用户名: 密码: 验证码:
AB_2O_4化合物的合成、结构表征与光诱导特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AB_2O_4型化合物以其丰富的结构和优异的磁、光、电、催化等特性吸引了人们极大的关注。本论文以具有光诱导(光催化、光致发光)功能特性的AB_2O_4型化合物为对象,主要研究了AB_2O_4型尖晶石结构化合物的合成、可见光催化性能和凝聚态特征;同时对SrAl_2O_4:Eu,Dy长余辉发光面板一步合成工艺和玻璃复合发光体发光性能进行了研究。具体内容如下:
     1.研究了XAl_2O_4(X=Mg,Zn,Cu)和ZnY_2O_4(Y=Cr,Mn,Fe)尖晶石化合物的合成、结构、可见光催化活性及结构-性能的关系。利用XRD、TEM和UV-Vis漫反射吸收光谱考察和分析了化合物的晶体结构、微观形貌和光谱响应特性。结果表明,合成的样品均具有尖晶石结构,颗粒尺寸在10-40 nm之间,吸收带边不同程度地进入可见光区域,特别是CuAl_2O_4光吸收几乎覆盖整个可见区。在对甲基橙、酸性红B和活性艳红K-2G水溶性染料的光催化降解实验中,化合物由于晶体结构和带隙结构的差异而表现出不同的可见光催化活性,其中CuAl_2O_4的可见光活性最为突出,对三种水溶性染料的2h降解脱色率均达到98%以上。
     2.研究了高活性CuAl_2O_4光催化剂的合成及其可见光催化性能。XRD、TEM和紫外-可见漫反射光谱的研究表明,在700℃下焙烧2h,前驱体可成功转化为纯相CuAl_2O_4纳米粉体,产物在紫外区和可见区均具有很高光吸收能力。以甲基橙、酸性红B和活性艳红K-2G水溶性染料为模拟降解液进行了CuAl_2O_4可见光催化性能的研究,考察了焙烧温度、辐射光源(紫外光、可见光、太阳光和暗室)、辐射波长、染料结构和催化剂用量对CuAl_2O_4可见光活性的影响,并对CuAl_2O_4光催化剂的循环使用稳定性进行了研究;提出了光辐照时引起的脱色现象是光催化降解反应的结果,无光照射时的脱色现象是催化剂活性表面对染料吸附作用的结果;从CuAl_2O_4光催化活性与辐射波长的关系,进一步证明染料的脱色反应确实是受光驱动的。
     3.研究了纳米CuAl_2O_4的软化学形貌制备,并对这些凝聚态形貌进行了数学表征。本论文采用溶胶.凝胶法、共沉淀法、聚合物配位法和硬脂酸凝胶法,同时辅以表面活性剂,合成得到球形、棒状、无规则颗粒等多种形貌迥异的纳米粉体,DRUV-Vis吸收光谱分析表明不同凝聚态形貌具有不同的光谱响应特性;采用分形维数D定量描述了各种凝聚态粉体的不规则程度,并探讨了D值大小对催化剂可见光活性和光催化动力学过程的影响。
     4.研究了一种一步法合成SrAl_2O_4:Eu,Oy(SAED)长余辉发光面板的新方法,并对其发光性能进行了研究。本方法将Eu_2O_3、Dy_2O_3和Sr(NO_3)_2涂覆在氧化铝基片表面,利用其表面上的Al_2O_3源通过高温固相反应,成功制备出SAED长余辉发光面板。重点探讨了工艺条件(合成气氛、合成温度、保温时间)、助溶剂用量对发光表面晶体结构及发光性能的影响,得出了最佳工艺条件。
     5.合成了SrAl_2O_4:Eu,Dy掺杂SrO-Al_2O_3硼硅玻璃发光复合材料。重点研究了玻璃母体中Al_2O_3与SrO含量以及微量铁存在对复合材料发光性能的影响,同时也研究了合成温度、保温时间和气氛条件对复合材料发光性能的影响。SEM观察和荧光光谱分析表明,发光特性源于镶嵌于玻璃介质中的SAED晶体颗粒,但玻璃介质成分对复合体的发光强度有很大影响。随着玻璃介质中Al/Sr比率的增大,复合体发光强度有着明显的提高;而玻璃介质中微量Fe_2O_3的存在,则使发光强度和余辉初始强度明显降低。
The compounds with a molecular formula of AB_2O_4 have drawn attention because these materials have various crystal structures and excellent magnetic, optical, electrical and catalytic properties. In this dissertation, the focus of the studies is on AB_2O_4 compounds with the light-induced function (photocatalysis and photoluminescence) , including two parts: the first is to involve studies on the synthesis, photocatalytic performance under visible light, and characteristics of structure and morphology of AB_2O_4 -spinel materials; the other is on the studies of a one-step process for synthesizing SrAl_2O_4: Eu, Dy long-afterglow luminescent plate, and the luminescence performance of SrAl_2O_4: Eu, Dy composite glasses. Detailes are as follows.
     1. The synthesis, structure, visible-light photocatalytic activities and the relationship between the structure and performance of spinel compounds, XAl_2O_4 (X = Mg, Zn, Cu) and ZnY_2O_4 (Y = Cr, Mn, Fe), were investigated. Their crystal structure, microscopic morphology and spectral response characteristics were analyzed via. XRD, TEM and UV-Vis diffuse reflectance spectra. The experimental results show that all the samples have spinel structure with particle sizes of 10-40 nm, and their absorption band-edges are able to extend to the visible-light region in varying degrees. In particular, the sample of CUAl_2O_4 has its absorption spectrum covering nearly the whole visible-light region. From photocatalytic degradation of methyl orange, acid red B and reactive red K-2G aqueous dyes, it was found that the sample materials exhibited different visible-light photocatalytic activities due to the differences in crystal structures and band gaps of these materials. Of all these materials, CUAl_2O_4 presented the highest photocatalytic activities with>98% decolorization rate for all three aqueous dyes after two hours.
     2. The synthetic process and photocatalytic properties of CUAl_2O_4 with a high activity under visible-light irradiation were studied. The results from XRD, TEM and UV- visible diffuse reflectance spectra show that the precursor was successfully transformed to single-phase CUAl_2O_4 nanoparticles calcined at 700℃for 2 hours in the air, and the products have strong absorption ability in UV and visible light range. Using methyl orange, acid red B and reactive brilliant red K-2G aqueous solution as model compounds, we investigated the effects of calcining temperature, irradiation light source (UV light, visible light, sunlight, and dark room), irradiation wavelength, dye structure, and catalyst dose on the visible-light photocatalytic activity of CUAl_2O_4. In addition, the recycling stability of CuAl_2O_4 was studied. From the experimental results, it is proposed that the decoloration of dyes under irradiation condition is caused by photocatalytic degradation and the decoloration in the absence of light is due to the surface absorption of the dyes by the catalyst. Furthermore, the wavelength dependence of the photocatalytic activity of CuAl_2O_4 can be further suggested that the decorloration reaction is driven by light.
     3. The morphological formation, the characterizations and the effects on photocatalytic activity of CuAl_2O_4 nanoparticles via. various soft chemistry methods were studied. Nanopowders with various morphologies (such as spherical, rod-like, and irregular grain) were obtained by various methods including the sol-gel, precipitation, polymerizable complex and stearic acid gel. UV-Vis diffuse reflection spectra analysis show that the sample powders with different morphologies exhibited different spectral responses. The morphological irregularity of sample powders was quantitatively described by calculating the fractal dimension D of these samples. The effects of the D value on photoactivity and dynamics process for photocatalytic reaction were discussed.
     4. A novel one-step systhesis process for making SrAl_2O_4:Eu,Dy(SAED) long-afterglow plate was invented and the luminescence properties of the material were evaluated. A S AED long-afterglow luminescent plate was successfully prepared by solid-state reaction method using Al_2O_3 substrates coated with Eu_2O_3, Dy_2O_3 and Sr (NO_3)_2 materials. The effects of synthetic condition (synthetic atmosphere, calcining temperature and holding time) and additive amount (H_3BO_3) on the surface structures of Al_2O_3 substrates and their luminescence properties were investigated. And the optimal synthetic conditions were obtained.
     5. SAED(SrAl_2O_4.Eu,Dy) doped SrO-Al_2O_3 borosilicate glass composite materials were synthesized. The luminescent properties with the Al_2O_3 and SrO content, as well as minute amount of iron in glass host were studied. In addition, the influence of synthetic temperature, holding time and atmosphere on their luminescence properties was studied. SEM and emission spectra show that the fluorescence characteristics of these samples were originated from the SAED grains embedded in the glass host. However, the intensity of their luminescence is largely influenced by the glass host compositions. With the increase of Al/Sr ratio in the glass host, the composite luminescence intensity increased significantly. The presence of minute amount of Fe_2O_3 had no influence on the spectral characteristics of the luminescence, but made significant decreases in the luminescence intensity and initial afterglow intensity.
引文
[1] Yin J, Zou Z, Ye J H. Photophysical and photocatalytic properties of new photocatalysts MCrO4 (M=Sr, Ba). Chemical Physics Letters, 2003, 378:24-28.
    [2] S.I. Klokishner, O.S. Reu, S.M. Ostrovsky, et al. Jahn-Teller coupling in spinel-type crystals doped with transition metal ions. Journal of Molecular Structure, 2007,838:133-137.
    [3] Zou Z G, Arakawa H. Substitution effect of Ta~(5+) by Nb~(5+) on photocatalytic, photophysical, and structural properties of BiTa_(1-x)Nb_xO_4(0≤x≤1.0). J.Mater.Res., 2002, 17(6): 1446-1454.
    [4] Panda R N, Shihb J C, Chinb T S. Magnetic properties of nano-crystalline Gd-or Pr-substituted CoFe_2O_4 synthesized by the citrate precursor technique Journal of Magn.and Magn. Mater, 2003, 257:79-86.
    [5] Liu X M, Fu S Y, Huang C J. Magnetic properties of Ni ferrite nanocrystals dispersed in the silica matrix by sol-gel technique. J.M.M.M, 2004,281:234-239.
    [6] 张文丽.尖晶石色料的组成与结构.中国陶瓷,1997,33(10):12-14.
    [7] Wang B J, Chuan Zenga, Peng Z M, Chen Q W. Synthesis and magnetic properties of Zn_xMn_(1-x)Fe_2O_ 4 nanoparticles, Physica B, 2004,349:124-128.
    [8] 何铸文.尖晶石型结构的微变化规律.科大研究生院学报,1990,7(2):79-88.
    [9] Pell(?) F, Aitasalo T, Lastusaari M, et al. Optically stimulated luminescence of persistent luminescence materials. Journal of Luminescence, 2006,119-120:64-68.
    [10] Akiyama M, Xu C N, Liu Y et al. Influence of Eu, Dy co-doped strontium aluminate composition on mechanoluminescence intensity. Journal of Luminescence, 2002,97:13-18.
    [11] Yamamoto H, Matsuzawab T. Mechanism of long phosphorescence of SrAl_2O_4: Eu~(2+), Dy~(3+) an CaAl_2O_4: Eu~(2+), Nd~(3+). Journal of Luminescence, 1997,72-74:287-289.
    [12] Jiang Y Y, Li J G, Ning G L, et al. CuAl_2O_4 powder synthesis by sol-gel method and its photodegradation property under visible light irradiation. Journal of Sol-Gel Science and Technology, 2007,42:41-45.
    [13] Li W D, Li J Z, Gou J K. Sythesis and characterization of nanocrystalline CoAl_2O_4 Spinel powder by low temperature combustion. European Ceramic Society, 2003,23:2289-2295.
    [14] Liu X M, Fu S Y, Huang C J. Magnetic properties of Ni ferrite nanocrystals dispersed in the silica matrix by sol-gel technique. J.M.M.M, 2004,281:234-239.
    [15] Yang X F, Ning G L, Liu J.et al. Quenching Study on Iron Impurity in Eu~(2+), Dy~(3+) Doped Strontium Aluminate Phosphor Prepared by Nano-Coating Process. Journal of Rear Earths, 2007,25: 326-329.
    [16] 杨雪峰,宁桂玲,于晶杰等.纳米包覆法制备SrAl_2O_4:Eu~(2+),Dy~(3+)发光粉及铁杂质猝灭研究.基础理论研究,2007,4(1):8-11.
    [17] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972,238:37-38.
    [18] Mills A, Hunte S L. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 1997,108:1-35.
    [19] Zhao W, Ma W H, Chen C C et al. Efficient degradation of toxic organic pollutants with Ni_2O_3/TiO_(2-x)B_x under visible irradiation. J.Am.Chem.Soc, 2004,126(15):4782-4783.
    [20] Zou Z G, Ye J H, Sayamak et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001,414:625-627.
    [21] 韩兆慧,赵化侨.半导体多相光催化应用研究进展.化学进展,1999,11(1):1-10.
    [22] Detlef Bahnemann. Photocatalytic water treatment: solar energy applications. Solar Energy, 2004,77 (11):445-459.
    [23] Serpone N, Lswless D, Disdier J Spectroscopic,photoconductivity,and photocatalytic studies of TiO_2 colloids:Naked and with the lattice doped with Cr~(3+),Fe~(3+),and V~(5+) cations.Langmuir,1992, 10:643-652.
    [24] Jeon M S, Yoon W S et al. Applied Surface Science, 2000, 165:209-216.
    [25] Yamashita H, Harada M, Anpo M et al. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO_2 catalysts:Fe ion-implanted TiO_2. Catal. Toda., 2003,84:191-196.
    [26] Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal., 2003,216:50-516.
    [27] Vogel R, Hoyal P, Weller H. Quantum-sized PbS, CdS, Ag_2S, Sb_2S_3, and Bi_2S_3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J.Phys. Chem., 1994, 98:3183-3188.
    [28] Bessekhouad Y, Robert D, Weber J V. Bi_2S_3/TiO_2 and CdS/TiO_2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J Photochem Photobiol A: Chem, 2004, 163(3):569-580.
    [29] Linsebigler A L. Lu G, Jr Yates T J. Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 1995,95:735-758.
    [30] Kim H G, Borse P H, Choi W, et al. Photocatalytic nanodiodes for visible-light photocatalysis. Angew Chem Inted, 2005,44(29):4585-4589.
    [31] Haque S A, Handa S, Peter K, et al. Supermolecular control of charge Transfer in dye-sensitized nanocrystalline TiO_2 films: Towards a Quantitative structure-function relationship. Angew Chem Inted, 2005,44:5740-5744.
    [32] Wang P, Zakeeruddin S M, Moser J E et al. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials, 2003,2(6):402-407.
    [33] 张金龙,陈锋,何斌.光催化.上海:华东理工大学出版社,2004,87-88.
    [34] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001,293 (5528):269-271.
    [35] 黄垒,彭峰.可见光光催化机理研究进展.工业催化,2007,l5(3):5-11.
    [36] Shahed U, Khan M, Mofareh A S, et al. Efficient photochemical water splitting by a chemically modified n-TiO_2. Science 2002,297(27): 2243-2245.
    [37] Wei Zhao, Wanhong Ma, Chuncheng Chen, et al. Efficient degradation of toxic pollutants with Ni_2O_3/TiO_(2-x)B_x under visible irradiation. J. Am. Chem. Soc., 2004, 126:4782-4783.
    [38] Bard A J. Photoelectrochemistry. Science, 1980,207:139-144.
    [39] Sinha A , Sahu N, Arora M K, et al. Preparation of egg-shell type Al_2O_3-supported CdS photocatalysts for reduction of H_2O to H2. Catalysis Today ,2001, (69) : 297-305.
    [40] Bandara J , Mielczarski J A , Lopez A, et al. Sensitized degradation of chlorophenols on iron oxides induced by visible light. Applied Catalysis B: Environmental, 2001,34:321-333.
    [41] Jongh P E de, Vanmaekrelberg D, Kelly J J. Cu_2O: A catalyst for the photochemical decomposition of water. J. Chem. Soc. Chem. Commun., 1999,12:1069-1070.
    [42] Harada H, Hosoki C, Kudob A. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 141:219-224.
    [43] 白树林,付希贤,王俊珍等.LaFeO_3的光催化性.应用化学,2000,17(3):343-345.
    [44] Zou Z G, Ye J H , Arakawa H. Preparation, structural and optical properties of a new class of compounds, Bi2MNbO7 (M=A1, Ga, In). Materials Science and Engineering, 2001, B79 : 83-85.
    [45] Zou Z G, Ye J H , Arakawa H. Substitution effects of In~(3+) by Fe~(3+) on photocatalytic and structural properties of Bi_2InNbO_7 photocatalysts. Journal of Molecular Catalysis A:Chemical, 2001,168 : 289-297.
    [46] Zou Z G, Ye J H, Arakawa H. Photocatalytic and photophysical properties of a novel series of solid photocatalysts, Bi_2MNbO_7 (M=A1~(3+); Ga~(3+) and In~(3+)). Chemical Physics Letters, 2001,333: 57-62.
    [47] Zou Z G, Ye J H, Arakawa H. Photocatalytic decomposition of water with Bi_2InNbO_7 Catal. Lett., 2000,68:235-239.
    [48] Zou Z G, Ye J H, Arakawa H. Substitution effects of In~(3+) by Al~(3+) and Ga~(3+) on the Photocatalytic and Structural Properties of the Bi_2InNbO_ 7Photocatalyst. Chem. Materials, 2001,13:1765-1769.
    [49] Zou Z G, Ye J H , Arakawa H. Role of R in Bi2RNbO7 (R) Y, Rare Earth): Effect on Band Structure and Photocatalytic Properties. J. Phys. Chem. B, 2002,106(3) :517-520.
    [50] Zou Z G, Ye J H, Arakawa H. Photocatalytic properties and electronic structure of a novel series of solid photocatalysts, Bi2RNbO7 (R = Y, rare earth). Topics in Catalysis, 2003,22 :107-110.
    [51] Zou Z G, Ye J H, Arakawa H. Structural properties of InNbO_4 and InTaO_4: correlation with photocatalytic and photophysical properties. Chemical Physics Letters, 2000,332:271-277.
    [52] Zou Z G, Ye J H, Arakawa H. Photophysical and photocatalytic properties of InMO_4(M=Nb~(5+), Ta~(5+)) under visible light irradiation. Materials Research Bulletin, 2001,36: 1185-1193.
    [53] Zou Z G, Ye J H , Sayama K et al. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO_4 (M = Mn, Fe, Co, Ni and Cu) photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2002,148:65-69.
    [54] Zou Z G, Ye J H, Arakawa H. Surface characterization of nanoparticles of NiOx/In_(0.9)Ni_(0.1)TaO_4: effects on photocatalytic activity. J. Phys. Chem. B, 2002,106:13098-13101.
    [55] Zou Z G, Ye J H, Arakawa H. Optical and structural properties of the BiTa_(1-x)Nb_xO_4(0≤x≤l) compounds. Solid State Communication, 2001,119:471-475.
    [56] Zou Z G, Ye J H, Sayama K, et al. Photocatalytic and photophysical properties of a novel series of solid photocatalysts, BiTa_(1-x)Nb_xO_4(0≤x≤l). Chem. Phys. Lett. 2001, 343 :303-308.
    [57] Zou Z G, Ye J H, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001,414:625-627.
    [58] Tang J W, Zou Z G, Yin J et al. Photocatalytic degradation of methylene bule on CaIn_2O_4 under visible light. Chem. Phys. Lett, 2003, 382:175-179.
    [59] Tang J W, Zou Z G, Katagiri M, et al. Photocatalytic degradation of MB on MIn_2O_4(M = alkali earth metal) under visible light: effects of crustal and electronic structure on the photocatalytic activity. Catalysis Today, 2004,93-95:885-889.
    [60] Chen N S, Yang X J, Liu E S, et al. Reducing gas-sensing properties of ferrite compounds MFe_2O_4(M=Cu, Zn, Cd and Mg). Sensors Actuators B, 2000, 66:178-180.
    [61] 杨留方,李星,赵鹤云等.MgHe_2O_4纳米复合氧化物的制备和气敏性能.硅酸盐学报,2004,32(12):1491-1495.
    [62] Gopal Reddy C V, Manorama S V, et al. Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sensors and Actuators B.1999, 55: 90-95.
    [63] 杨晓娟,刘尔生,陈耐生等.几种尖晶石型复合氧化物纳米粉体的制备及气敏性.应用化学,1998,15(10):14-17.
    [64] Tamaura Y, Tabata M. Complete reduction of carbon dioxide to carbon using cation-excess magnetite. Nature, 1990,346:255-256.
    [65] Tabata M, Kato H, Kodama T, et al. CO_2 Decomposition with Mangano-W(?)stite. J. Mat. Sci., 1994, 29:999-1003.
    [66] 王力军,张春雷,李爽等.尖晶石型铁酸盐的制备及表征研究.无机化学学报,1996,2(4):377-381.
    [67] 周志刚.铁氧体磁性材料.北京:科学出版社,1981.
    [68] 庄稼,陈学平,迟燕华等.纳米Ni_(0.5)Zn_(0.5)Fe_2O_4铁氧体的制备及电磁损耗特性研究.功能材料,2006,37(1):43-46.
    [69] 王翠平,方庆清.锶铁氧体基复合材料吸波特性的研究.安徽大学学报(自然科学版),2006,30(6):57-60.
    [70] 徐小玉,黄之德,赵玉涛.磁性陶瓷靶材的制备及其应用研究.真空,2007,44(3):72-74.
    [71] Takeshi S, Koji S, Kazuyo M. Synthesis and characterization of MgAl_2O_4 spinel precursor from a heterogeneous alkoxide solution containing fine MgO powder. J. Am. Ceram. Soc., 2000, 83(1):235-237.
    [72] Parmentier J, Richard-Plouet M, Vilminot S. Influence of the sol-gel synthesis on the formation of spinel MgAl_2O_4. Materials research Bulletin, 1998,33(11):1717-1724.
    [73] Li J G, Ikegami T, Lee J H, et al. Synthesis of Mg-Al spinel powder via precipitation using ammonium bicarbonate as the precipitant. Journal of the European Ceramic Society, 2001,21:139-148.
    [74] 李新勇,李树本,吕功煊.纳米尺寸铁酸锌半导体光催化的表征及催化性能研究.分子催化,1996,10(3):187-193.
    [75] Wang D, Zuo Z G, Ye J H. A new spinel-type photocatalyst BaCr_2O_4 for H_2 evolution under UV and visible light irradiation. Chemical Physics Letters, 2003,373:191-196.
    [76] Bessekhouad Y, Trari M. Photocatalytic Hydrogen Production from Suspension of Spinel Powders AMn_2O_4(A=Cu and Zn). International Journal of Hydrogen Energy, 2001,27:357-362.
    [77] Saadi S, Bouguelia A, Trari M. Photoassisted hydrogen evolution over spinel CuM_2O_4 (M =A1, Cr, Mn, Fe and Co). Renewable Energy, 2006,31:2245-2256.
    [78] Liu G G, Zhang X Z, Xu Y J, et al. Effect of ZnFe_2O_4 doping on the photocatalytic activity of TiO_(2-)Chemosphere, 2004, 55:1287-1291.
    [79] Jia D D, Zhu J, Wu B C. Improvement of persistent phosphorescence of CaSrS:Bi~(3+) by codoping Tm~(3+). Journal of Luminescence, 2000, 91:59-65.
    [80] Yang P, Lv M, Xu D et al. Synthesis and photoluminescence characteristics of doped ZnS nanoparticles. Appl. Phys., 2001, A73:455-458.
    [81] 赵春雷,胡运生.畅永锋等.Y_2O_2S:Eu,Mg,Ti,Tb 红色长时发光材料的研究.中国稀土学报,2002,20:593-596.
    [82] Wang X X, Zhang Z T, Tang Z L et al. Characterization and properties of a red and orange Y_2O_2S-based long afterglow phosphor. Materials Chemistry and Physics, 2003,80:1-5.
    [83] Lin Y H, Zhang Z T, Tang Z L et al. The characterization and mechanism of long after glow in alkaline earth aluminates Phosphors co-doped by Eu_2O_3 and Dy_2O_(3-). Materials Chemistry and Physics, 2001,70:156-159.
    [84] Wang M Q, Wang D, Lu G L. Research on fluorescence spectra and structure of single-phase 4SrO.7Al_2O_3:Eu~(2+) phosphor prepared by solid-state reaction method. Materials Science and Engineering, 1998, B57:18-23.
    [85] Lin Y H, Tang Z L, Zhang Z T et al. Luminescence of Eu~(2+) and Dy~(3+) activated R_3MgSi_2O_8-based(R-Ca, Sr, Ba) phosphors. Journal of Alloys and Compounds, 2003,348:76-79.
    [86] Jiang L, Chang C K, Mao D L. Luminescent properties of CaMgSi_2O_6 and Ca_2MgSi_2O_7 phosphors activated by Eu, Dy and Nd. Journal of Alloys and Compounds, 2003,360:193-197.
    [87] 杨志平,朱胜超,郭智等.锌对CaTiO_3:Pr~(3+)发光亮度和余辉时间的影响.中国稀土学报,2002,20:42-45.
    [88] Park J K, Ryu H, Park H D et al. Synthesis of SrTiO_3: AL Pr phosphors from a complex precursor polymer and their luminescent properties. Journal of the European Ceramic Society, 2001, 21:535-540.
    [89] Uheda K, Maruyama T, Takizawa H et al. Synthesis and long-period phosphorence of ZnGa_2O_4:Mn~(2+) spinel. Journal of Alloys and Compounds, 1997,262-263:60-64.
    [90] 于敏,林君,周永慧.柠檬酸-凝胶法合成ZnGa_2O_4:Mn~(2+)/Eu~(3+)及其发光性能的研究,发光学报,2002.23:287-290.
    [91] Palilla FC, Albere AK, Tomkus MR. Fluorescence properties of alkaline earth aluminates of the type MA1_2O_4 activated by divalent europium. J Electrochem Soc, 1968,115(6): 642-644.
    [92] Abbruscato V. Optical and electrical properties of SrAl_2O_4:Eu~(2+). J. Electrochem. Soc., 1971,118(6): 930-935.
    [93] 宋庆梅,陈暨耀,吴中亚.掺镁的铝酸锶铕磷光体的发光特性.复旦学报(自然科学版),1995,34(1):103·106.
    [94] Matsuzawa T, Aoki Y, Takeuchi N et al. A new long phosphorescent phosphor with high brightness, SrAl_2O_4:Eu~(2+),Dy~(3+)[J]. J. Electrochem. Soc., 1996,143:2670-2673.
    [95] 吕兴栋,舒万艮.稀土离子激活碱土铝酸盐长余辉光致发光材料研究进展.稀土,2005,26(2):66-72.
    [96] 李群,滕晓明,庄卫东等.稀土长余辉发光材料的研究现状和发展趋势,稀土,2005,26(4):62-68.
    [97] 李建宇.稀土发光材料及其应用.北京:化学工业出版社,2003.
    [98] Welker T. Recent developments on phosphors for fluorescent lamps and cathode-ray tubes, J. electrochem.Soc, 1991,48-49:49-53.
    [99] 肖志国,罗昔贤,于晶杰,等.三基色蓄光发光材料应用及产业化.路明研制技术报告,2005,8-10.
    [100] Frank F C, Levin A K, Tomkus M R et al. Fluorescent properties of alkaline earth aluminates of the type MAl_2O_4 activated by divalent europium. J. Electrochem. Soc, 1968,115:642-645.
    [101] Lin Y H, Zhang Z T, Zhang F, et al. Preparation of the ultrafine SrAl_2O_4:Eu,Dy needle-like phosphor and its optical properties. J. Materials Chemistry and Physics, 2000,65:103-106.
    [102] Nakazawa E, Mcchida T. Traps in SrAl_2O_4:Eu~(2+) phosphor with rare-earth ion doping. J Luminescence, 1997, 72-74: 236-237.
    [103] Yakasaki H, Matsuzawa T. Mechanism of long phosphorescence of SrAl_2O_4:Eu~(2+),Dy~(3+) and CaAl_2O_4:Eu~(2+),Nd~3[J]. J. Lumin, 1997, 72-74: 287-289.
    [104] Kato T, T sutai I, Kam imura T et al. Thermoluminescence properties of SrAl_2O_4 Eu sputtered films with long phosphorescence. J. Lumin, 1999, 82:213-220.
    [105] Yamatoto H, Matsuzawa T. Mechanism of long phosphorescence of SrAl_2O_4:Eu~(2+), Dy~(3+) and CaAl_2O_4:Eu~(2+), Nd~(3+). J. Luminescence, 1997,72-74:287-289.
    [106] Qiu J, Kawasaki M. Phenomenon and mechanism of ling-lasting phosphorescence in Eu~(2+)-doped aluminosilicate glasses. J. Phys. Chem. Solids, 1998, 59:1521-1525.
    [107] 张天之,苏锵,王淑彬.MAl_2O_4:Eu~(2+)、RE~(3+)长余辉发光性质的研究.发光学报,1999,20:170.174.
    [108] Aitasaloa T, Holsa J, Jungner H et al. Mechanisms of persistent luminescence in Eu~(2+),RE~(3+) doped alkaline earth aluminates. J. Luminescence, 2001,94-95:59-63.
    [109] Aitasalo T, Deren P, Holsa J et al. Persistent luminescence phenomena in materials doped with rare earth ions. Journal of Solid Sate Chemistry, 2003,171:114-122.
    [110] Holsa J, Jungner H, Lastusaari M et al. Persistent luminescence of Eu~(2+) doped alkaline earth aluminates, MAl_2O_4: Eu~(2+). J. Alloys and Compounds, 2001,323-324:326-330.
    [113] 肖志国.蓄光型发光材料及其制品.北京:化学工业出版社,2002.
    [114] 张希艳,柏朝晖,王晓春等.SrAl_2O_4:Eu~(2+),Dy~(3+)光致发光釉的研究.武汉理工大学学报,2002,24(9):8-13.
    [115] 高熙英,关蓬来.长余辉发光陶瓷的研制.中国陶瓷,2005,41(3):36-37.
    [116] 刘全生,张希艳,王晓春.多彩长余辉发光陶瓷的研究.中国陶瓷,2005,41(1):52-55.
    [117] 闻瑞昌,谷华林.搪瓷工艺.北京:轻工业出版社,1987.
    [118] 张玉军,刘援朝,朱仲力. 发光搪瓷釉料研究.发光学报,1999,20(4):376-380.
    [119] 廉志红,李成宇,王瑞生.长余辉发光粉SrAl_2O_4:Eu,Dy在搪瓷涂层中的发光性质.发光学报,2006,27(4):489-494.
    [120] 张俊英,张林,王天民等.长余辉发光玻璃的研究进展[J].材料导报,2003,17(4):17-20.
    [121] Qiu J, Shimizugawa Y, Kojima K, etal. Relaxation of ultraviolet-radiation-induced structure and long-lasting phosphorescence in Eu~(2+)-doped strontium aluminosilicate glasses. J. Mater. Res., 2001, 16(1): 88-91.
    [122] 张希艳,卢利平等.稀土发光材料.北京:国防工业出版社,2005,4-58.
    [123] Qiu J, Hirao K. Long lasting phosphorescence in Eu~(2+)-doped aluminoborate glass. Solid. State. Commun., 1998,106:795-798
    [124] Qiu J, Kawasaki M, Tanaka K, et al. Phenomenon and mechanism of long-lasting phosphorescence in Eu~(2+)-doped aluminosilicate glasses. J. Phys. Chem. Solids, 1998,59(9): 795-798.
    [125] Qiu J, Miura K, Inouye H, et al. Fesmtosecond laser-induced three dimensional bright and long lasting phosphorescence inside calcium aluminosilicate glass doped with rare earth ions. appl. Phys. Lett., 1998,73: 1763-1766.
    [126] Fu J. Long-lasting phosphorescence of transparent surface-crystallized glass-ceramics. J. Am. Ceram. Soc., 2000, 83(10):2613-2615.
    [127] Kinoshita T, Hosono H. Materials design and example of long lasting phosphorescent glasses utilizing electron trapped centers. J Non-Crystalline Solids, 2000,274:257-263.
    [128] 李成宇,王成彬,于英宁,苏锵.Eu~(2+),Dy~(3+)共掺杂硼铝锶长余辉玻璃陶瓷.发光学报,2002,23(3):233-237.
    [129] Lin Y H, Tang Z L, Zhang Z T, et al. Preparation and properties of photoluminescent rare earth doped SrO-MgO-B_2O_3-SiO_2 glass. Materials Science & Engineering B, 2001, 86:79:82.
    [130] Qiu J, Gaeta A L, Hirao K. Long-lasting phosphorescence in oxygen-deficient Ge-doped silica glass at room temperature. Chem. Phys. Lett, 2001,333:236-241.
    [131] Hu X, Ren J J,Wang H, et al. Space-selective Precipitation and Dissolution of Ag and Au Nanoparticles in Silicate Glasses by Femtosecond Laser Irradiation. Journal of Wuhan University of Technology-Mater. Sci. Ed.,2007,22Suppl:790-793.
    [132] Takahaharu I, Hiroto T, Yoshinori M. Luminous glass formed article. Japan, JP09-077533.1997.
    [133] Katsushi S, Masahito S, Shirohito M. Light storing adornment Japan, JP10-273665.1998.
    [134] 苏锵.稀土黄绿色长余辉玻璃.技术与市场,2001,12(11).
    [135] 林元华,陈清明,张中太,等.烧成条件对长余辉蓄光玻璃光学性能的影响[J].无机材料学报,2000,15(6):982-986.
    [136] 陈清明,林元华,张中太,唐子龙.长余辉蓄光玻璃的制备及其性能研究.功能材料,2001,32(2):208-209.
    [137] 姜妍彦,王承遇.影响长余辉发光玻璃涂层的因素.硅酸盐通报,1998,(4):67-70.
    [138] Chris D. Method for producing phosphore scent glass artifacts. USA.US6197712.2001.
    [139] 戴嘉凌,罗昔贤,刘剑雄等.蓄光.自发光玻璃及其制造方法.中国发明专利:CN1397509.2003.
    [140] 夏威,付剑飞,冀宏斌.新型环保节能发光材料:长余辉发光玻璃.新材料产业,2007,(1):68-71.
    [141] Bessekhouad Y, Trari M. Photocatalytic hydrogen production from suspension of spinel powders AMn_2O_4(A = Cu and Zn). International Journal of Hydrogen Energy, 2002,27:357-362.
    [142] 李新勇,李树本,吕功煊.纳米尺寸铁酸锌半导体光催化的表征及催化性能研究.分子催化,1996,10(3):187-193.
    [143] Zhao Q Z, Qiu J R, Zhao C J, et al. Investigation of optical properties of Ce~(3+)-doped Gd_2SiO_5 crystal irradiated by a femtosecond laser. Optics Communications, 2005,255:97-101.
    [1] Hoffmann M R, Martin T,Choi W,et al.Environmental applications of semiconductor photocatalysis. Chem Rev, 1995,95:69-96.
    [2] Sugimoto T, Zhou X P, Muramatsu A. Synthesis of uniform anatase TiO_2 nanoparticles by gel-sol method 3. Formation process and size control. Journal of Colloid and Interface Science , 2003,259 :43-52.
    [3] Silva C G, Wang W D, Faria J L. Photocatalytic and photochemical degradation of mono-,di- and tri-azo dyes in aqueous solution under UV irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2006,181:314-324.
    [4] Goswami D Y , Vijayaraghavan S, Lu S, et al. New and emerging developments in solar energy. Solar Energy 2004,76 :33-43.
    [5] Herrmann J M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 1999,53:115-129.
    [6] Sakthivel S, Neppolian B, Shankar M V, et al. Solar photocatalytic degradation of azo dyexomparison of photocatalytic efficiency of ZnO and TiO_2. Solar Energy Materials & Solar Cells, 2003,77:65-82.
    [7] Tang J W, Zou Z G, Yin J, et al. Photocatalytic degradation of methylene blue on CaIn_2O_4 under visible light irradiation. Chemical Physics Letters, 2003, 382:175-179.
    [8] R. Vogel, P. Hoyal, H. Weller. Quantum-sized PbS, CdS, Ag_2S, Sb_2S_3, and Bi_2S_3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J.Phys.Chem., 1994,98:3183-3188.
    [9] Serpone N, Lswless D, Disdier J Spectroscopic,photoconductivity,and photocatalytic studies of TiO_2 colloids:Naked and with the lattice doped with Cr~(3+),Fe~(3+),and V~(5+) cations.Langmuir,1992,10:643-652.
    [10] S. A. Haque, S. Handa, K. Peter et al. Supermolecular control of charge Transfer in dye-sensitized nanocrystalline TiO_2 films: Towards a Quantitative structure-function relationship. Angew Chem Inted, 2005,44:5740-5744.
    [11] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001,293 (5528): 269-271.
    [12] 邹志刚,赵进才,付贤智等.光催化材料在太阳能转换和环境净化方面的研究现状和发展趋势.功能材料,2005,2(9):15-20.
    [13] Ye J H, Zou Z G, Oshikiri M, et al. A novel hydrogen-evolving photocatalyst InVO_4 active under visible light irradiation. Chemical Physics Letters, 2002,356:221-226.
    [14] Malato S, Blanco J A, Vidal A, Applied studies in solar photocatalytic detoxification:an overview. Solar Energy, 2003, 75:329-336.
    [15] Wang D F, Zou Z G, Ye J H. A novel series of photocatalysts M_(2.5)VMoO_8 (M = Mg, Zn) for O_2 evolution under visible light irradiation. Catalysis Today, 2004,93-95:891-894.
    [16] 周志钢.铁氧体磁性材料.北京:科学出版社,1981.
    [17] Lu Q, Gao F, Zhao D. One-step synthesis and assembly of copper sulfide nanoparticles to nanowires,nanotubes and nanovesicles by a simple organic amine-assisted hydrothermal process, Nano Lett. 2002, 2:725-733.
    [18] Zhang Y C, Qiao T, Hu X Y. Preparation of Mn_3O_4 nanocrystallites by low-temperature solvothermal treatment of γ -MnOOH nanowires. J.Solid.State.Chem. 2004,177:4089-4095.
    [19] 吴腊英,李长江.纳米二氧化钛粉末的溶胶-凝胶法合成及晶相转化.无机化学学报,2002,18:396-403.
    [20] Wei X H, Chen D H. Synthesis and characterization of nanosized zinc aluminate spinel by sol-gel technique. Materials Letters, 2006, 60:823-827.
    [21] Ferreira T A S, Waerenborgh J C, Mendonca M H R M, et al. Structural and morphological characterization of FeCo_2O_4 and CoFe_2O_4 spinels prepared by a coprecipitation method. Solid State Sciences, 2003,5:383-392.
    [22] Zhang M L, An T C, Hu X H, et al. Preparation and photocatalytic properties of a nanometer ZnO-SnO_2 coupled oxide. Applied Catalysis A: General, 2004,260:215-222.
    [23] Lin J C, Yates M Z. Altering the crystal morphology of silicalite-1 through microemulsion-based synthesis. Langmuir, 2005,21:2115-2120.
    [24] Sato H., Asaji N., Komasawa L. A population balance approach for particle coagulation in reverse micelles. Ind. Eng. Chem. Res. 2000,39: 328-334
    [25] Cui H T, Zayat M, Levy D. A sol-gel route using propylene oxide as a gelation agent to synthesize spherical NiAl_2O_4 nanoparticles. Journal of Non-Crystalline Solids, 2005, 351:2102-2106.
    [26] 高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2003.
    [27] 刘恩科.半导体物理.上海:上海科技出版社,1984.
    [28] 周泰明.光源原理与设计.上海:复旦大学出版社,1993.
    [29] Augugliaro V, Baiocchi C, Prevot A B, et al. Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation. Chemosphere, 2002,49:1223-1230.
    [30] Chaco'n J M, Leal M T, Sa'nchez M, Solar photocatalytic degradation of azo-dyes by photo-Fenton process. Dyes and Pigments, 2006,69:144-150.
    [31] Siham A Q, Salman S R. Photocatalytic degradation of methyl orange as a model compound. Journal of Photochemistry and Photobiology A: Chemistry, 2002,148:161-168.
    [32] 吴刚.材料结构表征及应用.北京:化学工业出版社,2005.
    [33] 倪星元,沈军,张志华.纳米材料的物化特性与应用,北京:化学工业出版社,2006.
    [34] 张金龙,陈锋,何斌.光催化.上海:华东理工大学出版社,2004,87.88.
    [35] Tang P S , Hong Z L , Zhou S F. Preparation of nanosized TiO_2 catalyst with high photocatalytic activity under visible light irradiation by hydrothermal method. Chinese Journal of Catalysis, 2004, 25(12):925-927.
    [36] Bessekhouad Y, Trari M. Photocatalytic hydrogen production from suspension of spinel powders AMn_2O_4(A = Cu and Zn). International Journal of Hydrogen Energy, 2002, 27:357-362.
    [37] Scaife D E. Oxide semiconductors in photoelectrochemical conversion of solar energy. Solar Energy, 1980,25:41-54.
    [37] Tang J W, Zou Z G, Katagiri M, et al. Photocatalytic degradation of MB on MIn_2O_4 (M = alkali earth metal) under visible light: effects of crystal and electronic structure on the photocatalytic activity. Catalysis Today, 2004, 93-95:885-889.
    [38] 邱关明.结晶化学.武汉:华中工学院出版社,1986.
    [39] Kato H , Kobayashi H , Kudo A. J . Role of Ag~+ in the Band Structures and Photocatalytic Properties of AgMO_3 (M: Ta and Nb) with the Perovskite Structure. Phys. Chem. B , 2002,106:12441-12447.
    [40] Tang J W, Zou Z G, Ye J H. Efficient photocatalytic decomposition of organic contaminants over CaBi_2O_4 under visible-light irradiation. Angew. Chem. Int. Ed., 2004,43:4463-4466.
    [41] Yin J , Zou Z G, Ye J H._A Novel Series of the New Visible-Light-Driven Photocatalysts MCo_(1/3)Nb_(2/3)O_3 (M = Ca, Sr, and Ba) with Special Electronic Structures. J . Phys. Chem. B, 2003,107: 4936-4941.
    [42] Wang D F, Zou Z G, Ye J H. A new spinel-type photocatalyst BaCr_2O_4 for H_2 evolution under UV and visible light irradiation. Chemical Physics Letters, 2003,373:191-196.
    [43] 大连工学院无机化学教研室.无机化学.北京:人民教育出版社,1979.
    [44] 大连理工大学无机化学教研室.无机化学.北京:高等教育出版社,2001.
    [45] SARMA D D, SANTRA A K, RAO C N R. Electronic structure of perovskite oxides of transition metals of the type LaMO_3(M=Ti-Ni) as revealed by MSXa investigations. J Solid State Chem, 1994, 110:393-396.
    [1] Mills A, Hunte S L. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 1997,108:1-35.
    [2] Litter I M. Heterogeneous photocatalysis transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 1999,23:89-114.
    [3] Fujishima A, Rao N T, Tryk A D. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000,1:1-21.
    [4] Herrmann J M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 1999,53:115-129.
    [5] 柳丽芬,张扬,杨凤林等.金属离子掺杂二氧化钛及水体光催化脱氮研究.感光科学与光化学,2007,25(3):165·175.
    [6] Malato S, Blanco J A, Vidal A, et al. Applied studies in solar photocatalytic detoxification: an overview. Solar Energy, 2003,75:329-336.
    [7] 邹志刚,赵进才,付贤志等.光催化材料在太阳能转换和环境净化方面的研究现状和发展趋势.功能材料,2005,3(6):15-20.
    [8] 周学双.染料工业三废治理的发展方向.化工环保,1992,6:333-336.
    [9] Elodie G, Stephane T, Claude L, et al. Degradation of azo dyes in water by Electro-Fenton process. Environ Chem Lett, 2003, 1:38-441.
    [10] Poon C S, Huang Q P, Fung C. Degradation of cuprophenyl yellow RL by UV/ H_2O_2 / ultrasonication (US) process in aqueous solution. Chemosphere, 1999,38:1005-10141.
    [11] HAO S. Q, TAO H, ZHOU S L. Action of TLMCM-41 on photocatalytic degradation of reactive brilliant red K-2G in aqueous solution. Metallurgical Analysis, 2007,27( 9):7-10.
    [12] Bizani E, Fytianos K, Poulios I, et al. Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. Journal of Hazardous Materials, 2006, 136:85-94.
    [13] Augugliaro V, Baiocchi C, Prevot B A, et al. Azo-dyes photocatalytic degradation in aqueous suspension of TiO_2 under solar irradiation. Chemosphere, 2002,49:1223-1230.
    [14] Silva G C, Wang W D, Faria L J. Photocatalytic and photochemical degradation of mono-,di- and tri-azo dyes in aqueous solution under UV irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2006,181:314-324.
    [15] Storck S, Bretinger H, Maier W F, et al. Characterization of micro- and mesoporoussolids by physisorption methods and pore-size analysis. Appl. Catal. A. 1998,174(1-2): 137-146.
    [16] 袁曦明,许永胜,于江波等.溶胶-凝胶法制备长余辉发光材料SrAl_2O_4:Eu~(2+),Dy~(3+)的研究.稀土,2002.23:33-38.
    [17] 王世敏,许祖勋,傅晶.纳米材料制备技术.北京:化学工业出版社,2002.
    [18] 吴刚.材料结构表征及应用.北京:化学工业出版社,2005.
    [19] 高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002.
    [20] Lettmann Ch, Hildenbrand K, Kisch H et al. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl.Catal. B, 2001,32:215-217.
    [21] Tang P S, Hong Z L, Fan X P, et al. Preparation of nanosize TiO_2 catalyst with high photocatalytic activity under visible light irradiation by acetone hydrothermal method. Chinese Journal of Catalysis, 2004,25(12):925-927.
    [22] Ye J H, Zou Z G, Oshikiri M, et al. A novel hydrogen-evolving photocatalyst InVO_4 active under visible light irradiation. Chemical Physics Letters, 2002,356:221-226.
    [23] 唐培松,洪樟连,周时凤等.可见光激发高光催化活性的纳米TiO_2光催化剂-丙酮溶剂水热合成、特性表征与光催化活性起因.太阳能学报,2006,127(13):289-294.
    [24] Wang D F, Zou Z G, Ye J H. A new spinel-type photocatalyst BaCr_2O_4 for H_2 evolution under UV and visible light irradiation. Chemical Physics Letters, 2003,373:191-196.
    [25] 刘恩科.半导体物理.上海:上海科技出版社,1984.
    [26] Tang J W, Zou Z G, Yin J et al. Photocatalytic degradation of methylene blue on CaIn_2O_4 under visible light irradiation. Chemical Physics Letters, 2003,382:175-179.
    [27] Tang J W, Zou Z G, Ye J H. Effects of substituting Sr~(2+) and Ba~(2+) for Ca~(2+) on the structural propertie and photocatalytic behaviors of CaIn_2O_(4-) Chem. Mater, 2004,16:1644-1649.
    [28] Asahi R, Morikawa T, Ohwaki Tet al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001,293: 269-271.
    [29] Michaels G B, Lewis D L. Sorption and toxicity of azo and triphenylmethane dyes to aquatic microbial populations. Environmental Toxicology Chemistry, 1985,25(6): 45-50.
    [30] 王怡中,符雁.不同类型染料化合物太阳光催化降解研究.太阳能学报,1998,19(2):117-126.
    [31] Akyol A, Bayramoglu M. Photocatalytic degradation of Remazol Red F3B using ZnO catalyst. Journal of Hazardous Materials B, 2005,124:241-246.
    [32] Calza P, Sakkas V A, Medana C, et al. Photocatalytic degradation study of diclofenac over aqueous TiO_2 suspensions. Applied Catalysis B: Environmental, 2006,67:197-205.
    [33] 唐培松.高活性纳米TiO_2的合成、表征及可见光催化性能研究:(博士论文).杭州:浙江大学,2006.
    [1] Cheng Y, Wang Y S, Bao F, et al. Shape Control of Monodisperse CdS Nanocrystals: Hexagon and Pyramid. J. Phys. Chem. B, 2006,110:9448-9451.
    [2] 杨娟,李丹,吴东辉等.硬脂酸法制备纳米TiO_2及微结构控制.无机材料学报,2001,16(3):550-554.
    [3] Takahashi H, Kakihana M, YamashitaY, et al. Synthesis of NiO-loaded KTiNbO photocatalysts by a novel polymerizable complex method. Journal of Alloys and Compounds, 1999,285:77-81.
    [4] Giannakas A E, Ladavos A K, Armatas G S. Effect of composition on the conductivity of CTAB-butanol-octane-nitrate salts (Al(NO_3)_3 + Zn(NO_3)_2) microemulsions and on the surface and textural properties of resulting spinels ZnAl_2O_4. Applied Surface Science, 2006,252:2159-2170.
    [5] Sreethawong T, Chavadej S, Ngamsinlapasathian S, et al. Sol-gel synthesis of mesoporous assembly of Nd_2O_3 nanocrystals with the aid of structure-directing surfactant. Solid State Sciences, 2008, 10:20-25.
    [6] 庄稼,迟燕华,王栋.表面活性剂对固相反应制备钴酸盐形貌影响的研究.无机材料学报,2007,22(1):40-44.
    [7] Sreethawong T, Chavadej S, Ngamsinlapasathian S, et al. On the formation of nanocrystalline bimodal mesoporous In_2O_3 prepared by surfactant-assisted templating sol-gel process. Microporous and Mesoporous Materials, 2008,109:84-90.
    [8] Zhang S Y, Jiang F S, Qu G, Lin C Y. Synthesis of single-crystalline perovskite barium titanate nanorods by a combined route based on sol-gel and surfactant-templated methods. Materials Letters, 2008, 62(15): 2225-2228.
    [9] Mandelbrot B B. Fractals, Form, Chance and Dimension[M]. Freeman, San Francisco, 1977.
    [10] 郁可,郑中山.粉体粒度分布的分形特征.材料研究学报,1995,9(6):539-542.
    [11] 马建军,徐光亮.分形在陶瓷微观结构中的应用.中国陶瓷工业,2004,11(1):55-57.
    [12] Shekc H , Shao Y Z. Characteristics of growth fractal of nano-sized gadolinium powder and its abnormality in magnetic susceptibility. Scripta Materialia, 2001,44(6):959-964.
    [13] S.J.格雷格,K.S.W辛.吸附、比表面与孔隙率.高敬琮等译.北京:化学工业出版社,19898.
    [14] 孙霞,吴自勤,黄昀.分形原理及其应用.安徽:中国科学技术大学出版社,2003.
    [15] 仲维卓,张学华,罗豪等.纳米晶生长习性机理-负离子配位多面体生长基元模型的应用.硅酸盐学报,2004,32(3):239-244.
    [16] 李玲.表面活性剂与纳米技术.北京:2004.
    [17] 北原文雄,早野茂夫,原一郎.表面活性剂分析及实验法.毛培坤译.北京:轻工业出版社,1988.
    [18] Liu H Y, Ma Z, Chu Y, et al. Surfactant-assisted synthesis, characterization and catalytic properties of nanostructure porous WO_3/ZrO_2 solid acid. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 287:10-15.
    [19] Lee A Ch, Lin R H, Yang Ch Y, et al. Preparations and characterization of novel photocatalysts with mesoporous titanium dioxide (TiO_2) via a sol-gel method. Materials Chemistry and Physics, 2008,109: 275-280.
    [20] MacKenzie K J D, Temuujin J, Smith M E, et al. Effect of mechanochemical activation on the thermal reactions of boehmite (gamma-AlOOH) and gamma-Al_2O_3. Thermochimica Acta J. 2000, 359:87-94.
    [21] 许家时,雷元礼,梁俊.尖晶石相ZnCr_2O_4陶瓷生成条件.电子元件与材料.2000,6:7-8.
    [22] 张立得,牟季美.纳米材料和纳米结构.北京:科学出版社,2002.
    [23] 马来鹏,尹衍升.分形理论在陶瓷材料研究中的应用.江苏陶瓷,2004,37(4):6-9.
    [24] 谢修银,秦少雄.多相催化剂表面的分形表征及其应用研究.荆州师范学院学报(自然科学版),2000,123(12):95.
    [25] Avnir D, Farm D, Pfeifer P. Surface geometric irregularity of particulate materials : The fractal approach. J Colloid Interface Sci ,1985 ,103 :112-123.
    [26] BOUDART M. Two - step catalytic reactions. Aiche Journal, 1972,18 :465.
    [27] FARIN D, AVNIR D. The reaction dimension in catalysis on dispersed metals. J Am Chem Soc, 1988, 110:2039-2045.
    [28] 廖晖,王富民,辛峰.反应结构敏感性的分形分析.化学工业与工程,2002,19(2):167.171.
    [29] E. Bizani, K. Fytianos, Poulios I, et al. Photocatalytic decolonization and degradation of dye solutionsand wastewaters in the presence of titanium dioxide. Journal of Hazardous Materials, 2006, 136:85-94.
    [30] Yamazaki S, Tanaka S, Tsukamoto H. Kinetic studies of oxidation of ethylene over a TiO_2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 1999,121:55-61.
    [31] Goswami D Y. A Review of Engineering Developments of Aqueous Phase Solar Photocatalytic Detoxification and Disinfection Processes. J Solar Energy Engineering, 1997,119(5):101~107.
    [1] Palilia F C, Levine A K, Tomkus M R. Fluorescent properties of alkaline earth aluminates of the type MA1_2O_4 actived by divalent europium. J Electro chem. Soc, 1968,115(6):642-648.
    [2] Abbruscato V. Optical and electrical properties of SrAl_2O_4:Eu~(2+). J Electron chem. Soc, 1971, 118(6):930-935.
    [3] 唐明道,李长宽,高志武等.SrAl_2O_4:Eu的长余辉特性的研究.发光学报,1995,16(1):5l-56.
    [4] Akiyama M, Xu C N, Liu Y, et al. Influence of Eu, Dy co-doped strontium aluminate composition on mechanoluminescence intensity. Journal of Luminescence, 2002,97:13-18.
    [5] Tang C J , Liu Z G , Zhao W M , et al. ZnS Sm , Cl Red Thin Film Electroluminescent Devices Using Ceramic Thick Film As Insulator Layer [J ] . Chinese Journal of Luminescence , 1998 , 19 (4) :364-366.
    [6] Fang J. Hydrothermal preparation and characterization of Zn_2SnO_4 particles. Mater Res, 2001, 36:1391-1397.
    [7] Xiao Z G, Xiao Z Q. Long Afterglow Silicate Luminescent Material and its Manufacturing Method[P]. US. P6 093 346,2000.
    [8] 宋庆梅,黄锦斐,吴茂钧等.铝酸锶铕的合成与发光的研究.发光学报,1991,12(2):145.
    [9] 加Yamamoto H, Matsuzawa T. Mechanism of long phosphorescence of SrAl_2O_4: Eu~(2+), Dy~(3+) and CaAl_2O_4:Eu~(2+),Nd~(3+). J Lumin, 1997, 76-77:287-289.
    [10] Qiu J, Miura K, Inouye H, et al. Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions. Appl Phys Lett, 1998, 73(13): 1763-1765.
    [11] Matusuazawa T, Aoki Y. Takeuchi N? et al. A new long phosphorescent phosphor with high brightnessSrAl_2O_4:Eu~(2+), Dy~(3+). J. Electrochem Soc., 1996, 143(8):2670-2675.
    [12] H(?)ls(?)J , Jungner H, Lastusaari M, et al. Persistent luminescence of Eu doped alkaline earth aluminates, MAl_2O_4:Eu~(2+). Journal of Alloys and Compounds, 2001,323-324:326-330.
    [13] Peng T Y , Yang H P, Pu X L, et al. Combustion synthesis and photoluminescence of SrAl_2O_4:Eu,Dy phosphor anoparticles. Materials Letters, 2004,58 :352- 356.
    [14] 曾庆轩,周从章,冯长根等.燃烧合成SrAl_2O_4:Eu,Dy长余辉发光材料的研究.北京理工大学学报,2002,20:655-657.
    [15] Lu Y P, Li Y X, Xiong Y H, et al. SrAl_2O_4: Eu~(2+), Dy~(3+) phosphors derived from a new sol-gel route. Microelectronics Journal, 2004, 35:379-382.
    [16] Aitasalo T, H(?)ls(?) J, Jungner H, et al. Sol-gel processed Eu -doped lkaline earth aluminates. Journal of Alloys and Compounds, 2002, 341:76-78.
    [17] Peng T Y, Liu H J, Yang H P, et al. Synthesis of SrAl_2O_4:Eu, Dy phosphor nanometer powders by sol-gel processes and its optical properties. Materials Chemistry and Physics, 2004, 85:68-72.
    [18] Lin Y H? Zhang Z T, Zhang F, et al. Preparation of the ultrafine SrAl_2O_4:Eu, Dy needle-like phosphor and its optical Properties. Materials Chemistry and physics, 2000,65:103-106.
    [19] 袁曦明,田煦科,于江波等.共沉淀法制备长余辉发光材料SrAl_2O_4:Eu~(2+),Dy~(3+)的研究.材料开发与应用,2002,17(2):26-30.
    [20] Kutty T R N , Jagannathan R. Rao R P. Lmuinescence of Eu~(2+) in strontimu aluminates prepared by the hydrothermal method. Materials Research Bulletin, 1990, 25:1355-1362.
    [21] 陆晓军,肖志义,崔启征等.Eu,Dy共掺铝硼酸盐长余辉玻璃陶瓷的研究.长春理工大学学报,2005,28(3):100-103.
    [22] 林元华,张中太,陈清明等.长余辉光致发光玻璃制备及其性能研究.材料科学与工艺,2000,8(1):1-5.
    [23] 朱爱玲,廉世勋,李承志等.用两种方法合成长余辉发光玻璃的对比研究.中国稀土学报,2002,20(6):625-628.
    [24] 林缘华,陈清明,张中太等.烧成条件对长余辉蓄光玻璃光学性能的影响.无机材料学报,15(6):982-986.
    [25] Matusuazawa T, Aoki Y, Takeuchi N, et al. A new long Phosphorescent phosphor with high brightness SrAl_2O_4:Eu~(2+), Dy~(3+). J Electrochem Soc., 1996,143(8):2670-2675.
    [26] 沈伟,彭德全,沈晓丹.Al_2O_3陶瓷表面金属化.材料保护,2005,38(3):9-11.
    [27] Luo X X, Cao W H, Xiao Z G. Investigation on the distribution of rare earth ions in strontium aluminate phosphors. Journal of Alloys and Compounds, 2006,416:250-255.
    [28] Akiyama M, Xu C N, Liu Y, et al. Influence of Eu, Dy co-doped strontium aluminate composition on mechanoluminescence intensity. Journal of Luminescence, 2002,97:13-18.
    [29] PengT Y, Yang H P, Pu X L, et al. Combustion synthesis and photoluminescence of SrAl_2O_4:Eu, Dy phosphor nanoparticles. Materials Letters, 2004, 58:352-356.
    [30] Lu Y Q, Li Y X, Xiong YH, et al. Preparation of the ultraflne SrAl_2O_4:Eu, Dy needle-like phosphor and its optical properties. Materials Chemistry and Physics, 2000,65:103-106.
    [31] 吕兴栋,舒万艮,黄可龙等.掺杂B~(3+)在SrAl_2O_4:Eu,Dy中的作用及其机制研究.中国稀土学报,2004,22(3):312-316.
    [32] Blass G. Energy transfer between in equivalent Eu~(2+) ions. Journal of Solid State Chemistry, 1986,62: 207-210.
    [33] 唐明道,李长宽,高志武等.SrAl_2O4:Eu~(2+),Dy的长余辉发光特性的研究.发光学报,1995,16(1):51-54.
    [34] 李家成.长余辉光致发光材料的研制:(硕士学位论文).西安:西北轻工业学院,2001.
    [1] Masaaki Y, Kazuo K. Long-lasting afterglow in Tb~(3+)-doped SiO_2-Ga_2O_3-CaO-Na_2O glasses and its sensitization by Yb~(3+). Solid State Communications, 2004, 130: 637-639.
    [2] Li C Y, Su Q, Wang S B. Multi-color long-lasting phosphorescence in Mn~(2+)-doped ZnO-B_2O_3-SiO_2 glass-ceramics. Materials Research Bulletin, 2002, 37:1443-1449.
    [3] Kinoshita T, Hosono H. Materials design and example of long lasting phosphorescent glasses utilizing electron trapped centers. J Non-Cryst Solids, 2000,274:257-263
    [4] Qiu J Y, Kawasaki M, Tanaka K, et al. Phenomenon and mechanism of long-lasting phosphorescence in Eu~(2+)-doped aluminosilicate glasses. J Phys. Chem. Solids, 1998, 59:795-798.
    [5] Kinoshita T, Hosono H. Materials design and example of long lasting phosphorescent glasses utilizing electron trapped centers. J Non-Crystalline Solids, 2000,274:257-263.
    [6] 黄浪欢,陈文新,刘应亮.硼铝酸锶长余辉发光玻璃的制备及发光性能研究.功能材料,2006,37(6):86 1-864.
    [7] 林元华,张中太,陈清明等.长余辉光致发光玻璃的制备及其性能研究.材料科学与工艺,2000,8(1):1-6.
    [8] 朱爱玲,廉世勋,李承志等.用两种方法合成长余辉发光玻璃的对比研究.中国稀土学报,2002,20:625-629.
    [9] 马伟,万发荣,龙毅等.SrAl_2O_4:Eu,Dy的粉末粒度与发光性能的关系.发光学报,2003,24:95-99.
    [10] 林元华,陈清明,张中太等.烧成条件对长余辉蓄光玻璃光学性能的影响.无机材料学报,2000,15:982-986.
    [11] Wang C Y, Jiang Y Y, Tao Y. A Study on ZnS Long Afterglow fluorescent Glass Coating. Proceedings of XV Ⅱ International Congress on Glass, Cinese Ceramic Society, BEIJING, 1995, 3:687-692.
    [12] Yang Xuefeng, Ning Guiling, Liu Jie, Pan Wen, Lin Yuan. Quenching Study of Iron Impurity In Eu2+,Dy3+ Doped Strontium Aluminate Phosphor Prepared by Nano-coating Process. Journal of Rare Earths (Spec. Issue).2007,25,326-329.
    [13] 姜妍彦,王承遇.影响长余辉发光涂层的因素.硅酸盐通报,1998,4:67-70.
    [14] Peng T Y, Yang H P, Pu X L, et al. Combustion synthesis and photoluminescence of SrAl_2O_4: Eu, Dy phosphor nanoparticles. Materials Letters, 2004, 58:352-356.
    [15] 申泮文.无机化学.北京:化学工业出版社,2002.
    [16] 邱勇,孙海涛.一种Eu~(2+)激活的铝酸锶长余辉结构.功能材料,2000,31(6):632.634.
    [17] Qiu G M, Chen Y J, Cui J Q, et al. Synthesis of Long Afterglow Phosphors Doped B SrAl_2O_4: Eu2~+, Dy~(3+) and Its Luminescent Properties. Journal of Rare Earths, 2007,25,(6):86-89.
    [18] 朱维波.铝酸锶系列稀土长余辉发光粉合成新工艺及其反应机理的研究:(硕士学位论文).大连:大连理工大学.2003.
    [19] 林元华,唐子龙,张中太等.不同添加剂对Sr_4Al_(14)O_(25):Eu,Dy长余辉光致发光性能的影响.硅酸盐学报,2001,29(3):218.220.
    [20] Chang C, Mao D, Shen J, et al. [J]. Journal of Alloys and Compounds,2003,348:224-227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700