用户名: 密码: 验证码:
锂离子电池材料的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代社会对能源的需求,大大促进了储能技术的发展,自从Sony公司于1990年将锂离子电池产业化后,锂离子电池作为最成功的储能装置,已经占领了便携式电器的市场。与此同时,随着笔记本电脑中央处理器的快速发展以及3D技术在手机中的广泛应用,人们渴望去寻找能量更高、寿命更长的电池,这也使锂离子电池的相关研究成为现在材料科学研究热点。本论文内容涉及电极材料的制备(LiCoO_2、LiMn_2O_4、LiFePO_4和LiNi_(0.5)Mn_(1.5)O_4)、电极材料的改性和优化(非计量化学整比Li_(1±x)CoO_2以及Si负极材料)、新型钒基电极材料的探索、金属氧化物充放电机理的研究等,此外,研究内容还包括γ射线辐照对锂离子电池性能的影响和铁钴钒氧化物的透射电子显微学研究。
     在论文第一章中,作者简要地回顾了锂离子电池的发展历史,简要地介绍了锂离子电池的工作原理,重点论述了三种常用的正极材料(LiCoO_2、LiMn_2O_4和LiFePO_4)以及三种负极材料(石墨、Li_4Ti_5O_(12)和Si)的研究现状,最后扼要的概述了电极材料的制备和改性方法。
     在第二章中,重点介绍本论文中所用到的实验方法和仪器,详细介绍了实验用的扣式电池的制备过程,以及常用的电化学和结构测试手段。
     第三章里我们利用辐照凝胶法制备了LiCoO_2和LiMn_2O_4正极材料,作者在本科做大学生研究计划时曾系统地研究了丙烯酸的辐照聚合,这里我们将其拓展到无机粉体的制备上。与传统的溶胶-凝胶工艺相比,该合成方法可以迅速(1小时以内)、便捷(不需要严格控制温度、pH值等实验条件)地制备出凝胶,为工业界大规模利用凝胶工艺制备电极材料提供了一种可能,同时该方法具有很好的普适性。
     针对目前锂离子电池正极材料的研究热点——磷酸铁锂(LiFePO_4),第四章里我们改进了传统的溶液法合成工艺,采用单质铁(Fe)为反应物,利用甲酸作为溶剂,该方法的优点在于溶解单质Fe的过程中所产生的氢气可以抑制Fe~(2+)的氧化,与传统溶液法相比,该方法可以直接制备出亚铁盐的前驱物,同时由于所有反应物中的杂质离子均可通过高温分解除去,因此不需要传统溶液法(例如采用(NH_4)_2Fe(SO_4)_2·6H_2O为反应物)合成中的洗涤过程。
     与传统4 V工作电压的LiCoO_2和LiMn_2O_4正极材料相比,5 V电极材料LiNi_(0.5)Mn_(1.5)O_4的能量密度要高出30%左右,可以作为一种潜在的高能量电极材料而在未来的电动汽车上得到应用。第五章里我们改进了传统的LiNi_(0.5)Mn_(1.5)O_4共沉淀合成工艺,采用氯化物为起始原料,利用氨水作为沉淀剂,通过NH_4Cl高温分解去除杂质氯离子,可以制备出纯相、具有完整八面体外形、分散均匀、尺寸在2μm左右的LiNi_(0.5)Mn_(1.5)O_4颗粒,该方法相对于传统的共沉淀法具有操作简便且易于控制化学计量等优点。
     在第六章中我们研究了名义组成为Li_(x0)CoO_2(X_0=0.8、0.9、1.0、1.1、1.2)的实际化学组成和电化学性能,发现少量过量的锂会在表面形成一层碳酸锂膜,这层膜会破坏电极在低电压下的循环性能,但过量的锂可以改善电极在高电压下的循环性能。电导率的研究发现与Li_(x0)CoO_2(X_0=0.8、0.9、1.0)不同,Li_(1.1)CoO_2和Li_(1.2)CoO_2的电导率变化并没有表现出明显的半导体性质,其电导率随温度的升高而增大。本章中还通过交流阻抗谱测定了锂离子在Li_(x0)CoO_2中的化学扩散系数D_(Li)~+,发现D_(Li)~+随Li_xCoO_2中锂含量的变化呈抛物线形状,在10~(-13)-10~(-8)cm~2s~(-1)内变化。
     第七和第八章里我们重点研究了Si负极材料。Si负极材料的比容量高达4200 mAh g~(-1),但由于在充放电过程中会出现剧烈的体积变化,因此其容量衰减很快,第七章里我们通过优化Si的颗粒大小、电极中炭黑含量、粘结剂种类、电解液(溶剂、电解质锂盐)以及VC添加剂来改善Si电极的循环性能。研究发现,纳米Si的电化学性能优于微米Si,大量的炭黑可以在一定程度上抑制Si电极在插锂过程中所造成的体积膨胀。对于电极粘结剂而言,研究发现Na-CMC比PVDF更适合应用于Si体系,这主要是由于CMC中的羧基与Si颗粒表面的羟基可以发生酯化反应,因此CMC与Si的结合较PVDF更为紧密,故可以抑制Si的体积膨胀。同时,为了促进CMC与Si的酯化反应,Na-CMC的pH值应被调节到3.5。电解液研究发现,虽然Si可以在PC电解液中循环,但循环性能较EC-DEC电解液体系要差;锂盐的选择发现LiPF6基电解液要比LiBOB基的电化学性能更为优异。我们还发现,虽然VC添加剂可以用于PVDF作为粘结剂的Si电极中,并且改善其循环性能,但VC添加剂并不适合CMC体系。最后,适当提高低限截至电压抑制Li_(15)Si_4结晶相的形成,可以明显提高Si的循环性能。综合这些因素,电极组成为40%纳米硅、40%导电炭黑和20%羧甲基纤维素纳(pH=3.5溶液溶度为5%)时电极具有最优异的循环性能,在0到0.8 V充放电窗口下,放电倍率为C/2时,经过200次循环,其容量仍可保持在738 mAh g~(-1)第八章里我们对锂离子在纳米硅电极中的扩散动力学进行了研究。EIS和GITT的计算结果显示锂离子在硅电极中的化学扩散系数D_(Li)~+在10~(-13)-10~(-12) cm~2 s~(-1)之间,这些结果与CV计算的结果(5.1×10~(-12) cm~2 s~(-1))可以很好地吻合。随着锂插入量的增加,D_(Li)~+在x<3.75时出现了两个极小值,分别对应着两个非晶相变过程:a-Li_7Si_3和a-Li_(13)Si_4。此外,不同插锂状态时样品的SEM照片显示,硅在插锂过程中体积膨胀了300%,但颗粒的长大并不是线性的,甚至还存在着一个长大后细化的过程,这些研究有助于我们更好地了解到硅电极的工作机理。
     在第九章中我们研究了γ射线辐照对电池的影响,分别电极和电解液两个方面进行了研究。对电极的影响主要在于高能射线引起晶格中氧空位浓度的变化,从而影响Li~+离子的扩散,此外辐照也能促使电解液中的LiPF6发生分解生成LiF和PF_5,而PF_5是强的Lewis酸可以引发EC的开环聚合反应,导致电解液变成棕褐色,因此我们建议在辐照环境下应该改用LiBOB或者LiBETI代替LiPF_6作为电解质盐。此外,IR和1H NMR谱图均显示辐照后的电解液中有-COOH的存在,而-COOH可以与Li发生反应,并在全电池的首次充电曲线上出现了一个1.75 V的电压平台,该平台与热力学计算结果能够很好地吻合。整个电池测试中发现电池壳无法很好地屏蔽掉射线的影响,其中辐照后半电池的容量衰减了约20%,而全电池的容量衰减则高达50%。
     第十章里我们探索了新的钒基氧化物电极材料。研究发现通过改变前驱物的组成,可以制备出具有不同形态的钒氧化合物粉体:纳米纤维、纳米棒、纳米片和纳米颗粒。利用透射电子显微镜的各种分析手段,对产物的形貌、组成、价态和结构进行了系统的分析。电池性能测试中发现,制备出来的片状VO_2表现出优异的电化学性能,在大倍率放电状态下(10C),仍有100 mAh/g的放电容量,同时半电池测试500次循环后容量仍可保持88%,充放电电压区间为2-3V,而且具有极其优异的抗过充过放性能,是潜在的可以作为电动汽车用锂电正极材料。
     在第十一章中我们研究了一系列的金属氧化物(MnO,Mn_2O_3,MnO_2,CoO和Ga_2O_3)电极材料,通过电子衍射、电子能量损失谱和电化学等方法详细的研究了金属氧化物的充放电过程,并提出了一种新的可能的界面储锂理论。
     第十二章里我们利用透射电子显微镜相关技术对星型的Fe/CoO复合纳米颗粒氧化过程以及V_2O_5纤维氧化乙醇进行了研究。
     最后,对本论文的创新和不足作了简要总结,并对今后可能的研究方向提出了建议。
Our ceaseless demands for energy sources have greatly promoted the development of energy storage devices. As the most successful energy storage device invented in the past two decades, Li-ion batteries have dominated the portable electronic market since first commercialized by Sony in 1990. Meanwhile, with the development of high performance of central processing unit in laptops and the use of 3D techniques in cellular phones, people never stop their steps to seek higher-power and longer-life batteries, which lead to the study of Li-ion batteries to be a hotspot in materials science. This Ph.D thesis includes the synthesis of cathode materials (LiCoO_2、LiMn_2O_4、LiFePO_4 and LiNi_(0.5)Mn_(1.5)O_4), the improvement and optimization of electrode materials (nominal "Li_(1±x)CoO_2" and Si), the exploration of new vanadium-based electrode materials and the study of storage mechanism of lithium in transition metal oxides. Besides, the effect ofγ-ray radiation on Li-ion batteries is also investigated.
     In Chapter 1, a general introduction is given on following aspects: the development and status of the Li-ion batteries, their working principle, three important cathode materials (LiCoO_2, LiMn_2O_4 and LiFePO_4) and three common anode materials (graphite, Li_4Ti_5O_(12) and Si), the methods of electrode synthesis and approaches to improve their performance (mainly by coating or doping).
     In Chapter 2, we briefly introduce the experimental processes and equipments used in the project of this thesis. A detailed description on the process of making a coin cell is presented. The electrochemical and structural analyses methods are also included.
     In Chapter 3, we invent a new synthesis method named "Radiated Polymer Gel" method to prepare LiCoO_2 and LiMn_2O_4 powders. This method is developed from my experience in "Undergraduate Research Program, USTC", where I have investigated the polymerization process of acrylic acid. Herein, I expand it to the synthesis of inorganic materials. In comparison with the traditional "Sol-gel" method, our method has some advantages including: fast (time-consuming, usually less than 1 h), easily controllable (not necessary to control the temperature and pH value during gel process), potential of massive production and easy extension to other materials.
     With regard to the recent research hotspot of LiFePO_4, in Chapter 4 we invent a new route for LiFePO_4 synthesis. In this method, we use Fe as the starting material and formic acid as a solvent. Fe is dissolved in formic acid and H_2 gas is released, which can protect Fe~(2+) ions against further oxidation. In comparison with the usual synthesis methods, we directly use a Fe~(2+) salt as the precursor with any possible impurities can be removed by calcination. Thus during the synthesis, a washing step is not needed.
     As the working voltage of LiCoO_2 and LiMn_2O_4 is only about 4 V, the 5 V cathode material "LiNi_(0.5)Mn_(1.5)O_4" can deliver a energy density of 30% higher than that of LiCoO_2 or LiMn_2O_4,and can be considered as a potential cathode material for EV/HEV applications. In Chapter 5, we improve the traditional co-precipitation method, using chloride as starting materials and ammonia as precipitator, then the chloric impurities are removed by the thermal decomposition of NH4Cl so that we finally obtain LiNi_(0.5)Mn_(1.5)O_4 with spinel phase (with octahedral crystalites) and a narrow size-distribution (about 2μm). In comparison with the traditional co-precipitation method, we don't need to wash the product, thus the final composition can be exactly stoichimetric.
     In Chapter 6, we investigate the properties of nominal Li_(x0)CoO_2 (X_0=0.8, 0.9, 1.0, 1.1 and 1.2), and find a Li_2CO_3 layer on the over-stoichimetric Li_(x0)CoO_2 (X_0=1.1, 1.2), which can affect the cyclability of Li_(1.1)CoO_2 and Li_(1.2)CoO_2 under the low voltage range, yet improve the cyclability under the high voltage range by avoiding the decomposition of electrolyte on Li_(x0)CoO_2.The conductance study of over-stoichimetric Li_(x0)CoO_2 (X_0=1.1 and 1.2) reveals that the conductance change doesn't follow with a semiconducting behavior with the increase in temperature, whereas the stoichimetric and under-stoichimetric Li_(x0)CoO_2 (X_0=0.8, 0.9 and 1.0) behave as semiconductors, and have the maximum conductance at around 100℃. Besides, we also derive the diffusion coefficient of Li-ion (D_(Li)~+) in Li_xCoO_2 by A.C. impedance method, and find that the D_(Li)~+ values vary in the range from 10~(-13) to 10~(-8)cm~2s~(-1).
     In Chapter 7 and Chapter 8, we extensively investigate Si as anode mterial for Li-ion battery. Silicon working as an anode for Li-ion batteries has attracted much attention thanks to its very high capacity (-4200 mAh g~(-1)). However, due to the large volume expansion during lithiation, the capacity of silicon fades very fast. In Chapter 7, we focus on the issue to fight the capacity fading. Results show that Si with sodium carboxymethyl cellulose (Na-CMC) as a polymer binder exhibits a better cyclability than that with poly(vinylidene fluoride) (PVDF). Yet different from the system using PVDF, the addition of vinylene carbonate (VC) does not improve or even worsens the performance of the system using Na-CMC. In addition, the small particle size of Si, a large amount of carbon black, the good choice of electrolyte/conducting salt and charge-discharge window also play important roles to enhance the cyclability of Si. It is found that electrode consisting of 40 wt.% nano-Si, 40 wt.% carbon black and 20 wt.% Na-CMC (pH=3.5) displays the best cyclability, and in the voltage range from 0 to 0.8 V, after 200 cycles, its capacity can still keep 738 mAh g~(-1) (C/2, in 1M LiPF_6 ethylene carbonate/diethyl carbonate electrolyte, with VC free), almost twice as that of graphite. In Chapter 8, the chemical diffusion coefficients of Li~+ ions (Du~+) in nano-Si are determined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT). D_(Li)~+ values are estimated to be -10~(-12) cm~2 s~(-1) and exhibit a "W" type variation with the Li~+ ion concentration in silicon. Two minimum regions of D_(Li)~+ (at Li_(2.1±0.2)Si and Li_(3.2±0.2)Si) are found, which probably result from two amorphous compositions (a-Li_7Si_3 and a-Li_(13)Si_4).In addition to the two minimum regions, one maximum D_(Li)~+ is observed at Li_(15)Si~4,corresponding to the crystallization of highly lithiated amorphouse Li_xSi.We also observe that the volume expansion of Li_xSi particles during lithiation is not linearly related to x and the particles are even degraded into srnaller particles at Li_(3.75)Si during the crystallization.
     In Chapter 9, we study the effects of y-radiation on lithium-ion cells in following two aspects: electrode and electrolyte. The radiation can cause oxygen vacancies in crystal lattice and affect the Li-ion transportation. The radiation can also lead to the decomposition of LiPF_6 in the electrolyte into LiF and PF_5.PF_5 is a strong Lewis acid and can further induce the polymerization of ethylene carbonate (EC) forming a PEO-like polymer, which can be clearly observed from the color change of electrolyte (from colorless into brown). To avoid such effect, we suggest that the conducting salt in the electrolyte should be LiBOB instead of LiPF_6.Besides, carboxyl is also observed in the radiated electrolyte confirmed by IR and NMR spectra. As a result, there is an extra voltage plateau measured for the full cell at 1.75 V, which comes from the reaction between carboxyl and Li and is confirmed by thermodynamic calculation. In the full cell test, we find the cell shell can not shield the radiation effects and after radiation, the capacity of a half cell (using Li as anode) fades for about 20% and, for a full cell, the capacity fading even reaches 50%.
     In Chapter 10, we explore the new vanadium-based electrode materials. By simply changing the composition of starting materials, we can obtain vanadium oxides with different morphologies: nanowires, nanosheets, nanoneedles and nanoparticles. Their structures are characterized by a series of techniques in TEM, such as EDX, EELS and ED patterns. Results show that the sheet-like VO_2·0.43H_2O synthesized at 180℃exhibits a significant superiority, with high capacity (about 160 mAh g~(-1)), high energy efficiency (95%) and excellent cyclability (keeps 142.5 mAh g~(-1) after 500 cycles). Electrochemical kinetics study reveals that the activation energy of VO_2·0.43H_2O is lower than other electrode materials. The low activation energy leads to that VO_2·0.43H_2O can keep quite good C rate retention under the high current density. We believe that VO_2·0.43H_2O can be considered as a potential candidate cathode material to design the safe and high energy density batteries for EV/HEV.
     In Chapter 11,we systematically investigate the electrochemical reactions of lithium with metal oxides. A series of remarkable phenomena are observed, which can not be explained by the conversion reaction mechanism. For example, the voltage profile of Ga_2O_3 does not show the characteristic Li/Ga alloying process. Moreover, by a simple, well-designed experiment, we found that lithium storage in CoO is not through the formation of Li_2O as proposed by the conversion mechanism, but instead it proceeds through the formation of some sort of intermediate lithiated MO state, which is an active lithium source that can react with N_2.In addition, we have also studied MnO_2, which shows a distinctive reduction process. An intermediate state formed by charge transfer between metal oxide nanoparticles and lithium, which can reversibly store lithium in metal oxides, has been proposed. We anticipate that such a new understanding of lithium storage mechanism in metal oxides may guide the further exploration of the lithium-related rechargeable batteries and super-capacitors.
     In Chapter 12, we use transmission electron microscope to investigate the oxidation process of Fe/CoO nanocrystals and the final product of V_2O_5 after reduction by ethanol.
     Finally, the author gives an overview on the achievements and the deficiency in this thesis. Some prospects and suggestions of the possible future research directions are pointed out.
引文
[1] 郭炳琨,徐徽,王先友,肖立新,锂离子电池 中南大学出版社(2002).
    [2] 吴宇平,万春荣,姜长印,锂离子二次电池 化学工业出版社(2002).
    [3] N. Watanabe, M. Fukuba, U.S. Patent 3,536,532 (1970).
    [4] H. Ikeda, T. Saito, H. Tamaru, Denki Kagaku 45 (1977) 314.
    [5] H. Ikeda, S. Uena, T. Saito, S. Nakaido, H. Tamaru, Denki Kagaku 45 (1977) 391.
    [6] Sanyo, Lithium Battery Calculator, Model CS-8176L.
    [7] D.R. Vissers, Z. Tomczuk, R.K. Steunenberg, J. Electrochem.Soc.121 (1974)665.
    [8] E.C.Gay, D.R. Vissers, F.J. Martino, K.E. Anderson, J. Electrochem. Soc. 123(1976)1591.
    [9] T.D. Kaun, P.A. Nelson, L. Redey, D.R. Vissers, GL. Henriksen, Electrochim.Acta 38 (1993) 1269.
    [10] M.S. Whittingham,Science 11 (1976) 1126.
    [11] B.M.L. Rao, R.W. Francis, H.A. Christopher, J. Electrochem. Soc. 124 (1977)1490.
    [12] S. Sinha, D.W. Murphy, Solid State Ionics 20 (1986) 81.
    [13] M.S. Whittingham, Mater. Res. Bull. 13(1978) 959.
    [14] M.S. Whittingham, J. Electrochem. Soc. 123 (1976) 315.
    [15] P.G Dickens, S.J. French, A.T. Hight, M.F. Pye, Mater. Res. Bull. 14 (1979)1295.
    [16] D.W. Murphy, P.A. Christian, F.J. Disalvo, J.N. Carides, J. Electrochem. Soc. 126(1979)497.
    [17] K. Nassau, D.W. Murphy, J. Non-Cryst.Solids 44 (1981) 297.
    [18] R.R. Haering, J.A.R. Stiles, K. Brandt, U.S. Patent 4,224,390 (1980).
    [19] K.Mitzushima,P.C.Johnes, P.J. Wiseman, J.B. Goodenough, Mater. Res. Bull.15(1980)783.
    [20] B. Samar,U.S. Patent 4,304,825 (1981).
    [21] M.M. Thackeray, W.I.F. David, P.G Bruce, J.B. Goodenough, Mater. Res..Bull.18(1983)461.
    [22] A. Manthiram, J.B. Goodenough, J. Power Sources 26 (1989) 403.
    [23] T. Nagaura, Proceedings of the 5~(th) International Seminar on Lithium Battery Technology and Applications. Deefield Beach. FL. March 5-7,1990;Florida Educational Seminars, Inc.: BocaRaton, FL.
    [24] D. Guyomard, J.M. Tarascon, J. Electrochem. Soc. 140 (1993) 3071.
    [25] J.M. Tarascon, D. Guyomard, Solid State Ionics 69 (1994) 293.
    [26] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144(1997) 1188.
    [27] R.J. Gummow, M.M. Thackeray, W.I.F. David, S. Hull, Mater. Res. Bull. 27(1992) 327.
    [28] E. Rossen, J.N. Reimers, J.R. Dahn, Solid State Ionics 62 (1993) 53.
    [29] Y. Shao-Horn, S.A. Hackney, C.S. Johnson, A.J. Kahaian, M.M. Thackeray, J.Solild State Chem. 140 (1998) 116.
    [30] S.G Kang, S.Y. Kang, K.S. Ryu, S.H. Chang, Solid State Ionics 120 (1999) 155.
    [31] R.J. Gummow, M.M. Thackeray, W.I.F. David, S. Hull, Mater. Res. Bull. 27(1992) 327.
    [32] X.Q. Yang, X. Sun, J. McBreen, Electrochem. Communi. 2 (2000) 1000.
    [33] J.N. Reimers, J.R. Dahn, J. Electrochem. Soc. 139 (1992) 2091.
    [34] T. Ohzuku, A. Ueda, J. Electrochem. Soc. 141 (1994) 2972.
    [35] R. Yazami, Y. Ozawa, H. Gabrisch, B. Fultz, Electrochim. Acta 50 (2004) 385.
    [36] Y-II Jang, B.J. Neudecker, N.J. Dudney, Electrochem. Solid-State Lett. 4 (2001)A74.
    [37] K. Dokko, M. Mohamedi, Y. Fujita, T. Itoh, M. Nishizawa, M. Umeda, I. Uchida,J. Electrochem. Soc. 148 (2001) A422.
    [38] Y.H. Rho, K. Kanamura, J. Electrochem. Soc. 151 (2004) A1406.
    [39] H. Xia, L. Lu, G Ceder, J. Power Source 159 (2006) 1422.
    [40] M. Menetrier, I. Saadoune, S. Levasseur, C. Delmas, J. Mater. Chem. 9 (1999)1135.
    [41] A. Van der Ven, M.K. Aydinol, G Ceder, G Kresse, J. Hafher, Phys. Rev. B 58(1998)2957.
    [42] J.B. Goodenough, Prog. Solid St. Chem. 5 (1971) 278.
    [43] M. Carewska, S. Scaccia, F. Croce, S. Arumugam, Y. Wang, S. Greenbaum, Solid State Ionics 93 (1997) 227.
    [44] S. Levasseur, M. Menetrier, Y. Shao-Horn, L. Cautier, A. Audemer, G Demazeau,A. Largeteau, C. Delmas, Chem. Mater.15 (2003) 348.
    [45] S. Levasseur, M. Menetrier, E. Suard, C. Delmas, Solid State Ionics 128 (2000)11.
    [46] N. Pereira, C. Matthias, K. Bell, F. Badway, I. Plitz, J. Al-Sharab, F. Cosandey, P.Shah, N. Isaacs, G.G. Amatucci,J. Electrochem. Soc.152 (2005) A114.
    [47] S. Levasseur, M. Menetrier, E. Suard, C. Delmas, Solid State Ionics 128 (2000)11.
    [48] M. Zou, M. Yoshio, S. Gopukumar, J. Yamaki, Mater. Res. Bull. 40 (2005) 708.
    [49] M.M. Thackeray, Prog. Solid St. Chem. 25 (1997) 1.
    [50] Y.Y.Xia, M. Yoshio, J. Electrochem. Soc. 143 (1996) 825.
    [51] W.I.F. David, M.M. Thackeray, L.A. de Picciotto, J.B. Goodenough, J. Solid State Chem. 67(1987)316.
    [52] A. Mosbah, A. Verbaere, M. Tournous, Mat. Res. Bull. 18 (1983) 1375.
    [53] J.C. Hunter,J.Solid State Chem. 39 (1981) 142.
    [54] J.M. Tarascon, D. Guyomard, Electrochim. Acta 38 (1993) 1221.
    [55] D.H. Jang, Y.J. Shin, S.M. Oh, J. Electrochem. Soc. 143 (1996) 2204.
    [56] G.G. Amatucci, C.N. Schmutz, A. Blyr, C. Sigala, A.S. Gozdz, D. Larcher, J.M.Tarascon, J. Power Sources 69 (1997) 11.
    [57] G.G. Amatucci, A.D. Pasquier, A. Blyr, T. Zheng, J.M. Tarascon, Electrochim.Acta 45(1999)255.
    [58] A.R. Armstrong, P.G Bruce, Nature 381 (1996) 499.
    [59] Q.M. Zhong, A. Bonakdarpour, M.J. Zhang, Y. Gao, J.R. Dahn, J. Electrochem.Soc. 144(1997)205.
    [60] R. Kanno, T. Shirane, Y. Inaba, J. Power Sources 68 (1997) 145.
    [61] A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, J.B. Goodenough, J.Electrochem. Soc. 144 (1997) 1609.
    [62] A.S. Andersson, B. Kalska, L. Haggstrom, J.O. Thomas, Solid State Ionics 130(2000)41.
    [63] A.S. Andersson, J.O. Thomas, J. Power Sources 97 (2001) 489.
    [64] L. Laffont, C. Delacourt, P. Gibot, M.Y. Wu, P. Kooyman, C. Masquelier, J.M.Tarascon, Chem. Mater. 18 (2006) 5520.
    [65] M. Takahashi, S. Tobishima, K. Takei, Y. Sakurai, Solid State Ionics 148 (2002)283.
    [66] P.P. Prosini, M. Lisi, D. Zane, M. Pasquali, Solid State Ionics 148 (2002) 45.
    [67] D. Morgan, A. Van der Ven, G. Ceder, Electrochem. Solid-State Lett. 7 (2004)A30.
    [68] M.S. Islam, D.J. Driscoll, C.A.J. Fisher, P.R. Slater, Chem. Mater. 17 (2005)5085.
    [69] S. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada,Nat. Mater. 7 (2008) 707.
    [70] P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet,J.M. Tarascon, C. Masquelier, Nat. Mater. 7 (2008) 741.
    [71] B. Ellis, P.S. Herle, Y.-H. Rho, L.F. Nazar, R. Dunlap, L.K. Perry, D.H. Ryan,Faraday Discuss. 134(2007) 119.
    [72] I. Mochida, C.-H. Ku, Z. Korai, Carbon 39 (2001) 399.
    [73] J.R. Dahn, T. Zheng, Y. Liu, J.S. Xie, Science 270 (1995) 590.
    [74] J.R. Dahn, Phy. Rev. B 44 (1991) 9170.
    [75] N. Imanishi, K. Kumai, H. Kokugan, Y. Takeda, O. Yamamoto, Solid State Ionics107(1998)135.
    [76] A. Naji, P. Willmann, D. Billauda, Carbon 36 (1998) 1347.
    [77] K. Xu, S.S. Zhang, B.A. Poese, T.R. Jow, Electrochem. Solid-State Lett. 5 (2002)A259.
    [78] K. Xu, U. Lee, S.S. Zhang, M. Wood, T.R. Jow, Electrochem. Solid-State Lett. 6(2003) A144.
    [79] K. Xu, S.S. Zhang, T.R. Jow, Electrochem. Solid-State Lett. 6 (2003) A117.
    [80] A. Deschanvers, B. Raveau, Z. Sekkal, Mater. Res. Bull. 6 (1971) 699.
    [81] K.K. Colbow, J.R. Dahn, R.R. Haering, J. Power Sources 26 (1989) 397.
    [82] E. Ferg, R.J. Gummov, A. de Kock, M.M. Thackeray, J. Electrochem. Soc. 141(1994) L147.
    [83] T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc. 143 (1995) 1431.
    [84] S. Scharner, W. Weppner, P. Schimid-Beurmann, J. Electrochem. Soc. 146 (1999)857.
    [85] J. Jiang, J.R. Dahn, Electrochem. Commun. 6 (2004) 39.
    [86] J. Jiang, J.R. Dahn, J. Electrochem. Soc. 153 (2006) A310.
    [87] K. Ariyoshi, R. Yamato, T. Ohzuku, Electrochim. Acta 51 (2005) 1125.
    [88] V. Rossi Albertini, P. Perfetti, F. Ronci, P. Reale, B. Scrosati, Appl. Phys. Lett. 79(2001)27.
    [89] F.P. Campana, R. Kotz, J. Vetter, P. Novak, H. Siegenthaler, Electrochem.Commun. 7 (2005)107.
    [90] A.N. Jansen, A.J. Kahaian, K.D. Kepler, P.A. Nelson, K. Amine, D.W. Dees, D.R.Vissers, M.M. Thackeray,J.Power Sources 81-82 (1999) 902.
    [91] Y.P. Wu, C.Y. Jiang, C.R. Wan, E. Tsuchida, Electrochem. Commun. 2 (2000) 272.
    [92] A.N. Dey, J. Electrochem. Soc. 118 (1971) 1547.
    [93] R.A. Sharma, R.N. Seefurth,/. Electrochem. Soc. 123 (1976) 1763.
    [94] B.A. Boukamp, GC. Lesh, R.A. Huggins, J. Electrochem. Soc. 128 (1981) 725.
    [95] T. Kubota, T. Tanaka, Jpn. Kokai Tokkyo Koho, JP 94-55614-940325 (1994).
    [96] E. Funatsu, Jpn. Kokai Tokkyo Koho, JP 94-2592-940114 (1994).
    [97] M. Holzapfel, H. Buqa, L.J. Hardwich, M. Hahn, Electrochim. Acta 52 (2006)973.
    [98] W.J. Weydanz, M. Wohlfahrt-Mehrens, R.A. Huggins, J. Power Sources 81-82(1999)237.
    [99] H. Li, X.J. Huang, L.Q. Chen, GW. Zhou, Z. Zhang, D.P. Yu, Y.J. Mo, N. Pei,Solid State Ionics 135 (2000) 181.
    [100] H.J. Jung, M. Park, Y.G Yoon, GB. Kim, S.K. Joo, J. Power Sources 115 (2003)346.
    [101] M.N. Obrovac, L.J. Krause, J. Electrochem. Soc. 154 (2007) A103.
    [102] J. Li, J.R. Dahn, J. Electrochem.Soc154 (2007) A156.
    [103] V. Berbenni, C. Milanese, G Bruni, Mater. Chem. Phys. 100 (2006) 251.
    [104] H.W. Chan, J.G Duh, S.R. Sheen, Electrochim. Acta 51 (2006) 3645.
    [105] M.Y. Song, S. Kwon, I. Kwon,J. Appl. Electrochem. 37 (2007) 421.
    [106] H.W. Chan, J.G Duh, S.R. Sheen, Electrochim. Acta 51 (2006) 3645.
    [107] A. Ringuede, A .Wijayasinghe, V. Albin, J. Power Sources 160 (2006) 789.
    [108] N. Ding, X.W. Ge, C.H. Chen, Mater. Res. Bull. 40 (2005) 1451.
    [109] M. Tabuchi, K. Ado, H. Kobayashi, H. Sakaebe, H.Kageyama, J. Mater.Chem.l99(1999)9.
    [110] S.I. Cho, S.G Yoon, J. Electrochem. Soc. 149 (2002) A1584.
    [111] C.H. Chen, A.A.J. Buysman, E.M. Kelder, J. Schoonman, Solid State Ionics 80(1995)1.
    [112] Y.C. Sun, Z.X. Wang, L.Q. Chen, X.J. Huang, J. Electrochem. Soc. 150 (2003)A1294.
    [113] S.H. Park, K.S. Park, S.S. Moon, Y.K. Sun, K.S. Nahm, J. Power Sources 92(2001)244.
    [114] S.T. Myung, S. Komaba, N. Kumagai, J. Electrochem. Soc. 148 (2001) A482.
    [115] D. Capsoni, M. Bini, G. Chiodelli, V. Massarotti, P. Mustarelli, L. Linati, M.C.Mozzati, C.B. Azzoni, Solid State Commun. 126 (2003) 169.
    [116] M. Yoshio, Y.Y. Xia, N. Kumada, S.H. Ma, J. Power Sources 101 (2001) 79.
    [117] C.H. Shen, R.S. Liu, R. Gundakaram, J.M. Chen, S.M. Huang, J.S. Chen, CM.Wang, J. Power Sources 102 (2001) 21.
    [118] Y.J. Lee, S.H. Park, C. Eng, J.B. Parise, C.P. Grey, Chem. Mater. 14 (2002) 194.
    [119] D. Capsoni, M. Bini, G. Chiodelli, V. Massarotti, C.B. Azzoni, M.C. Mozzati,A. Comin, Phys. Chem. Chem. Phys. 3 (2001) 2162.
    [1] M.M. Thackeray, P.G. David, P.G Bruce, J.B. Goodenough, Mater. Res. Bull.18(1983)461.
    [2] D. Guyomard, J.M. Tarascon, J. Electrochem.Soc. 138 (1991) 2864.
    [3] C.Y. Wan, Y. Nuli, J.H. Zhuang, Z.Y. Jiang, Mater. Lett. 56 (2002) 357.
    [4] A. Paolone, R. Cantelli, G Rousse, C. Masquelier, J. Phys.: Condens. Matter 15(2003) 457.
    [5] Z.P. Guo, J.H. Ahn, H.K. Liu, S.X. Dou, J. Nanosci. Nanotechnol. 4 (2004) 162.
    [6] H.B. Park, J. Kim, C.W. Lee, J. Power Sources 92 (2001) 124.
    [7] Y.S. Lee, Y.K. Sun, K.S. Nahm, Solid State Ionics 109 (1998) 285.
    [8] W.J. Zhou, S.J. Bao, YY. Liang, B.L. He, H.L. Li, J. Solid State Chem.10 (2006)277.
    [9] 沈十林,倪瑞澄,周欣山,李从武,中国专利 99113860.0(1999).
    [10] 李阳,周惠,中国专利 01129537.6(2001).
    [11] 周恒辉,杨正,任献举,中国专利 02155659.8(2002).
    [12] N. Ding, X.W. Ge, C.H. Chen, Mater. Res. Bull. 40 (2005) 1451.
    [13] S.R.S. Prabaharan, N.B. Saparil, S.S. Michael, M. Massot, C. Julien, Solid State Ionics 112(1998)25.
    [14] L. Li, W.H. Meyer, G. Wegner, M. Wohlfahrt-Mehrens, Adv. Mater. 17 (2005)984.
    [15] K. Miura, A. Yamada, M. Tanaka, Electrochim. Acta 41 (1996) 249.
    [16] Y.Y Xia, M. Yoshio, J. Electrochem. Soc. 143 (1996) 825.
    [17] 李晓干,北京科技大学硕士学位论文(2001).
    [18] J.T. Son, K.S. Park, H.G Kim, J. Mater. Sci. 39 (2004) 3635.
    [19] I. Hodgkinson, Q.H. Wu, Modern Phys. Lett. B 15 (2001)1328.
    [20] J.W. Wen, H.J. Liu, H. Wu, C.H. Chen, J. Mater. Sci. 42 (2007) 7696.
    [21] H.Y. Xu, S. Xie, N. Ding, B.L. Liu, Y. Shang, C.H. Chen, Electrochim. Acta 51(2005) 4352.
    [22] D. Wang, N. Ding, X.H. Song, C.H. Chen, J. Mater. Sci. 44 (2009) 198.
    [23] P.C.Wang, H.P.Ding, T. Bark, C.H. Chen, Electrochim. Acta 52 (2007) 6650.
    [1] A. Yamada, S.C. Chung, K. Hinokuma, J. Eelectrochem. Soc. 148 (2001) A224.
    [2] A.S. Andersson, B. Kalska, L. Haggstrom, J.O. Thomas, Solid State Ionics 130(2000)41.
    [3] M. Takahashi, S. Tobishima, K.Takei, J. Power Sources 97 (2001) 508.
    [4] S.F. Yang, Y.N. Song, K. Ngala, P.Y. Zavalij, M.S. Whittingham, J. Power Sources119(2003)239.
    [5] P.P. Prosini, D. Zane, M. Pasquali, Electrochim. Acta 46 (2001) 3517.
    [6] Y. Wang, J. Wang, J. Yang, Y. Nuli, Adv. Fund. Mater. 16 (2006) 2135.
    [7] S.-Y. Chuang, J.T. Bloking, Y.-M. Chiang, Nat. Mater. 1 (2002) 123.
    [8] G. Meligrana, C. Cerbaldi, A. Tuel, S. Bodoardo,N. Penazzi, J. Power Sources160(2006)516.
    [9] S. Tajimi, Y. Ikeda, K. Uematsu, K. Toda, M. Sato, Solid State Ionics 175 (2004)287.
    [10] B. Ellis, P.S. Herle, Y.-H. Rho, L.F. Nazar, R. Dunlap, L.K. Perry, D.H. Ryan,Faraday Discuss. 134(2007) 119.
    [11] G.X.Wang, S. Bewlay, J. Yao, J.H. Ahn, S.X. Dou, H.K. Liu, Electrochem.Solid-State Lett. 7 (2004) A503.
    [12] D.Y.Wang, H. Li, S.Q. Shi, X.J. Huang, L.Q. Chen, Electrochim. Acta 50 (2005)
    [1] J.M. Tarascon, E. Wang, F.K. Shokoohi, W.R. McKinnon, S. Colson, J.Electrochem.Soc. 138 (1991) 2859.
    [2] T. Ozuku, M. Kitagawa, T. Hirai, J. Electrochem. Soc.137 (1990) 769.
    [3] R. Bittihn, R. Herr, D. Hoge, J. Power Sources 43-44 (1993) 223.
    [4] Y. Toyoguchi, Eur. Pat. Appl. (1990) 0390 185.
    [5] K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Electrochem. Soc. 143 (1996)1607.
    [6] Q.M. Zhong, A. Bonakdarpour, M.J. Zhang, Y. Gao, J.R. Dahn, J. Electrochem.Soc. 144(1997)205.
    [7] K. Kanamura, W. Hoshikawa, T. Umegaki, J. Electrochem. Soc. 149 (2002) A339.
    [8] X.L.Wu, S.B. Kim, J. Power Sources 109 (2002) 53.
    [9] S.T. Myung, S. Komaba, N. Kumagai, H. Yashiro, H.T. Chung, T.H. Cho,Electrochim. Acta 47 (2002) 2543.
    [10] M.Mohamedi, M. Makino, K. Dokko, T. Dokko, T. Itoh, I. Uchida, Electrochim.Acta 48 (2002) 79.
    [11] Y.S. Lee, Y.K. Sun, S. Ota, T. Miyashita, M. Yoshio, Electrochem. Commun. 4(2002) 989.
    [12] J.H. Kim, S.T. Myung, Y.K. Sun, Electrochim. Acta 49 (2004) 220.
    [13] S.H. Park, Y.K. Sun, Electrochim. Acta 50 (2004) 431.
    [14] G.Q. Liu, Y.J. Wang, L. Qi, W. Li, H. Chen, Electrochim. Acta 50 (2005) 1965.
    [15] M.I. Zaki, M.A. Hasan, L. Pasupulety, K. Kumari, Thermochim. Acta 2 (1997)171.
    [16] J.H. Kim, S.T. Myung, C.S.Yoon, S.G. Kang, Y.K. Sun, Chem. Mater. 16 (2004)906.
    [17] X.X. Xu, J. Yang, Y.Q. Wang, Y.N. NuLi, J.L. Wang, J. Power Sources 174 (2007)1113.
    [1] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Mater. Res. Bull.15(1980)783.
    [2] R.J. Gummow, M.M. Thackeray, W.I.F. David, S. Hull, Mater. Res. Bull. 27(1992) 327.
    [3] X.Q. Yang, X. Sun, J. Mcbreen, Electrochem. Commun. 2 (2000) 100.
    [4] M. Menetrier, I. Saadoune, S. Levasseur, C. Delmas, J. Mater. Chem. 9 (1999)1135.
    [5] N. Imanishi, M. Fujii, A. Hirano, Y. Takeda, J. Power Sources 97-98 (2001) 287.
    [6] S. Levasseur, M. Menetrier, Y. Shao-Horn, L. Cautier, A. Audemer, G. Demazeau,A. Largeteau, C. Delmas, Chem. Mater. 15 (2003) 348.
    [7] P.P. Prosini, M. Lisi, D. Zane, M. Psaquali, Solid State Ionics 148 (2002) 45.
    [8] Y.H. Rho, K. Kanamura, J. Electrochem. Soc. 151 (2004) A1406.
    [9] Y-II Jang, B.J. Neudecker, N.J. Dudney, J. Electrochem. Soc. 4 (2001) A74.
    [10] S. Levasseur, M. Menetrier, E. Suard, C. Delmas, Solid State Ionics 128 (2000)11.
    [11] M.K. Aydinol, A.F. Kohan, G. Ceder, K. Cho, J. Joannopoulos, Phys. Rev. B 56(1997) 1354.
    [12] C. Wolverton, Z. Zunger, Phys. Rev. Lett. 81 (1998) 606.
    [13] K. Kushida, K. Kuriyama, Solid State Commun. 129 (2004) 525.
    [14] C.S. Cheng, M. Serizawa, H. Sakata, T. Hirayama, Mater. Chem. Phys. 53 (1998)255.
    [15] J.N. Reimers, J.R. Dahn, J. Electrochem. Soc. 139 (1992) 2091.
    [16] N. Imanishi, M. Fujii, A. Hirano, Y. Takeda, M. Inaba, Z. Ogumi, Solid State Ionics 140 (2001) 45.
    [17] K. Dokko, M. Mohamedi, Y. Fujita, T. Itoh, M. Nishizawa, M. Umeda, I. Uchida,J. Electrochem. Soc. 148 (2001) A422.
    [1] Y.P. Wu, C.Y. Jiang, C.R. Wan, E. Tsuchida, Electrochem. Commun.2 (2000) 272.
    [2] U. Kasavajjula, C.S. Wang, A.J. Appleby, J. Power Sources 163 (2007) 1003.
    [3] Y. Kwon, M.G Kim, Y. Kim, Y. Lee, J.P. Cho, Electrochem. Solid-State Lett. 9(2006) A34.
    [4] X.M. He, W.H. Pu, L. Wang, J.G Ren, C.Y. Jiang, C.R. Wan, Electrochim. Acta52(2007)3651.
    [5] C.K. Chan, H.L. Peng, G Liu, K. McIlwrath, X.F. Zhang, R.A.Huggins, Y. Cui,Nat. Nanotech. 3(2008)31.
    [6] H. Ma, F.Y. Cheng, J. Chen, J.Z. Zhao, C.S. Li, Z.L. Tao, J. Liang, Adv. Mater.19(2007)4067.
    [7] M.S. Park, GX. Wang, H.K. Liu, S.X. Dou, Electrochim. Acta 51 (2006) 5246.
    [8] H. Xia, S.B. Tang, L. Lu, Mater. Res. Bull. 42 (2007) 1301.
    [9] S.H. Ng, J.Z. Wang, D. Wexler, K. Konstantinov, Z.P. Guo, H.K. Liu, Angew.Chem. Int. Ed 45 (2006) 6896.
    [10] A. Anani, R.A. Huggins, J. Power Sources 38 (1992) 363.
    [11] L.Y. Beaulieu, K.C. Hewitt, R.L. Turner, A. Bonakdarpour, A.A. Abdo, L.Christensen, K.W. Eberman, J.L. Krause, J.R. Dahn, J. Electrochem. Soc. 150 (2003)A149.
    [12] K.F. Chiu, K.M. Lin, H.C. Lin, C.H. Hsu, C.C. Chen, D.T. Shieh, J. Electrochem.Soc. 155 (2008) A623.
    [13] J.B. Kim, H.Y. Lee, K.S. Lee, S.H. Lim, S.M. Lee, Electrochem. Commun. 5(2003) 544.
    [14] X.L. Yang, Z.Y. Wen, X.X. Xu, Z.H. Gu, S.H. Huang, Electrochem. Solid-State Lett. 10(2007)A52.
    [15] W.R. Liu, Z.Z. Guo, W.S. Young, D.T. Shieh, H.C. Wu, M.H. Yang, N.L. Wu, J.Power Sources 140(2005)139.
    [16] S.D. Beattie, D. Larcher, M. Morcrette, B. Simon, J.M. Tarascon, J. Electrochem.Soc. 155 (2008)A158.
    [17]H. Buqa, M. Holzapfel, F. Krumeich, C. Veit, P. Novak, J. Power Sources 161(2006) 617.
    [18] J. Li, R.B. Lewis, J.R. Dahn,Electrochem. Solid-State Lett. 10 (2007) A17.
    [19] N.S. Hochgatterer, M.R. Schweiger, S. Roller, P.R. Raimann, T. Wohrle, C.Wurm, M. Winter, Electrochem. Solid-State Lett. 11 (2008) A76.
    [20] B. Lestrie, S. Bahri, I. Sandu, L. Roue, D. Guyomard, Electrochem. Commun. 9(2007)2801.
    [21] V. Baranchugov, E. Markevich, E. Pollak, G Salitra, D. Aurbach, Electrochem.Commun. 9 (2007) 796.
    [22] D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider,Electrochim. Acta 47 (2002) 1423.
    [23] L.B. Chen, K. Wang, X.H. Xie, J.Y. Xie, Electrochem. Solid-State Lett. 9 (2006)A512.
    [24] N.-S. Choi, K.H. Yew, K.Y. Lee, M. Sung, H. Kim, S.-S. Kim, J. Power Sources161 (2006) 1254.
    [25] J. Graetz, C.C.Ahn, R. Yazami, B. Fultz, Electrochem. Solid-State Lett. 6 (2003)A194.
    [26] N. Imanishi, K. Kumai, H. Kokugan, Y. Takeda, O. Yamamoto, Solid State Ionics107(1998)135.
    [27] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407 (2000)496.
    [28] T.L. Kulova, A.M. Skundin, Y.V. Pleskov, E.I. Terukov, O.I. Kon'kov, J.Electroanal. Chem. 600 (2007) 217.
    [29] J.L. Shui, J. Zhang, C.X. Ding, X. Yang, C.H. Chen, Mater. Sci. Eng. B 128(2006)11.
    [30] K. Xu, S.S. Zhang, B.A. Poese, T.R. Jow, Electrochem. Solid-State Lett. 5 (2002)A259.
    [31] K. Xu, S.S. Zhang, T.R. Jow W. Xu, C.A. Angell, Electrochem. Solid-State Lett.5(2002)A26.
    [32] Y.X. Li, X.W. Zhang, S.A. Khan, P.S. Fedkiw, Electrochem. Solid-State Lett. 7(2004) A228.
    [33] J. Li, J.R. Dahn, J. Electrochem. Soc.154 (2007) A156.
    [34]Y.M. Kang, S.M. Lee, S.J. Kim, GJ. Jeong, M.S. Sung, W.U. Choi, S.S. Kim,Electrochem. Commun.9 (2007) 959.
    [1] U. Kasavajjula, C.S. Wang, A.J. Appleby, J. Power Sources 163 (2007) 1003.
    [2] R.A. Huggins,J.Power Sources 81-82 (1999) 13.
    [3] B.A. Boukamp,G.C.Lesh, R.A.Huggins,J.Electrochem. Soc.128 (1981) 725.
    [4] T. Kubota, T. Tanaka, Jpn. Kokai Tokkyo Koho, JP 94-55614-940325 (1994).
    [5] E. Funatsu, Jpn. Kokai Tokkyo Koho, JP 94-2592-940114 (1994).
    [6] W.J. Weydanz, M.Wohlfahrt-Mehrens, R.A. Huggins, J. Power Sources 81-82(1999)237.
    [7] H. Li, X.J. Huang, L.Q. Chen, G.W. Zhou, Z. Zhang, D.P. Yu, Y.J. Mo, N. Pei,Solid State Ionics 135 (2000) 181.
    [8] H.J. Jung, M. Park, Y.G. Yoon, G.B. Kim, S.K. Joo, J. Power Sources 115 (2003)346.
    [9] M. Holzapfel, H. Buqa, L.J. Hardwich, M. Hahn, Electrochim. Acta 52 (2006)973.
    [10] M.N. Obrovac, L.J. Krause, J. Electrochem. Soc. 154 (2007) A103.
    [11] J. Li, J.R. Dahn, J. Electrochem. Soc. 154 (2007) A156.
    [12] Z.S. Wen, J. Yang, B.F. Wang, K. Wang, Y. Liu, Electrochem. Commun. 5 (2003)165.
    [13] N. Dimov, S. Kugino, M. Yoshio, Electrochim. Acta 48 (2003) 1579.
    [14] S. Ohara, J. Suzuki, K. Sekine, T. Takamura, J. Power Sources 119-121 (2003)591.
    [15] (?)-Seok Kim, P.N. Kumta, J. Power Sources 136 (2004) 145.
    [16] Y. Liu, K. Hanai, J. Yang, N. Imanishi, A. Hirano, Y. Takeda, Solid State Ionics168(2004)61.
    [17] S.-H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.-P. Guo, H.-K. Liu, Angew.Chem. Int. Ed. 45 (2006) 6896.
    [18] T.L. Kulova, A.M. Skundin, E.A. Nizhnikovskii, A.V. Fesenko, Russ. J.Electrochem. 43 (2006) 300.
    [19] K. Dokko, M. Mohamedi, Y. Fujita, T. Itoh, M. Nishizawa, M. Umeda, I. Uchida,J. Electrochem. Soc. 148 (2001) A422.
    [20] Y.H. Rho, K. Kanamura, J. Electrochem. Soc. 151 (2004) A1406.
    [21] P.P. Prosini, M. Lisi, D. Zane, M. Pasquali, Solid State Ionics 148 (2002) 45.
    [22] E.M. Pell, Phys. Rev. 119 (1960) 1222.
    [23] C. Ho, I.D. Raistrick, R.A. Huggins, J. Electrochem. Soc. 127 (1980) 343.
    [24] H. Xia, L. Lu, G. Ceder, J. Power Sources 159 (2006) 1422.
    [25] W. Weppner, R.A. Huggins, J. Electrochem. Soc. 124 (1977) 1569.
    [26] Y-Il Jang, B.J. Neudecker, N.J. Dudney, Electrochem. Solid-State Lett. 4 (2001)A74.
    [27] J.N. Reimers, J.R. Dahn, J. Electrochem. Soc. 139 (1992) 2091.
    [28] X.Q. Yang, X. Sun, J. McBreen, Electrochem. Commun. 2 (2000) 100.
    [29] T.D. Hatchard, J.R. Dahn, J. Electrochem. Soc. 151 (2004) A838.
    [1] 刘学富,李志安,神奇宇宙探秘 地震出版社(2001).
    [2] 周艺峰 中国科学技术大学博士毕业论文(2005).
    [3] Y.F. Zhou, S. Xie, C.H. Chen, Chin. J. Chem. Phys. 18 (2005) 837.
    [4] Y.F. Zhou, S. Xie, C.H. Chen, K. Amine, J. Appl. Electrochem. 34 (2004) 1119.
    [5] B.V. Ratnakumar, M.C.Smart, S. Surampudi, J.Electrochem. Soc.151 (2004)652.
    [6] B.V. Ratnakumar, M.C. Smart, L.D. Whitcanack, E.F. Deligiannis, S. Surampudi,J. Electrochem. Soc. 152 (2005) 357.
    [7] B.V. Ratnakumar, M.C. Smart, L.D. Whitcanack, R.C.Ewell,L.D. Whitcanack, J.Power Sources 159 (2006) 1428.
    [8] B.V. Ratnakumar, M.C. Smart, L.D. Whitcanack, R.C. Ewell, L.D. Whitcanack, A.Kindler, H. Frank, S.R. Narayanan, S. Surampudi, J. Electrochem. Soc. 154 (2007)A715.
    [9] W.T. Jeong, K.S. Lee, J. Alloys & Comp. 322 (2001) 205.
    [10] 常建华,董绮功,波谱原理及解析 科学出版社(2001).
    [11] S.W. Song, K.S. Han, H. Fujita, M. Yoshimura, Chem. Phys. Lett. 344 (2001)299.
    [12] V. Lemos, Chem. Phys. Lett. 400 (2004) 268.
    [13] P.S. Dobal, R.S. Katiyar, M.S. Tomar, A. Hidalgo, J. Mater. Res. 16 (2001) 1.
    [14] M. Inaba, Y. Iriyama, Z. Ogumi, Y. Todzuka, A. Tasaka, J. Raman Spectrosc. 28(1997)613.
    [15] W. Huang, R. Frech, Solid State Ionics 86-88 (1996) 395.
    [16] E.I. Santiagoa, A.V.C.Andradeb, C.O. Paiva-Santosc, L.O.S. Bulho, Solid State Ionics 158 (2003) 91.
    [17] M. Inaba,Y. Iriyama, Z. Ogumi, J. Raman Spectrosc. 28 (1997) 613.
    [18] G Nagasubramanian,J. Power Sources 811 (2003)119.
    [19] S.E. Sloop, J.B. Kerr, K. Kinoshita,J. Power Sources 119-121 (2003) 330.
    [20] C.L. Campion, W. Li, B.L. Lucht, J. Electrochem. Soc.152 (2005) A2327.
    [1] C. Delmas, H.Cognac-Auradou, J.M.Cocciantelli, M. Menetrier, J.P. Doumerc,Solid State Ionics 69 (1994) 257.
    [2] A.M. Kannan, A. Manthiram, Solid State Ionics 159 (2003) 265.
    [3] O.C.Lampe, J.O. Thomas, M. Hardgrave, Y.S. Anderson, J. Electrochem. Soc. 142(1995)3648.
    [4] N. Kumagai, A.S. Yu, J. Electwchem. Soc. 144 (1997) 830.
    [5] C.K. Chan, H.L. Peng, R.D. Twesten, K. Jarausch, X.F. Zhang, Y. Cui, Nano. Lett.7 (2007) 490.
    [6] GJ. Wang, L.J. Fu, N.H. Zhao, L.C. Yang, Y.P. Wu, H.Q. Wu, Angew. Chim. Int.Ed. 46 (2007) 295.
    [7] A.M. Crespi, P.M. Skarstad, US Patent 5,458,997.
    [8] S. Beninati, M. Fantuzzi, M. Mastragostino, F. Soavi, J. Power Sources 157 (2006)483.
    [9] M. Morcrette, P. Rozier, L. Dupont, E. Mugnier, L. Sannier, J. Galy, J.-M.Tarascon, Nat. Mater. 2 (2003) 755.
    [10] H. Ma, S.Y. Zhang, W.Q. Ji, Z.L. Tao, J. Chen, J. Am. Chem. Soc. 130 (2008)5361.
    [11] J. Liu, X. Wang, Q. Peng, Y. Li, Adv. Mater. 17 (2005) 764.
    [12] A. Br(u|¨)cker, E. Kondratenko, Catal. Today 113 (2006) 16.
    [13] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407 (2000)496.
    [14] P. Balaya, H. Li, L. Kienle, J. Maier, Adv. Funct. Mater. 13 (2003) 621.
    [15] G Armstrong, J. Canales, A.R. Armstrong, P.G Bruce, J. Power Sources 178(2008)723.
    [16] Y. Chen, H. Liu, WL. Ye, Scripta Mater. 59 (2008) 372.
    [17] W. Chen, L.Q. Mai, YY. Qi, Y Dai, J. Phys. Chem. Solids 67 (2006) 896.
    [18] J. Jiang, J.R. Dahn, Electwchem. Commun. 6 (2004) 39.
    [19] J. Jiang, J.R. Dahn, J. Electwchem. Soc:153 (2006) A310.
    [20] D.D. MacNeil, T.D. Hatchard, J.R. Dahn, J. Electwchem. Soc. 148 (2001) A663.
    [21] D.-T. Shieh, P.-H. Hsieh, M.-H. Yang, J. Power Sources 174 (2007) 663.
    [22] S.J. Visco, F.Y. Tsang, US Patent 6,214,061 (2001).
    [23] Data from Zhang, Z.M.'s report at the 14~(th) International Meeting on Lithium Battery, 2008
    [24] Y. Ozawa, R.Yazami, B. Fultz, J. Power Sources 119 (2003) 918.
    [25] W. Li, J.R. Dahn, D.S. Wainwright, Science 264 (1994) 1115.
    [26] W. Li, J.R. Dahn, J. Elecrochem. Soc. 142 (1995) 1742.
    [27] G.J. Wang, L.J. Fu, N.H. Zhao, L.C. Yang, Y.P. Wu, H.Q. Wu, Angew. Chem.Int. Ed. 46 (2007) 295.
    [28] G Gu, M. Schmid, P.-W. Chiu, A. Minett, J. Fraysse, G-T. Kim, S. Roth, M.Kozlov, E. Mu(?)oz, R.H. Baughman, Nat. Mater. 2 (2003) 316.
    [29] L. Biette, F. Carn, M. Maugey, M.-F. Achard, J. Maquet, N. Steunou, J. Livage, H.Serier, R. Backov, Adv. Mater. 17 (2005) 2970.
    [30] N. Ding,; Y.X.Yao, J. Zhu, C.H. Chen, J. Appl. Electrochem. DOI 10.1007/s10800-008-9747-4.
    [31] Y. Piffard, F. Leroux, D. Guyomard, J.-L. Mansot, M. Tournoux,J.Power Sources 65(1997)698.
    [1] H. Li, X.J. Huang, L.Q. Chen, Solid State Ionic 123 (1999) 189.
    [2] H. Li, P. Balaya, J. Maier,J. Electrochem. Soc. 151 (2004) A1878.
    [3] B. Li, G.X. Rong, Y. Xie, L.F. Huang, C.Q. Feng, Inorg. Chem. 45 (2006) 6404.
    [4] P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.-M. Tarascon, Nat. Mater. 5 (2006)567.
    [5] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature 407 (2000)496.
    [6] J. Ma, W.-Y. Liu, C.-L. Li, Z.-W. Fu, Electrochim. Acta 51 (2006) 2030.
    [7] Y.M. Kang, M.S. Song, J.H. Kim, H.S. Kim, M.S. Park, J.Y. Lee, H.K. Liu, S.X.Dou, Electrochim. Acta 50 (2005) 3667.
    [8] M.N. Obrovac, J.R. Dahn, Electrochem. Solid-State Lett. 5 (2002) A70.
    [9] D. Larcher, C. Masquellier, D. Bonnin, Y. Chabre, V. Masson, J.-B. Leriche, J.-M.Tarascon, J. Electrochem. Soc. 150 (2003) A133.
    [10] Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Chowdari, Adv. Funct.Mater. 17(2007) 2855.
    [11] P. Poizot, S. Laruelle, S. Grugeon, J.-M. Tarascon, J. Electrochem. Soc. 149(2002) A1212.
    [12] J. Graetz, C.C.Ahn, H. Ouyang, P. Rez, B. Fultz, Phys. Rev. B 69 (2004)235103.
    [13] W.-S. Yoon, M. Balasubramanian, K.Y. Chung, X.Q. Yang, J. McBreen, C.P.Grey, D.A. Fischer, J. Am. Chem. Soc. 127 (2005) 17479.
    [14] R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope(Plenum, New York, 1996).
    [15] H.C.Choi, S.Y. Lee, S.B. Kim, M.G. Kim, M.K. Lee, H.J. Shin, J.S. Lee, J. Phys.Chem. 5 106(2002)9252.
    [16] 王其武,刘文汉,X射线吸收精细结构及其应用 科学出版社(1994).
    [17] H.C. Liu, S.Y. Yen, J. Power Sources 166 (2007) 478.
    [18] Y. Piffard, F. Leroux, D. Guyomard, J.L. Mansot, M. Tournoux, J. Power Sources 68 (1997) 698.
    [19] F. Gillot, M. Menetrier, E. Bekaert, L. Dupont, M. Morcrette, L. Monconduit, J.-M. Tarascon, J. Power Sources 172 (2007) 877.
    [20] H. Morimoto, M. Tatsumisago, T. Minami, Electrochem. Solid-State Lett. 4 (2001)A16.
    [21] T. Brousse, R. Retoux, U. Herterich, D.M. Schleich, J. Electrochem. Soc.145(1998) 1.
    [22] D. Larcher, A.S. Prakash, L. Laffont, M. Womes, J.C. Jumas, J. Olivier-Fourcade,M.S. Hedge, J.-M. Tarascon,J. Electrochem. Soc. 153 (2006) A1778.
    [23] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 276 (1997)1397.
    [24] J. Saint, M. Morcrette, D. Larcher, J.-M. Tarascon, Solid State Ionics 176 (2005)189.
    [25] S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, J.-M. Tarascon,J. Electrochem. Soc. 148 (2001) A285.
    [26] P. Balaya, H. Li, L. Kienle, J. Maier, Adv. Funct. Mater. 13 (2003) 621.
    [27] K. Takei, K. Kumai, Y. Kobayashi, H. Miyashiro, T. Iwahori, T. Uwai, H. Ue, J.Power Sources 54 (1995) 171.
    [28] H.K. Schmid, W. Mader, Micron 37 (2006) 426.
    [29] J. Jamnik, J. Maier, Phys. Chem. Chem. Phys. 5 (2003) 5215.
    [30] Y.F. Zhukovskii, P. Balaya, E.A. Kotomin, J. Maier, Phys. Rev. Lett. 96 (2006)058302.
    [31] J. Maier, Faraday Discuss. 134 (2007) 51.
    [32] J. Maier, J. Power Sources 174 (2007) 569.
    [33] A. Hightower, C.C.Ahn, B. Fultz, P. Rez, Appl. Phys. Lett. 11 (2002) 238.
    [34] J.N. Reimers, J.R. Dahn,J. Electrochem. Soc. 139 (1992) 2091.
    [35] S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J.-M. Tarascon, J.Electrochem. Soc. 149 (2002) A627.
    [1] J. Park, N.J. Kang, Y.W. Jun, S.J. Oh, H.C.Ri, J.W. Cheon, ChemPhysChem 6(2002)543.
    [2] H. M. Chen, R.S. Liu, H.L. Li, H.C. Zeng, Angew. Chem. Int. Ed. 45 (2006) 2713.
    [3] L.H. Hu, Q, Peng, Y.D. Li, J.Am. Chem. Soc.130 (2008) 16968.
    [4] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature 407 (2000)496.
    [5] P.G. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem. Int. Ed. 47 (2008) 2930.
    [6] Y.W. Jun, J.S. Choi, J.W. Cheon,Angew. Chem. Int. Ed. 45 (2006) 3414.
    [7] A.H. Lu, E.L.Salabas, F.Sch(u|¨)th, Angew. Chem. Int. Ed. 46 (2007) 1222.
    [8] U. Jeong, X.W. Teng, Y. Wang, Y.N. Xia,Adv. Mater. 19 (2007) 33.
    [9] N, Pinna, M. Niederberger, Angew. Chem. Int. 47 (2008) 5292.
    [10] J.-M. Tatibouet, and H. Lauron-Pernot, J. Mol. Catal. A 171 (2001) 205.
    [11] L. Biette, F. Carn,M. Maugey, M.-F, Achard, J. Maquet, N. Steunou, J. Livage,H. Serier, and R. Backov, Adv. Mater. 17 (2005) 2970.
    [12] J. Liu, X. Wang, Q. Peng, and Y. Li, Adv. Mater. 17 (2005) 764.
    [13] L.J. Burcham, G. Deo, X. Gao, and I.E. Wachs, Top. Catal. 11/12 (2000) 85.
    [14] A. Brucker, and E. Kondratenko, Catal. Today 113 (2006) 16.
    [15] M. Egneser, D. Schroder, and H. Schwarz, Chem. Eur. J. 11 (2005) 5975.
    [16] C. Seo, H. Cheong, and S.-H. Lee, Sol. Energy Mater. Sol. Cells 92 (2008) 190.
    [17] C.-B. Wang, Y. Cai, and I.E. Wachs, Langmuir 15 (1999) 1223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700