72]Dupuis A,Yeomans J M.Lattice Boltzmann modelling of droplets on chemically heterogeneous surfaces.Future Gener.Comput.Syst.,2004,20:993-1001.
    [73]Yan Y Y,Zu Y Q.A lattice Boltzmann method for imcomprissible two-phase flows on partial wetting surface with large desity ratio.Journal of computational physics 2007,227:763-775.
    [74]Inamuro T,Ogata T,Tajima S,et al.A lattice Boltzmann method for compressible two-phase flows with large density differences.J.Comput.Phys.,2004,198:628-644.
    [75]Arcidiacono S,Karlin I V,Mantzaras J,et al.Lattice Boltzmann model for the simulation of multicomponent mixtures.Physical review E 76,2007,046703.
    [76]Luo L S,Girimaji S S.Theory of the lattice Boltzmann method:Two-fluid model for binary mixtures.Phys.Rev.E 67,2003,Issue 3,036302.
    [77]McCracken M E,Abraham J.Lattice Boltzmann methods for binary mixtures with different molecular weights.Phys.Rev.E 71,2005,Issue 4,046704.
    [78]Asinari P.Viscous coupling based lattice Boltzmann model for binary mixtures.Phys.Fluids 17,2005,067102.
    [79]Asinari P.Semi-implicit-linearized multiple-relaxation-time formulation of lattice Boltzmann schemes for mixture modeling.Phys.Rev.E 73,2006,Issue 5,056705.
    [80]Li Q,Wagner A J.Symmetric free-energy-based multicomponent lattice Boltzmann method.Phys.Rev.E 76,2007,Issue 3,036701.
    [81]Halliday I,Hollis A P,Care C M.Lattice Boltzmann algorithm for continuum multicomponent flow.Phys.Rev.E 76,2007,Issue 2,026708.
    [82]Orlandini E,Swift M R,Yeomans J M.A Lattice Boltzmann Model of Binary-Fluid Mixtures.Europhys.Lett.,1995,32(6):463-468.
    [83]Osborn W R,Orlandini E,Swift M R,et al.Lattice Boltzmann Study of Hydrodynamic Spinodal Decomposition.Phys.Rev.Lett.75,1995,Issue 22:4031-4034.
    [84]Choi US.Enhancing thermal conductivity of fluids with nanoparticles,in:D.A.Siginer,H.P.Wang,(Eds.),Developments and applications of non-Newtonian glows,FED-vol.231/MD-vol.66,ASME,New York,1995:99-105.
    [85]Stephen U S Choi.Nanofluid technology:current status and future research.Received Sep.28,1999,OSTI.
    [86]Hu Z S,Dong J X.Study on Antiwear and Reducing Friction Additive of Nanometer Titanium Oxide.Wear,1998,216:92-96.
    [87]Lee S,Choi S U S,Li S,et al.Measuring thermal conductivity of fluids containing oxide nanoparticles.ASME J Heat Transfer,1999,121:280-9.
    [88]Touloukian Y S,Powell R W,Ho C Y,et al.Thermophysical Properties of Matter.New York:Plenum Press,Vol.2,1970.
    [89]Hamilton R L,Crosser 0 K.Thermal conductivity of heterogeneous two-component systems.I & EC Fundamentals 1962,1:182-191.
    [90]Wasp F J.Solid-Liquid Flow Slurry Pipeline Transportation.Berlin:Trans.Tech.Pub.,1977.
    [91]Keblinski P,Phillpot S R,Choi S U S,et al.Mechanisms of heat flow in suspensions of nano-sized particles(nanofluids).International journal of heat and mass transfer,2002,45:855-863.
    [92]Yu W,Choi S U S.The role of interfacial layers in the enhanced thermal conductivity of nanofluids:a renovated Maxwell model.J.Nanoparticle Res.2003,5:167-71.
    [93]Huaqing Xie,Motoo Fujii,Xing Zhang.Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture.International Journal of Heat and Mass Transfer,2005,48:2926-2932.
    [94]Jang S P,Choi S U S.Role of Brownian motion in the enhanced thermal conductivity of nanofluids.Appl.Phys.Lett.2004,84:4316-8.
    [95]Yimin Xuan,Wilfried Roetzel.Conceptions for heat transfer correlation of nanofluids.International Journal of Heat and Mass Transfer,2000,43:3701-3707.
    [96]Sidi El Becaye Ma(?)ga,Cong Tam Nguyen,Nicolas Galanis,et al.Heat transfer enhancement in forced convection laminar tube flow by using nanofluids.Proceedings of CHT-04,ICHMT International Symposium on Advances in Computational Heat Transfer,April 19-24,2004,Norway CHT-04-101.
    [97]Maiga S E B,Nguyen C T,Galanis N,et al.Heat Transfer Behaviours of Nanofluids in a uniformly Heated Tube.Superlattices and Microstructures,2004,35:543-57.
    [98]Roy G,Nguyen C T,Lajoie P R.Numerical Investigation of Laminar Flow and Heat Transfer in a Radial Flow Cooling System with the Use of Nanofluids.Superlattices and Microstructures,2004,35:497-511.
    [99]Khanafer K,Vafai K,Lightstone M.Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids.Int.J.Heat & Mass Transfer,2003,Vol.46:3639-3653.
    [100]宣益民,余凯,吴轩,李强,基于Lattice-Boltzmann方法的纳米流体流动与传热分析,工程热物理学报,2004,Vol.25,No.6:1022-1024.
    [101]Yimin Xuan,Qiang Li.Heat transfer enhancement of nanofluids.International Journal of Heat and Fluid Flow,2000,21:58-64.
    [102]Ali A,Vafai K,Khaled A R A.Analysis of Heat and Mass Transfer between Air and Falling Film in a Cross Flow Configuration.Int.J.Heat Mass Transfer,2004,47:743 -55.
    [103]Ali A,Vafai K.An Investigation of Heat and Mass Transfer between Air and Desiccant Film in an Inclined Parallel and Counter Flow Channels.Int.J.Heat Mass Transfer,2004,47:1745-60.
    [104]宣益民,李强,纳米流体强化传热研究。工程热物理学报,2000,21(4):466-470.
    [105]Visinee Trisaksria,Somchai Wongwises.Critical review of heat transfer characteristics of nanofluids.Renewable and Sustainable Energy Reviews,2007,11:512 -523.
    [106]Wen D,Ding Y.Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions.Int.J.Heat Mass Transfer,2004,47:5181-8.
    [107]Yang Y,Zhang Z.G.,Grulke E A,et al.Heat Transfer Properties of Nanoparticle-in-Fluid Dispersions(Nanofluids) in Laminar Flow.Int.J.Heat Mass Transfer,2005,48(6):1107 - 16.
    [108]Pak B C,Cho Y I.Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles.Exper.Heat Transfer,1998,11(2):151 - 170.
    [109]Putra N,Roetzel W,Das S K.Natural convection of nano-fluids.Heat Mass Transfer,2003,39:775-84.
    [110]Khellil Sefiane,Jennifer Skilling,Jamie MacGillivray.Contact line motion and dynamic wetting of nanofluid solutions.Advances in colloid interface science,2008,138:101-120.
    [111]Chopard B,Droz M.Cellular Automata Modeling of Physical Systems.Beijing:rsinghua University Press,2003.
    [112]Broadwell J E.Study of rarefued shear flow by the diserete veloeity method.J.Fluid.Mech.,1964,19:401-414.
    [113]Broadwell J E.Shock strueture in a simple discrete velocity gas.Phys.fluids,1964,7:1243-1247.
    [114]Langton C G.Artificial life.Redwood City:Addison-Wesley Pub.Co.,1989.
    [115]Wolfram S.heory and applications of cellular automata.Singapore:orld Scientific Publishing Co.,1986.
    [116]Wolfram S.Cellular automata fluid l:basic theory.J.Stat.Phys.,1986,45(3/4):471-526.
    [117]Frish U,Hasslacher B,Pomeau Y.Lattice-gas automata for the Navier-Stokes equation.Phys.Rev.Lett.,1986,56(14):1505-1508.
    [118]Hihuera F,Jimenez H.Boltzmann approach to lattice gas simulations.Europhys.Lett.,1989,9(7):345-349.
    [119]Koelman J M V A.A simple lattice Boltzmann seheme for Navier-Stokes fluids flow.Europhys.Lett.,1991,15(6):603-607.
    [120]Qian Y H.,d' Humieres D,Lallemand P.Lattice BGK models for Navier-Stokes equation.Europhys.Lett.,1992,17(6):479-484.
    [121]Chen H,Chen S,Matthaeus W H.Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method.Phys.Rev.A 45,1992:R5339- R5342.
    [122]吴轩,宣益民.基于晶格-Boltzmann方法的纳米流体流动和传热模型.工程热物理学报,2003,Vol.24,No.1,121-123.
    [123]Somers J A.Direct Simulation of fluid flow with cellular automata and the lattice-Boltzmann equation.Appli.Sci.Res.,1993,51:127.
    [124]Chen S,Doolen G D.Lattice Boltzmann method for fluid flows.Annu.Rev.Fluid Mech.,1998,30:329-364.
    [125]Frisch U,d' Humieres D,Hasslacher B,et al.Lattice gas hydrodynamics in two and three dimensions.Complex System,1987,1:649-707.
    [126]Michael C Sukop,Daniel T Thorne,Jr.Lattice Boltzmann modeling:an introduction for geoscientists and engineers.Springer,pringed in the Netherlands,2006.
    [127]Pavlo P,Vahala G,Vahala L,et al.,Linear stability analysis of the thermo-lattice Boltzmann models.J.Comput.Phys.,1998,139:79-91.
    [128]Rapaport D C.The art of molecular dynamics simulation.Cambridge University Press,1995.
    [129]Cercignani C.Theory and Application of the Boltzmann Equation.Scottish Academic press,1975.
    [130]Chapman S,Cowling T G.The Mathematical Theory of Non-uniform Gases.Cambridge University Press,1970.
    [131]He X,Shan X,Doolen G D.Discrete Boltzmann equation model for nonideal gases.Phys.Rev.E,1998,57(1):R13.
    [132]Tekitek M M,Bouzidi M,Dubois F,et al.Adjoint lattice Boltzmann equation for parameter identification.Computers & fluids,2006,35:805-813.
    [133]郭照立,郑楚光,李青等.流体动力学的格子Boltzmann方法.武汉:湖北科学技术出版社,2002.
    [134]Behrend O.Solid-fluid boundaries in partiele suspension simulations via the Boltzmann method.Phys.Rev.E,1995,52(1):1164-1175.
    [135]Ladd A J C,Verberg R.Lattice Boltzmann simulations of partiele-fluid suspensions.J.Stat.Phys.,2001,104:1191-1251.
    [136]David R Noble,Shiyi Chen,John G Georgiadis.A consistent hydrodynamic boundary condition for the lattice Boltzmann method.Phys.Fluids,1995,7 (1):203 — 209.
    [137]Noble D R,Georgiadis J G,Buckius R O.Direct assessment of lattice Boltzmann hydrodynamics and boundary conditions for recirculating flows.J.Stat.Phys.,1995,81:17-33.
    [138]Noble D R,Georgiadis J G,B Buckius R O.Comparison of accuracy and performance for lattice Boltzmann and finite difference simulation of steady viscous flow.Int.J.Numer.Meth.Fluds,1996,23:1-18.
    [139]He X,Zou Q,Luo L,et al.Analytic solutions of simple flow and analysis of non-slip boundary conditions for the lattice Boltzmann BGK model.J.Stat.Phys.,1997,87:115-136.
    [140]Qisu Zou,Xiaoyi He.On pressure and velocity boundary conditions for the lattiee Boltzmann BGK model.Phys.Fluids,1997,9(6):1591-1598.
    [141]Chen S,Martinez D,Mei R.On boundary conditions in lattice Boltzmann methods.Phys.Fluids,1996,8:2527-2536.
    [142]Olga Filippova,Dieter H(a|¨)nd.Acceleration of lattice-BGK schemes with grid refinement.Jouranl of computational physics,2000,Vol.165:407-427.
    [143]Renwei Mei,Li shi Luo and Wei Shyy.An accurate curved boundary treatment in the lattice Boltzmann method.J.Comput.Phys.,1999,155:307-330.
    [144]De Vahl Davis G.Natural convection of air in a square cavity,a benchmark numerical solution.Int J Numer Meth Fluids,1983,3:249-264.
    [145]Hortmann M,Peric M,Scheuerer G.Finite volume multigrid prediction of laminar natural convection:benchmark solutions.Int.J.Num.Meth.in Fluids,1990,11:189-207.
    [146]Sai B V K S,Seetharamu K N,Narayana P A A.Solution of transient laminar natural convection in a square cavity by an explicit finite element scheme.Num.Heat Transfer,Part A,1994,Vol.25:593-609.
    [147]Bennacer R,Gobin D.Cooperating thermosolutal convection in enclosures-I.Scale analysis and mass transfer.Int.J.Heat Mass Transfer,1996,Vol.39,No.13:2671-2681.
    [148]Leal M A,Perez Guerrero J S,Cotta R M.Natural convection inside two-dimensional cavities-the integral transforms method.Comm.Num.Meth.Eng.,1999,15:113-125.
    [149]Leal M A,Machado H A,Cotta R M.Integral transform solutions of transient natural convection in enclosures with variable fluid properties.Int.J.Heat Mass Transfer,2000,Vol.43:3977-3990.
    [150]Mezrhab A,Bouzidi M,Lallemand P.Hybrid lattice-Boltzmann finite-difference simulation of convective flows.Computers & Fluids,2004,33:623-641.
    [151]Choukairy K,Bennacer R,Vasseur P.Natural convection in a vertical annulus boarded by an inner wall of finite thickness.Int.Commun.Heat Mass Transfer,2004,Vol.31,No.4:501-512.
    [152]Kao P H,Yang R J.Simulating oscillatory flows in Rayleigh-Benard convection using Lattice Boltzmann method.Int.J.Heat Mass Transfer,2007,Vol.50:3315-3328.
    [153]Kuznik F,Vareilles G,Rusaouen G,et al.A double-population lattice Boltzmann method with non-uniform mesh for the simulation of natural convection in a square cavity.Int.J.of heat and Fluid Flow,2007,28:862-870.
    [154]Semma E,El Ganaoui M,Bennacer R,et al.Investigation of flows in solidification by using the lattice Boltzmann method.Int.J.of Thermal Sci.,2008,Vol.47,No.3:201-208.
    [155]Schreiber,R.and Keller,H.B.(1983),Driven cavity flows by efficient numerical techniques,J.Comput.Phys.,Vol.49,pp.310-333.
    [156]Hou,S.,Zou,Q.,Chen,S.Doolen,G.,Cogley,A.C.(1995),Simulation of cavity flow by the Lattice Boltzmann Method,J.Comp.Phys.,Vol.118,pp.329-347.
    [157]Nobile,E.(1996),Simulation of the time-dependent flow in cavities with the additive-correction multigrid method.Part Ⅱ:Application,Numer.Heat Transf.Part B,Vol.30,pp 351-370.
    [158]X He,Doolen G D.Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows.J.Stat.Phys.,2002,107:309-328.
    [159]Kang Q,Zhang D,Chen S.Displacement of a two-dimensional immiscible droplet in a channel.Phys.Fluids,2002,14 (9):3203-3214.
    [160]Sukop M,Or D.Lattice Boltzmann method for modeling liquid-vapor interface configurations in porous media.Water Resource Research,2004,40,WO1509.
    [161]Pan C.Use of pore-scale modeling to understand flow and transport in porous media:[dissertation],Department of Environmental Science & Engineering,University of North Carolina at Chapel Hill,2003.
    [162]Qian D.Bubble Motion,Deformation,and Breakup in Stirred Tanks:[dissertation],Department of Chemical Engineering,Clarkson University,2003.
    [163]Martys N S,Douglas J F.Critical properties and phase separation in lattice Boltzmann fluid mixtures.Phys.Rev.E,2001,63,031205.
    [164]Sankaranarayanan K.Lattice Boltzmann Simulations of Gas-Liquid Bubbly Flows:[dissertation],Princeton University,2002.
    [165]Hou S,Shan X,Zou Q,et al.Evaluation of two lattice Boltzmann models for multiphase flows.J.Comput.Phys.,1997,138:695-713.
    [166]Shiladitya Mukherjee,John Abraham.Investigations of drop impact on dry walls with a lattice-Boltzmann model.Journal of Colloid and Interface Science,2007,312:341-354.
    [167]Yang Z,Dinh T,Nourgaliev R,et al.Numerical investigation of bubble growth and detachment by the lattice-Boltzmann method.Int.J.Heat Mass Transfer,2001,44:195-206.
    [168]Buick J M,Greated C A.Gravity in a lattice Boltzmann model.Physical Review E,2000,61:5307-5320.
    [169]阎广武,胡守信,施卫平,Euler方程的双分布函数格子Boltzmann Godunov方法。计算物理,1998.2:193—198.
    [170]Drew D A,Passman S L.Theory of Multicomponent Fluids.Springer,Berlin,1999.
    [171]Brinkman H C.The viscosity of concentrated suspensions and solution.J.hemistry Physics,1952,Vol.20:571-581.
    [172]Russel W B,Saville D A,Schowalter W R.Colloidal Dispersion.Cambridge University Press,Cambridge,England,1989.
    [173]Admson A W.Physical Chemistry of Surfaces.New York:John Wiley & Sons,1990.
    [174]James Conway,Heather Korns,Michael R Fisch.Evaporation kinematics of polystyrene bead suspensions.Langmuir,1996,13:426-431.
    [175]Elyssa F Crafton,Black W Z.Heat transfer and evaporation rates of small liquid droplets on heated horizontal surfaces.International Journal of Heat and Mass Transfer,2004,47:1187-1200.
    [176]Laura Grandas,Christelle Reynard,Robert Santini,et al.Experimental study of the evaporation of a sessile drop on a heat wall.Wetting influence,International Journal of Thermal Sciences,2005,44:137-146.
    [177]Birdi K S,Vu D T.A study of the Evaporations Rates of Small Water Drops Placed on a Solid Surface.J.Phys.Chem,1989,93:3702-3703.
    [178]Chan Hee Chon.The thermophysical roll of nanoparticles in naofluidic heat and mass transport:[dissertation].The University of Tennessee,Knoxville,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700