用户名: 密码: 验证码:
环境响应性超分子聚集体的制备及组装过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子有序聚集体由于在催化化学、材料制备、生物医药等多方面存在着极为重要而广泛的应用价值,长期以来一直是科研领域研究的热点。我们结合近年来备受关注的可控自由基聚合和点击化学等手段合成具有特定功能化的嵌段聚合物;利用非共价键相互作用来构筑多种环境响应性的超分子有序聚集体,研究不同化学构造对于超分子自组装的影响;发展新的稳定超分子有序组装结构的方法,并对超分子聚集体的形成机理进行详细地研究。具体来说,本论文的工作包括以下几个方面:
     1.利用静电相互作用、包结络合作用、π-π共轭相互作用、氢键作用和阳离子-π相互作用等各种弱相互作用来构筑多种多重环境响应性的超分子组装体。首先利用原子转移自由基聚合(ATRP)的方法使用聚环氧乙烷双端大分子引发剂合成了一系列聚4-乙烯基吡啶-b-聚乙二醇-b-聚4-乙烯基吡啶(P4VP-b-PEO-b-P4VP)三嵌段聚合物。在酸性环境中当有二价有机阴离子萘二磺酸钠(NDSNa)存在时,该三嵌段聚合物可以在高浓度下形成温度敏感的水凝胶。接着合成了侧链被偶氮苯基团部分改性的聚N,N-二甲基氨乙基甲基丙烯酸酯(PDMA-co-PAzoC_6PMA),并利用偶氮苯基团和环糊精之间的包结络合作用和低聚环糊精(oligo-(β-CD))在水溶液中混合构筑超分子水凝胶。该水凝胶具有多重环境响应性:由于偶氮苯基团的光致顺反异构特性使其具有可逆光敏感性;另外由于偶氮苯基团和环糊精之间的相对较低的包结络合作用常数,水凝胶同时又具有温度响应性和竞争络合响应性。然后我们使用单叠氮官能化的β-CD合成超支化的星形聚合物前体,该前体具有两个反应位点,利用Click方法将端炔基的聚N-异丙基丙烯酰胺(alkynyl-PNIPAM)接到该前体上形成PNIPAM的星形聚合物(oligo(CD-PNIPAM)),然后通过包结络合作用与端金刚烷官能化的聚N,N-二乙基氨乙基甲基丙烯酸酯(Ad-PDEA)作用形成全亲水性的杂臂星形聚合物,该杂臂星形聚合物拥有温度敏感的PNIPAM链和pH敏感的PDEA链,可以分别在高温低pH或低温高pH条件下的水溶液中分别形成以PNIPAM为核或以PDEA为核的球状胶束。接下来合成了主链上含有刚性偶氮苯重复单元的两亲性ABA三嵌段聚合物(PEG-b-BPADB-b-PEG)和多嵌段聚合物(m-PEG-b-BPADB),在水溶液中自组装能形成树叶状的有序聚集体,而在紫外辐照下自组装只能形成短棒结构的聚集体。最后研究SDS和PTHC的混合体系,发现在高PTHC浓度下混合物能形成囊泡,并且该囊泡具有温度和稀释响应性,提高温度和稀释浓度均可以使囊泡结构向蠕虫状胶束转变。
     2.在超分子自组装的工作基础上,我们进一步致力于超分子纳米聚集体结构的固定。首先合成了分别被叠氮基团和炔基部分功能化的带相反电荷的正负离子聚电解质,聚环氧乙烷-b-聚(季铵化的二甲基氨乙基甲基丙烯酸酯-co-甲基丙烯酸叠氮丙酯)(PEO-b-P(QDMA-co-AzPMA))和聚环氧乙烷-b-聚(甲基丙烯酸-co-甲基丙烯酰炔丙胺)(PEO-b-(PMAA-co-PgAM))。在水溶液中,这两个嵌段聚合物混合,可以自发的形成聚离子复合物胶束,然后加入少量的一价铜作为催化剂可以在胶束核内通过点击化学核交联反应固定聚离子复合物胶束结构。随后研究了利用π-π共轭相互作用来稳定小分子表面活性剂的组装结构:极性头上都连接有苯环的十二烷基苯磺酸钠(SDBS)和对辛氧基苯胺盐酸盐(POAHC)在水溶液中混合能自发形成囊泡结构,利用苯环之间的π-π共轭相互作用可以将这种囊泡结构固定。
     3.对超分子有序组装体的形成过程也进行了详细的研究。使用停流技术首次研究了PGMA-PDMA-PDEA三嵌段聚合物的pH诱导胶束化动力学过程以及聚离子复合物的形成动力学过程。停流实验得到的动力学曲线能通过双指数动力学方程进行拟合得到两个特征弛豫时间,在快过程中(τ_1),大量的高分子单链(unimer)快速形成小聚集体并且小聚集体之间相互融和形成准平衡态胶束或非平衡态聚离子复合物,在第一个过程结束的时候溶液中高分子单链的浓度接近于溶液的临界胶束化浓度(cmc)。紧接着是一个慢过程,这些准平衡态的聚集体逐渐调整形成最终平衡态的聚集结构。对于pH诱导的胶束化过程,第一个过程按照胶束的融合/裂分机理进行,第二个过程则对应着胶束的形成和解离过程,在这个过程中,胶束的聚集数增加,同时胶束的数均密度降低。对于第二个过程的限速步骤是第一个过程形成的部分准平衡态胶束的解离,而在这个过程中,同时并存着高分子链的插入/离开机理和胶束的融合/裂分机理这两种机理。在没有外加盐的存在下,胶束的形成和解离过程按照高分子链的插入/离开机理进行,随着溶液中盐浓度的增加,胶束的融合/裂分机理逐渐产生作用并最终在高盐浓度下占据着主导作用。对于聚离子复合物的形成动力学过程,其两个过程都完全按照二级动力学反应进行,弛豫过程遵从胶束的融合/裂分机理。而聚离子复合物的解离过程不光存在着胶束的融合/裂分,高分子单链的插入/离开在此时也起到了很重要的作用。
     4.在最后一章中我们利用聚合物胶束作为模板,实现了金纳米粒子在胶束内壳或者外壳上的致密有序堆积。首先合成了可断链的以二硫键连接的聚甲基丙烯酸甲酯-(s-s)-甲基丙烯酸三缩乙二醇单甲醚酯-(s-s)-聚甲基丙烯酸甲酯三嵌段聚合物(PMMA_(36)-(s-s)-PMEO_3MA_(90)-(s-s)-PMMA_(36))。通过共溶剂过渡制成的胶束溶液中,二硫键位于疏水的PMMA内核和PMEO_3MA外壳的界面。四羟甲基氯化膦(THPC)稳定的水溶性小尺寸金纳米粒子,经过扩散作用进入到胶束的核壳界面,并通过硫-金化学键的生成在胶束内核表面形成一层致密金纳米壳层,二硫键断裂后生成的PMEO_3MA-SH仍然共价键接到金粒子表面形成该组装体的外壳。最终形成的组装体具有温度敏感性。其次利用含有吡啶二硫醚的ATRP引发剂引发合成了全亲水性AB嵌段聚合物PyDS-PMEO_2MA-b-PDEA,在酸性溶液中,嵌段聚合物和柠檬酸钠稳定的12nm左右金纳米粒子作用后包裹在金粒子表面,利用外层PDEA的pH敏感性,实现金纳米粒子的可控聚集。在碱性条件下将四羟甲基氯化膦稳定的金纳米粒子加入到嵌段聚合物胶束溶液中,金纳米粒子与壳层上的PyDS基团作用形成一层致密的金纳米外壳;调节溶液的pH值至酸性,该超分子组装体发生解离,而再将溶液pH值调至碱性时,金粒子可以再次组装形成球状聚集体。
Supramolecular assemblies have attracted much interest in the past century due to their promising applications in diverse fields such as catalysis,material preparation and biomedicine.In this dissertation,a series of supramolecular assemblies were fabricated via different non-covalent interactions from specific functionalized surfactants and block copolymers with varying chemical architectures.The block copolymers were prepared in the combination of widely-noted controlled radical polymerizations and click chemistry.Besides the construction of the aggregates,new approaches in the fixation of nanostructures from supramolecular assemblies were investigated and the relaxation kinetics of the formation of the assemblies was also studied.The dissertation includes the following four parts:
     1.Supramolecular assemblies were built based on varies of non-covalent interactions such as electrostatic interaction,inclusion complexation,π-πinteractions, hydrogen bond and cation-πinteractions.First,ABA triblock copolymer, poly(4-vinyl-pyridine)-b-poly(ethylene oxide)-b-poly(4-vinylpyridine)(P4VP-b-PEO -b-P4VP) was prepared via Atom Transfer Radical Polymerization(ATRP). In the presence of cross-linker,sodium 2,6-naphthalene disulfonate(NDSNa), thermo-sensitive "flower-like" spherical micelles with a "UCST" behavior would form at low polymer concentrations while physical hydrogel can be obtained at high polymer concentrations in acid aqueous solutions.Second,azobenzene groups were introduced to the side chain of poly(2-(dimethylamino) ethyl methacrylate-co-azidopropyl methacrylate),P(DMA-co-AzPMA),by using the click chemistry technology.By mixing aqueous solutions of azobenzene polymer and oligo-β-cyclodextrin,multi-responsive physical hydrogel can form due to the inclusion complexation.The obtained hydrogel would translate to fluid solutions upon heating,UV-irradiation and adding competitive guest molecule.Third, narrow-dispersed PNIPAM-functionalized hyperbranched oligo(mono-N_3-CD), oligo(CD-PNIPAM),and adamantane-terminated PDEA were synthesized via a combination of ATRP and click chemistry.The inclusion complexation betweenβ-CD and Ad moieties was employed as the driving force in constructing supramolecular double hydrophilic miktoarm star copolymer,which consisting of PNIPAM chains as thermo-responsive arms and PDEA chains as pH-responsive arms.The supramolecular star copolymer showed "schizophrenic" micellization behavior in aqueous solution upon dually playing with solution pH and temperature.Forth,amphiphilic ABA triblock copolymers and multi-block copolymers consisting with a rigid azobenzene repeat unit in the main chain were successfully synthesized."Leaf-like" supramolecular aggregates were obtained in aqueous solutions while short "rod-like" aggregates were observed upon UV-irradiation.Last,spontaneous vesicles can form in the aqueous solution of anionic surfactant,sodium dodecyl sulfate(SDS),when hydrotropic salt, p-toluidine hydrochloride(PTHC),was added at certain concentrations.When these vesicles were heated above a critical temperature or diluted with certain water,they would transform into flexible wormlike micelles.
     2.On the basis of the works concerning the aggregation behavior of block copolymers mentioned above,we further devoted to the fixation the supramolecular assembly nanostructures.First,alkynyl group functionalized anionic polyelectrolyte,poly(ethylene oxide)-b-poly(methacrylic acid-co-propargyl methacrylamide)(PEO-b-P(MAA-co-PgAM)),and azide group functionalized cationic polyelectrolyte,poly(ethylene oxide)-b-poly(quaternized 2-(dimethylamino) ethyl methacrylate-co-azidopropyl methacrylate)(PEO_(113)-b-P(QDMA-co-AzPMA)) were synthesized.Polyion complex(PIC) micelles formed by mixing aqueous solution of the two oppositely charged polyelectrolytes. Upon adding Cu(Ⅰ) catalysis,the PIC micelles were facilely cross-linkd via "click" reaction which was processed in the PIC micellar core.Second,surfactant vesicles were observed to form in mixed aqueous solutions of sodium dodecyl benzenesulfonate(SDBS) and p-octyl aniline hydrochloride(POAHC).Both the cationic and anionic surfactants possess a phenyl group connected to the polar head.Theπ-πinteraction between phenyl groups greatly enhanced the stability of the formed vesicles.
     3.In the third part,the kinetics processes of supramolecular assembly formation were detailedly investigated using stopped-flow technique.First,Poly(glycerol monomethacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate)-b-poly(2-(di-ethylamino)ethyl methacrylate)(PGMA-PDMA-PDEA) triblock copolymer was synthesized via ATRP.The pH-induced micellization kinetics of the triblock copolymer was investigated by employing the stopped-flow light scattering and fluorescence.Upon pH-jump from 4 to 12,all relaxation curves recorded by stopped-flow light scattering can be well fitted with a double-exponential function, leading to a fast relaxation time constant(τ_1) and a slow relaxation time constant (τ_2).The fast process(τ_1) is associated with the formation of quasi-equilibrium micelles,while the slow process(τ_2) is associated with micelle formation-breakup, approaching the final equilibrium state.Both processes occur much more slowly on initial addition of NaCl,and then level off at higher salt concentrations(>0.5 M NaCl).The concentration dependence ofτ_2 revealed that the mechanism of micelle formation/breakup process transforms from unimer insertion/expulsion in the absence of salt to micelle fusion/fission in the presence of high NaCl concentrations.Relaxation curves obtained with stopped-flow fluorescence using pyrene as a probe can be well-fitted with a single-exponential function,and the relaxation time(τ_(py)) was in agreement withτ_f,the relaxation time of the overall micellization process as detected by stopped-flow light scattering.Second, oppositely charged polyions,anionic block copolymer poly(ethylene oxide)-b-poly(sodium 4-styrene sulfonate)(PEO-b-PSSNa) and cationic block copolymer poly(ethylene oxide)-b-poly(quaternized 2-(dimethyl amino)ethyl methacrylate)(PEO-b-PQDMA) were prepared via ATRP.Upon directly mixing aqueous solutions of the two block copolymers,colloidally stabilized PIC micelles were obtained.The relaxation curves can be well fitted by a double-exponential function,leading to a fast relaxation process related to the initial quasi-equilibrium complex formation and a slow process related to the pre-complex structure rearrangements to the final equilibrium complexes.Both the two stages are determined to be acted as second-order reactions and processed through micelle fusion/fission mechanism.Fluorescence kinetics studies revealed that the neutralization of oppositely charged polyion was too fast to be detected and should be completed within the stopped-flow dead-time.Thermodynamics studies revealed that the spontaneously complexation is entropy driven.Upon increasing the ionic strength of the solutions,the complexation processes become slower by the reason of the decrease of entropy driven force.Last,the formation process of thermo-degradable micelles obtained by mixing acid aqueous solutions of PEO-b-P4VP diblock copolymer and 8-aminonaphthalene-1,3,6-trisulfonic acid disodium salt(ANTS) were studied both by directly mixing the two solutions and temperature jump from 50℃to 20℃.The relaxation process can be divided into two parts.In the first fast process,small complex micelles with low aggregates number formed via the electrostatic interaction and then transform to the quasi-equilibrium complexes.The quasi-complex structure rearrangements to the final equilibrium complex micelles accrued in the second slow stage.
     4.In the last section,the block copolymer micelles were employed as the template to assemble the gold nanoparticles.First,cleavable ABA triblock copolymer poly (methyl methacrylate)-(s-s)-poly(tri(ethylene glycol) methyl ether methacrylate)-(s-s)-poly(methyl methacrylate)(PMMA-(s-s)-PMEO_3MA-(s-s)-PMMA) was synthesized.In aqueous solutions,the block copolymer micelles were consisted with a PMMA core,PMEO_3MA outer shell and disulfide bonds in the core-shell interface.Tetrahydroxymethyl phosphate chloride(THPC) stabilized gold nanoparticles were added to the micellar solution.The gold nanoparticles were diffused into inner shell and then reacted with the disulfide bonds to form a compact gold nanoparticle inner shell.Second,pyridine disulfide ether end-functionalized AB diblock copolymer PyDS-PMEO_2MA-b-PDEA was synthesized,pH-jump from 4 to 10 lead to the formation of PDEA-core micelles with PyDS groups at the micellar outer shell.Compact gold nanoparticles outer shell was then obtained by adding the THPC-stabilized gold nanoparticles to the micellar solutions.The gold nanoparticle surface coated micelles can be dispersed in acid aqueous and the re-aggregate to spherical supramolecular assemblies at pH 10.
引文
(1)Kyba EP;Helgeson RC;Madan K,et al.1977.Host-guest complexation.1.Concept and illustration[J].Journal of the American Chemical Society,99:2564-2571.
    (2)Pedersen CJ.1967.Cyclic Polyethers and Their Complexes with Metal Salts[J].Journal of the American Chemical Society,89:7017-7036.
    (3)Timko JM;Moore SS;Walba DM,et al.1977.Host-guest complexation.2.Structural units that control association constants between polyethers and tert-butylammonium salts[J].Journal of the American Chemical Society,99:4207-4219.
    (4)Hosseini MW;Blacker AJ;Lehn JM.1988.Multiple Molecular Recognition and Catalysis-Nucleotide Binding and Atp Hydrolysis by a Receptor Molecule Bearing an Anion Binding-Site,an Intercalator Group,and a Catalytic Site[J].Journal of the Chemical Society-Chemical Communications,596-598.
    (5)Lehn JM.1990.Perspectives in Supramolecular Chemistry-from Molecular Recognition Towards Molecular Information-Processing and Self-Organization[J].Angewandte Chemie-International Edition in English,29:1304-1319.
    (6)Lehn JM.1993.Supramolecular Chemistry[J].Science,260:1762-1763.
    (7)Lehn JM.1996.Supramolecular chemistry and chemical synthesis.From molecular interactions to self-assembly[J].Chemical Synthesis,320:511-524
    (8)Lehn JM.2001.超分子化学概念和展望[M].沈兴海等,译.第一版.北京:北京大学出版社.
    (9)Forster S;Plantenberg T.2002.From self-organizing polymers to nanohybrid and biomaterials [J].Angewandte Chemie-International Edition,41:689-714.
    (10)Lehn JM.2002.Toward complex matter:Supramolecular chemistry and self-organization[J].Proceedings of the National Academy of Sciences of the United States of America,99:4763-4768.
    (11)Lehn JM.2002.Toward self-organization and complex matter[J].Science,295:2400-2403.
    (12)Zeng FW;Zimmerman SC.1997.Dendrimers in supramolecular chemistry:From molecular recognition to self-assembly[J].Chemical Reviews,97:1681-1712.
    (13)沈家骢.2004.超分子层状结构(组装与功能)[M].第一版 北京:科学出版社.
    (14)Lehn JM.2005.Dynamers:dynamic molecular and supramolecular polymers[J].Progress in Polymer Science,30:814-831.
    (15)Philp D;Stoddart JF.1996.Self-assembly in natural and unnatural systems[J].Angewandte Chemie-International Edition in English,35:1155-1196.
    (16)Whitesides GM;Mathias JP;Seto CT.1991.Molecular Self-Assembly and Nanochemistry-a Chemical Strategy for the Synthesis of Nanostructures[J].Science,254:1312-1319.
    (17)Chen DY;Jiang M.2005.Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions[J].Accounts of Chemical Research,38:494-502.
    (18)Gothelf KV;Brown RS.2005.A modular approach to DNA-programmed self-assembly of macromolecular nanostructures[J].Chemistry-A European Journal,11:1062-1069.
    (19)Lutz JF.2006.Solution self-assembly of tailor-made macromolecular building blocks prepared by controlled radical polymerization techniques[J].Polymer International,55:979-993.
    (20)何天白;胡汉杰.1997.海外高分子科学的新进展[M].北京:化学工业出版社.
    (21)江明;艾森伯格;刘国军,et al.2006.大分子自组装[M].第一版 北京:科学出版社.
    (22)Aoi K;Okada M;Miyamoto M.1997.Sequence control on the ring-opening oligomerization of cyclic imino ethers[J].Macromolecular Rapid Communications,18:17-21.
    (23)Chatterjee U;Jewrajka SK;Mandal BM.2005.The amphiphilic block copolymers of 2-(dimethylamino)ethyl methacrylate and methyl methacrylate:Synthesis by atom transfer radical polymerization and solution properties[J].Polymer,46:10699-10708.
    (24)Stenzel MH;Barner-Kowollik C;Davis TP,et al.2004.Amphiphilic block copolymers based on poly(2-acryloyloxyethyl phosphorylcholine) prepared via RAFT polymerisation as biocompatible nanocontainers[J].Macromolecular Bioscience,4:445-453.
    (25)Teoh SK;Ravi P;Dai S,et al.2005.Self-assembly of stimuli-responsive water-soluble [60]fullerene end-capped ampholytic block copolymer[J].Journal of Physical Chemistry B,109:4431-4438.
    (26)Yusa SI;Fukuda K;Yamamoto T,et al.2005.Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel blocompatible polymer micelle reagent[J].Biomacromolecules,6:663-670.
    (27)Chung JE;Yokoyama M;Okano T.2000.Inner core segment design for drug delivery control of thermo-responsive polymeric micelles[J].Journal of Controlled Release,65:93-103.
    (28)Jiang M;Li M;Xiang ML,et al.1999.Interpolymer complexation and miscibility enhancement by hydrogen bonding[J].Polymer Synthesis Polymer-Polymer Complexation,146:121-196.
    (29)Liu HB;Farrell S;Uhrich K.2000.Drug release characteristics of unimolecular polymeric micelles[J].Journal of Controlled Release,68:167-174.
    (30)Mahltig B;Werner C;Muller M,et al.2001.Protein adsorption on preadsorbed polyampholytic monolayers[J].Journal of Biomaterials Science-Polymer Edition,12:995-1010.
    (31)Qiu Q;Somasundaran P;Pethica BA.2002.Hydrophobic complexation of poly(vinyl caprolactam)with sodium dodecyl sulfate and dodecyltrimethylammonium bromide in solution[J].Langmuir,18:3482-3486.
    (32)Salvage JP;Rose SF;Phillips GJ,et al.2005.Novel biocompatible phosphorylcholine-based self-assembled nanoparticles for drug delivery[J].Journal of Controlled Release,104:259-270.
    (33)Theodoly O;Cascao-Pereira L;Bergeron V,et al.2005.A combined streaming-potential optical reflectometer for studying adsorption at the water/solid surface[J].Langmuir,21:10127-10139.
    (34)Webber GB;Wanless EJ;Armes SP,et al.2001.Adsorption of amphiphilic diblock copolymer micelles at the mica/solution interface[J].Langmuir,17:5551-5561.
    (35)Wei H;Zhang XZ;Zhou Y,et al.2006.Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate)[J].Biomaterials,27:2028-2034.
    (36)Colfen H.2001.Double-hydrophilic block copolymers:Synthesis and application as novel surfactants and crystal growth modifiers[J].Macromolecular Rapid Communications,22:219-252.
    (37)Gil ES;Hudson SA.2004.Stimuli-reponsive polymers and their bioconjugates[J].Progress in Polymer Science,29:1173-1222.
    (38)Alarcon CDH;Pennadam S;Alexander C.2005.Stimuli responsive polymers for biomedical applications[J].Chemical Society Reviews,34:276-285.
    (39)Rodriguez-Hernandez J;Checot F;Gnanou Y,et al.2005.Toward 'smart' nano-objects by self-assembly of block copolymers in solution[J].Progress in Polymer Science,30:691-724.
    (40)Ma YH;Tang YQ;Billingham NC,et al.2003.Well-defined biocompatible block copolymers via atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine in protic media[J].Macromolecules,36:3475-3484.
    (41)Narain R;Armes SP.2003.Synthesis and aqueous solution properties of novel sugar methacrylate-based homopolymers and block copolymers[J].Biomacromolecules,4:1746-1758.
    (42)Pilon LN;Armes SP;Findlay P,et al.2005.Synthesis and characterization of shell cross-linked micelles with hydroxy-functional coronas:A pragmatic alternative to dendrimers?[J].Langmuir,21:3808-3813.
    (43)Robinson KL;de Paz-Banez MV;Wang XS,et al.2001.Synthesis of well-defined,semibranched,hydrophilic-hydrophobic block copolymers using atom transfer radical polymerization[J].Macromolecules,34:5799-5805.
    (44)Chen GH;Hoffman AS.1995.Graft-Copolymers That Exhibit Temperature-Induced Phase-Transitions over a Wide-Range of Ph[J].Nature,373:49-52.
    (45)Wu C;Zhou SQ.1995.Thermodynamically Stable Globule State of a Single Poly(N-Isopropylacrylamide)Chain in Water[J].Macromolecules,28:5388-5390.
    (46)Lutz JF.2008.Polymerization of oligo(ethylene glycol)(meth)acrylates:Toward new generations of smart biocompatible materials[J].Journal of Polymer Science Part A-Polymer Chemistry,46:3459-3470.
    (47)Lutz JF;Akdemir O;Hoth A.2006.Point by point comparison of two thermosensitive polymers exhibiting a similar LCST:Is the age of poly(NIPAM)over?[J].Journal of the American Chemical Society,128:13046-13047.
    (48)Lutz JF;Weichenhan K;Akdemir O,et al.2007.About the phase transitions in aqueous solutions of thermoresponsive copolymers and hydrogels based on 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol)methacrylate[J].Macromolecules,40:2503-2508.
    (49)Lutz JF;Stiller S;Hoth A,et al.2006.One-pot synthesis of PEGylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents[J].Biomacromolecules,7:3132-3138.
    (50)Pasut G;Veronese FM.2007.Polymer-drug conjugation,recent achievements and general strategies[J].Progress in Polymer Science,32:933-961.
    (51)Arotcarena M;Heise B;Ishaya S,et al.2002.Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity[J].Journal of the American Chemical Society,124:3787-3793.
    (52)Weaver JVM;Armes SP;Butun V.2002.Synthesis and aqueous solution properties of a well-defined thermo-responsive schizophrenic diblock copolymer[J].Chemical Communications,2122-2123.
    (53)Li GY;Song S;Guo L,et al.2008.Self-assembly of thermo-and pH-Responsive poly(acrylic acid)-b-poly(N-isopropylacrylamide)micelles for drug delivery[J].Journal of Polymer Science Part a-Polymer Chemistry,46:5028-5035.
    (54)Mitsukami Y;Donovan MS;Lowe AB,et al.2001.Water-soluble polymers.81.Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT[J].Macromolecules,34:2248-2256.
    (55)Liu SY;Amies SP.2002.Polymeric surfactants for the new millennium:A pH-responsive,zwitterionic,schizophrenic diblock copolymer[J].Angewandte Chemie-International Edition,41:1413-1416.
    (56)Bromberg LE;Barr DP.1999.Aggregation phenomena in aqueous solutions of hydrophobically modified polyelectrolytes.A probe solubilization study[J].Macromolecules,32:3649-3657.
    (57)Jeong B;Bae YH;Kim SW.1999.Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers[J].Colloids and Surfaces B-Biointerfaces,16:185-193.
    (58)Rao JY;Luo ZF;Ge ZS,et al.2007.“Schizophrenic” micellization associated with coil-to-helix transitions based on polypeptide hybrid double hydrophilic rod-coil diblock copolymer[J].Biomacromolecules,8:3871-3878.
    (59)Gebhardt KE;Ahn S;Venkatachalam G,et al.2007.Rod-sphere transition in polybutadiene-poly(L-lysine)block copolymer assemblies[J].Langmuir,23:2851-2856.
    (60)Butun V;Bennett CE;Vamvakaki M,et al.1997.Selective betainisation of tertiary amine methacrylate block copolymers[J].Journal of Materials Chemistry,7:1693-1695.
    (61)Butun V;Billingham NC;Armes SP.1998.Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer:Formation of micelles and reverse micelles in aqueous solution[J].Journal of the American Chemical Society,120:11818-11819.
    (62)Martin TJ;Prochazka K;Munk P,et al.1996.pH-dependent micellization of poly(2-vinylpyridine)-block-poly(ethylene oxide)[J].Macromolecules,29:6071-6073.
    (63)Natansohn A;Rochon P.2002.Photoinduced motions in azo-containing polymers[J].Chemical Reviews,102:4139-4175.
    (64)Hore DK;Natansohn AL;Rochon PL.2002.Optical anisotropy as a probe of structural order by Stokes polarimetry[J].Journal of Physical Chemistry B,106:9004-9012.
    (65)Zhao J;Si JH;Wang YG,et al.1995.Light-Induced Noncentrosymmetry in Acceptor-Donor-Substituted Azobenzene Solutions[J].Optics Letters,20:1955-1957.
    (66)Wang YG;Zhao JA;Si JH,et al.1995.Dynamic Studies of Degenerate 4-Wave-Mixing in an Azobenzene-Doped Polymer Film with an Optical Pump[J].Journal of Chemical Physics,103:5357-5361.
    (67)Wang G;Tong X;Zhao Y.2004.Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates[J].Macromolecules,37:8911-8917.
    (68)Liu H;Jiang XZ;Fan J,et al.2007.Aldehyde surface-functionalized shell cross-linked micelles with pH-tunable core swellabiliry and their bioconjugation with lysozyme[J].Macromolecules,40:9074-9083.
    (69)Zhao Y.2003.Design and study of new azobenzene liquid crystal/polymer materials[J].Chinese Journal of Polymer Science,21:621-629.
    (70)Li YT;Armes SP.2005.Synthesis and chemical degradation of branched vinyl polymers prepared via ATRP:Use of a cleavable disulfide-based branching agent[J].Macromolecules,38:8155-8162.
    (71)Wang JS;Matyjaszewski K.1995.Controlled Living Radical Polymerization-Halogen Atom-Transfer Radical Polymerization Promoted by a Cu(I)Cu(Ii)Redox Process[J].Macromolecules,28:7901-7910.
    (72)Matyjaszewski K;Xia JH.2001.Atom transfer radical polymerization[J].Chemical Reviews,101:2921-2990.
    (73)Tsarevsky NV;Matyjaszewski K.2007.“Green” atom transfer radical polymerization:From process design to preparation of well-defined environmentally friendly polymeric materials[J].Chemical Reviews,107:2270-2299.
    (74)Teodorescu M;Matyjaszewski K.1999.Atom transfer radical polymerization of(meth)acrylamides[J].Macromolecules,32:4826-4831.
    (75)Rademacher J;Baum R;Pallack M,et al.2000.Atom transfer radical polymerization of N,N-dimethylacrylamide[J].Macromolecules,33:284-288.
    (76)Liu SY;Weaver JVM;Tang YQ,et al.2002.Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers[J].Macromolecules,35:6121-6131.
    (77)Storey RF;Scheuer AD;Achord BC.2006.Poly(acrylate-b-styrene-b-isobutylene-b-styrene-bacrylate)block copolymers via carbocationic and atom transfer radical polymerizations[J].Journal of Macromolecular Science Part a-Pure and Applied Chemistry,43:1493-1512.
    (78)Liu P;Wang TM.2007.Preparation of well-defined star polymer from hyperbranched macroinitiator based attapulgite by surface-initiated atom transfer radical polymerization technique[J].Industrial & Engineering Chemistry Research,46:97-102.
    (79)Matyjaszewski K;Miller PJ;Pyun J,et al.1999.Synthesis and Characterization of Star Polymers with Varying Arm Number,Length,and Composition from Organic and Hybrid Inorganic/Organic Multifunctional Initiators[J].Macromolecules,32:6526-6535.
    (80)Gao H;Matyjaszewski K.2006.Structural Control in ATRP Synthesis of Star Polymers Using the Arm-First Method[J].Macromolecules,39:3154-3160.
    (81)Yamamoto S;Pietrasik J;Matyjaszewski K.2007.ATRP synthesis of thermally responsive molecular brushes from oligo(ethylene oxide)methacrylates[J].Macromolecules,40:9348-9353.
    (82)Matyjaszewski K;Gaynor SG.1997.Preparation of Hyperbranched Polyacrylates by Atom Transfer Radical Polymerization.3.Effect of Reaction Conditions on the Self-Condensing Vinyl Polymerization of 2-((2-Bromopropionyl)oxy)ethyl Acrylate[J].Macromolecules,30:7042-7049.
    (83)Hong CY;You YZ;Wu D,et al.2005.Multiwalled Carbon Nanotubes Grafted with Hyperbranched Polymer Shell via SCVP[J].Macromolecules,38:2606-2611.
    (84)Chiefari J;Chong YK;Ercole F,et al.1998.Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process[J].Macromolecules,31:5559-5562.
    (85)Le TP;Moad G;Rizzardo E,et al.WO 9801478,1998.
    (86)Whittaker MR;Monteiro ML 2006.Synthesis and aggregation behavior of four-arm star amphiphilic block copolymers in water[J].Langmuir,22:9746-9752.
    (87)You YZ;Hong CY;Pan CY.2002.A novel strategy for synthesis of multiblock copolymers[J].Chemical Communications,2800-2801.
    (88)Hong J;Wang Q;Fan ZQ.2006.Synthesis of multiblock polymer containing narrow polydispersity blocks[J].Macromolecular Rapid Communications,27:57-62.
    (89)Kolb HC;Finn MG;Sharpless KB.2001.Click chemistry:Diverse chemical function from a few good reactions[J].Angewandte Chemie International Edition,40:2004-2021.
    (90)Ossipov DA;Hilborn J.2006.Poly(vinyl alcohol)-based hydrogels formed by “click chemistry”[J].Macromolecules,39:1709-1718.
    (91)Xu J;Liu SY.2009.Synthesis of Well-Defined 7-Arm and 21-Arm Poly(N-isopropylacrylamide)Star Polymers with beta-Cyclodextrin Cores via Click Chemistry and Their Thermal Phase Transition Behavior in Aqueous Solution[J].Journal of Polymer Science Part A-Polymer Chemistry,47:404-419.
    (92)Hoogenboom R;Moore BC;Schubert US.2006.Synthesis of star-shaped poly(epsilon-caprolactone)via ‘click’ chemistry and ‘supramolecular click’ chemistry[J].Chemical Communications,4010-4012.
    (93)Laurent BA;Grayson SM.2006.An efficient route to well-defined macrocyclic polymers via “Click” cyclization[J].Journal of the American Chemical Society,128:4238-4239.
    (94)Xu J;Ye J;Liu SY.2007.Synthesis of well-defined cyclic poly(N-isopropylacrylamide)via click chemistry and its unique thermal phase transition behavior[J].Macromolecules,40:9103-9110.
    (95) Qiu XP;Tanaka F;Winnik FM.2007.Temperature-induced phase transition of well-defined cyclic poly(N-isopropylacrylamide)s in aqueous solution[J].Macromolecules,40:7069-7071.
    (96) 刘育;尤长城;张衡益.2001.超分子化学-合成受体的分子识别与组装[M].第一版.天津:南开大学出版社.
    (97) Szejtli J.1998.Introduction and general overview of cyclodextrin chemistry[J].Chemical Reviews,98:1743-1753.
    (98) Harada A;Kamachi M.1990.Complex-Formation between Poly(Ethylene Glycol) and Alpha-Cyclodextrin[J].Macromolecules,23:2821-2823.
    (99) Harada A;Li J;Kamachi M.1992.The Molecular Necklace-a Rotaxane Containing Many Threaded Alpha-Cyclodextrins[J].Nature,356:325-327.
    (100) Harada A;Li J;Kamachi M.1993.Synthesis of a Tubular Polymer from Threaded Cyclodextrins[J].Nature,364:516-518.
    (101) Harada A;Li J;Kamachi M.1994.Double-Stranded Inclusion Complexes of Cyclodextrin Threaded on Poly(Ethylene Glycol)[J].Nature,370:126-128.
    (102) Sandier A;Brown W;Mays H,et al.2000.Interaction between an adamantane end-capped poly(ethylene oxide) and a beta-cyclodextrin polymer[J].Langmuir,16:1634-1642.
    (103) Wang J;Jiang M.2006.Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation[J].Journal of the American Chemical Society,128:3703-3708.
    (104) Tomatsu I;Hashidzume A;Harada A.2005.Photoresponsive hydrogel system using molecular recognition of alpha-cyclodextrin[J].Macromolecules,38:5223-5227.
    (105) Tomatsu I;Hashidzume A;Harada A.2005.Gel-to-sol and sol-to-gel transitions utilizing the interaction of alpha-cyclodextrin with dodecyl side chains attached to a poly(acrylic acid)backbone[J].Macromolecular Rapid Communications,26:825-829.
    (106) Tomatsu I;Hashidzume A;Harada A.2006.Redox-responsive hydrogel system using the molecular recognition of beta-cyclodextrin[J].Macromolecular Rapid Communications,27:238-241.
    (107) Ogoshi T;Takashima Y;Yamaguchi H,et al.2007.Chemically-responsive sol-gel transition of supramolecular single-walled carbon nanotubes(SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins[J].Journal of the American Chemical Society,129:4878-+.
    (108) Aniansson EAG;Wall SN.1975.Correction and Improvement of on Kinetics of Step-Wise Micelle Association by Aniansson,Eag and Wall,Sn[J].Journal of Physical Chemistry,79:857-858.
    (109) Aniansson EAG;Wall SN;almgren M,et al.[J].Journal of Physical Chemistry,80:905~922.
    (110) Aniansson EAG;Wall SN;Almgren M,et al.1976.Theory of Kinetics of Micellar Equilibria and Quantitative Interpretation of Chemical Relaxation Studies of Micellar Solutions of Ionic Surfactants[J].Journal of Physical Chemistry,80:905~922.
    (111) Kahlweit M.1982.Kinetics of Formation of Association Colloids[J].Journal of Colloid and Interface Science,90:92~99.
    (112) Lessner E;Teubner M;Kahlweit M.1981.Relaxation Experiments in Aqueous-Solutions of Ionic Micelles.1.Theory and Experiments on the System H2o-Sodium Tetradecyl Sulfate-Naclo4[J].Journal of Physical Chemistry,85:1529~1536.
    (113) Halperin A;Alexander S.1989.Polymeric Micelles-Their Relaxation Kinetics[J].Macromolecules,22:2403~2412.
    (114) Dormidontova EE.1999.Micellization kinetics in block copolymer solutions:Scaling model[J].Macromolecules,32:7630~7644.
    (115) Esselink FJ;Dormidontova E;Hadziioannou G.1998.Evolution of block copolymer micellar size and structure evidenced with cryo electron microscopy[J].Macromolecules,31:2925~2932.
    (116) Esselink FJ;Dormidontova EE;Hadziioannou G 1998.Redistribution of block copolymer chains between mixed micelles in solution[J].Macromolecules,31:4873~4878.
    (117)Nyrkova IA;Semenov AN.2005.On the theory of micellization kinetics[J].Macromolecular Theory and Simulations,14:569~585.
    (118) Nyrkova IA;Semenov AN.2005.On the theory of aggregation and micellization:PEO-PVP copolymer in water[J].Faraday Discussions,128:113~127.
    (119) Iyama K;Nose T.1998.Kinetics of micelle formation with change of micelle shape in a dilute solution of diblock copolymers[J].Macromolecules,31:7356~7364.
    (120) Honda C;Hasegawa Y;Hirunuma R,et al.1994.Micellization Kinetics of Block-Copolymers in Selective Solvent[J].Macromolecules,27:7660~7668.
    (121) Honda C;Abe Y;Nose T.1996.Relaxation kinetics of micellization in micelle-forming block copolymer in selective solvent[J].Macromolecules,29:6778~6785.
    (122) Bednar B;Edwards K;Almgren M,et al.1988.Rates of Association and Dissociation of Block Copolymer Micelles-Light-Scattering Stopped-Flow Measurements[J].Makromolekulare Chemie-Rapid Communications,9:785~790.
    (1) Chung JE;Yokoyama M;Okano T.2000.Inner core segment design for drug delivery control of thermo-responsive polymeric micelles[J].Journal of Controlled Release,65:93-103.
    (2) Jiang M;Li M;Xiang ML,et al.1999.Interpolymer complexation and miscibility enhancement by hydrogen bonding[J].Polymer Synthesis Polymer-Polymer Complexation,146:121-196.
    (3) Liu HB;Farrell S;Uhrich K.2000.Drug release characteristics of unimolecular polymeric micelles[J].Journal of Controlled Release,68:167-174.
    (4) Mahltig B;Werner C;Muller M,et al.2001.Protein adsorption on preadsorbed polyampholytic monolayers[J].Journal of Biomaterials Science-Polymer Edition,12:995-1010.
    (5) Qiu Q;Somasundaran P;Pethica BA.2002.Hydrophobic complexation of poly(vinyl caprolactam) with sodium dodecyl sulfate and dodecyltrimethylammonium bromide in solution[J].Langmuir,18:3482-3486.
    (6) Salvage JP;Rose SF;Phillips GJ,et al.2005.Novel biocompatible phosphorylcholine-based self-assembled nanoparticles for drug delivery[J].Journal of Controlled Release,104:259-270.
    (7) Theodoly O;Cascao-Pereira L;Bergeron V,et al.2005.A combined streaming-potential optical reflectometer for studying adsorption at the water/solid surface[J].Langmuir,21:10127-10139.
    (8) Webber GB;Wanless EJ;Armes SP,et al.2001.Adsorption of amphiphilic diblock copolymer micelles at the mica/solution interface[J].Langmuir,17:5551-5561.
    (9)Wei H;Zhang XZ;Zhou Y,et al.2006.Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate)[J].Biomaterials,27:2028-2034.
    (10)Alarcon CDH;Pennadam S;Alexander C.2005.Stimuli responsive polymers for biomedical applications[J].Chemical Society Reviews,34:276-285.
    (11)Rodriguez-Hernandez J;Checot F;Gnanou Y,et al.2005.Toward ‘smart’ nano-objects by self-assembly of block copolymers in solution[J].Progress in Polymer Science,30:691-724.
    (12)Ma YH;Tang YQ;Billingham NC,et al.2003.Well-defined biocompatible block copolymers via atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine in protic media[J].Macromolecules,36:3475-3484.
    (13)Narain R;Armes SP.2003.Synthesis and aqueous solution properties of novel sugar methacrylate-based homopolymers and block copolymers[J].Biomacromolecules,4:1746-1758.
    (14)Pilon LN;Armes SP;Findlay P,et al.2005.Synthesis and characterization of shell cross-linked micelles with hydroxy-functional coronas:A pragmatic alternative to dendrimers?[J].Langmuir,21:3808-3813.
    (15)Robinson KL;de Paz-Banez MV;Wang XS,et al.2001.Synthesis of well-defined,semibranched,hydrophilic-hydrophobic block copolymers using atom transfer radical polymerization[J].Macromolecules,34:5799-5805.
    (16)Chen GH;Hoffman AS.1995.Graft-Copolymers That Exhibit Temperature-Induced Phase-Transitions over a Wide-Range of Ph[J].Nature,373:49-52.
    (17)Wu C;Zhou SQ.1995.Thermodynamically Stable Globule State of a Single Poly(N-Isopropylacrylamide)Chain in Water[J].Macromolecules,28:5388-5390.
    (18)Eisenberg A.1997.Multiple morphologies in crew-cut aggregates of asymmetric amphiphilic diblock copolymers.[J].Abstracts of Papers of the American Chemical Society,213:512-POLY.
    (19)Yu K;Zhang LF;Eisenberg A.1996.Novel morphologies of “crew-cut” aggregates of amphiphilic diblock copolymers in dilute solution[J].Langmuir,12:5980-5984.
    (20)Yu YS;Eisenberg A.1997.Control of morphology through polymer-solvent interactions in crew-cut aggregates of amphiphilic block copolymers[J].Journal of the American Chemical Society,119:8383-8384.
    (21)Colfen H.2001.Double-hydrophilic block copolymers:Synthesis and application as novel surfactants and crystal growth modifiers[J].Macromolecular Rapid Communications,22:219-252.
    (22)Gil ES;Hudson SA.2004.Stimuli-reponsive polymers and their bioconjugates[J].Progress in Polymer Science,29:1173-1222.
    (23)Li C;Tang Y;Armes SP,et al.2005.Synthesis and Characterization of Biocompatible Thermo-Responsive Gelators Based on ABA Triblock Copolymers[J].Biomacromolecules,6:994-999.
    (24)Ma JH;Guo C;Tang YL,et al.2007.H-1 NMR spectroscopic investigations on the micellization and gelation of PEO-PPO-PEO block copolymers in aqueous solutions[J].Langmuir,23:9596-9605.
    (25)Park MJ;Char K.2002.Two gel states of a PEO-PPO-PEO triblock copolymer formed by different mechanisms[J].Macromolecular Rapid Communications,23:688-692.
    (26)Su YL;Wang J;Liu HZ.2002.FTIR spectroscopic investigation of effects of temperature and concentration on PEO-PPO-PEO block copolymer properties in aqueous solutions[J].Macromolecules,35:6426-6431.
    (27)Wang QQ;Li L;Jiang SP.2005.Effects of a PPO-PEO-PPO triblock copolymer on micellization and gelation of a PEO-PPO-PEO triblock copolymer in aqueous solution[J].Langmuir,21:9068-9075.
    (28)Huang K;Lee BP;Ingram DR,et al.2002.Synthesis and characterization of self-assembling block copolymers containing bioadhesive end groups[J].Biomacromolecules,3:397-406.
    (29)Packhaeuser CB;Schnieders J;Oster CG,et al.2004.In situ forming parenteral drug delivery systems:an overview[J].European Journal of Pharmaceutical Sciences,58:445-455.
    (30)Chaterji S;Kwon IK;Park K.2007.Smart polymeric gels:Redefining the limits of biomedical devices[J].Progress in Polymer Science,32:1083-1122.
    (31)Hirst AR;Escuder B;Miravet JF,et al.2008.High-Tech Applications of Self-Assembling Supramolecular Nanostructured Gel-Phase Materials:From Regenerative Medicine to Electronic Devices[J].Angewandte Chemie-International Edition,47:8002-8018.
    (32)Debnath S;Shome A;Dutta S,et al.2008.Dipeptide-based low-molecular-weight efficient organogelators and their application in water purification[J].Chemistry-A European Journal,14:6870-6881.
    (33)Shome A;Debnath S;Das PK.2008.Head group modulated pH-responsive hydrogel of amino acid-based amphiphiles:Entrapment and release of cytochrome c and vitamin B-12[J].Langmuir,24:4280-4288.
    (34)Bae YH;Okano T;Kim SW.1991.On-Off Thermocontrol of Solute Transport.2.Solute Release from Thermosensitive Hydrogels[J].Pharmaceutical Research,8:624-628.
    (35)Bae YH;Okano T;Kim SW.1991.On Off Thermocontrol of Solute Transport.1. Temperature-Dependence of Swelling of N-Isopropylacrylamide Networks Modified with Hydrophobic Components in Water[J].Pharmaceutical Research,8:531-537.
    (36)Galaev IY;Mattiasson B.1993.Thermoreactive Water-Soluble Polymers,Nonionic Surfactants,and Hydrogels as Reagents in Biotechnology[J].Enzyme and Microbial Technology,15:354-366.
    (37)Ito T;Hioki T;Yamaguchi T,et al.2002.Development of a molecular recognition ion gating membrane and estimation of its pore size control[J].Journal of the American Chemical Society,124:7840-7846.
    (38)Iskakov RM;Kikuchi A;Okano T.2002.Time-programmed pulsatile release of dextran from calcium-alginate gel beads coated with carboxy-n-propylacrylamide copolymers[J].Journal of Controlled Release,80:57-68.
    (39)Iddon PD;Armes SP.2007.Synthesis of stimulus-responsive block copolymer gelators by atom transfer radical polymerisation[J].European Polymer Journal,43:1234-1244.
    (40)Nguyenmisra M;Mattice WL.1995.Micellization and Gelation of Symmetrical Triblock Copolymers with Insoluble End Blocks[J].Macromolecules,28:1444-1457.
    (41)Yu GE;Deng YL;Dalton S,et al.1992.Micellization and Gelation of Triblock Copoly(Oxyethylene Oxypropylene Oxyethylene),F127[J].Journal of the Chemical Society-Faraday Transactions,88:2537-2544.
    (42)Kirkland SE;Hensarling RM;McConaughy SD,et al.2008.Thermoreversible hydrogels from RAFT-synthesized BAB triblock copolymers:Steps toward biomimetic matrices for tissue regeneration[J].Biomacromolecules,9:481-486.
    (43)Lin W;Zhou YS;Zhao Y,et al.2002.Cr3+/COO-complexation induced aggregation of gelatin in dilute solution[J].Macromolecules,35:7407-7413.
    (44)Li Y;Gong YK;Nakashima K.2002.Nanoaggregate formation of poly(ethylene oxide)-b-polymethaerylate copolymer induced by alkaline earth metal ion binding[J].Langmuir,18:6727-6729.
    (45)Gerardin C;Sanson N;Bouyer F,et al.2003.Highly stable metal hydrous oxide colloids by inorganic polycondensation in suspension[J].Angewandte Chemie-International Edition,42:3681-3685.
    (46)Bronstein LH;Sidorov SN;Valetsky PM,et al.1999.Induced micellization by interaction of poly(2-vinylpyridine)-block-poly(ethylene oxide)with metal compounds.Micelle characteristics and metal nanoparticle formation[J].Langmuir,15:6256-6262.
    (47)Bronstein LM;Sidorov SN;Gourkova AY,et al.1998.Interaction of metal compounds with ‘double-hydrophilic’ block copolymers in aqueous medium and metal colloid formation[J]. Inorganica Chimica Acta,280:348-354.
    (48)Sedlak M;Antonietti M;Colfen H.1998.Synthesis of a new class of double-hydrophilic block copolymers with calcium binding capacity as builders and for biomimetic structure control of minerals[J].Macromolecular Chemistry and Physics,199:247-254.
    (49)Jia X;Chen DY;Jiang M.2006.Preparation of PEO-b-P2VPH(+)-S2082-micelles in water and their reversible UCST and redox-responsive behavior[J].Chemical Communications,1736-1738.
    (50)Ma RJ;Wang BL;Liu XJ,et al.2007.Pyranine-induced micellization of poly(ethylene glycol)-block-poly(4-vinylpyridine)and pH-triggered release of pyranine from the complex micelles[J].Langmuir,23:7498-7504.
    (51)Wu K;Shi LQ;Zhang WQ,et al.2006.Thermores ponsiveness of hybrid micelles frompoly(ethylene glycol)-block-poly(4-vinylpyridium)cations annul S042-anions in aqueous solutions[J].Langmuir,22:1474-1477.
    (52)Wu K;Shi LQ;Zhang WQ,et al.2005.Formation of hybrid micelles between poly(ethylene glycol)-block-poly(4-vinylpyridinium)cations and sulfate anions in an aqueous milieu[J].Soft Matter,1:455-459.
    (53)Yoshida E;Kunugi S.2002.Micelle formation of nonamphiphilic diblock copolymers through noncovalent bond cross-linking[J].Macromolecules,35:6665-6669.
    (54)Wanka G;Hoffmann H;Ulbricht W.1990.The Aggregation Behavior of Poly-(Oxyethylene)-Poly-(Oxypropylene)-Poly-(Oxyethylene)-Block-Copolymers in Aqueous-Solution[J].Colloid and Polymer Science,268:101-117.
    (55)Li XW;Liu WG;Ye GX,et al.2005.Thermosensitive N-isopropylacrylamide-N-propylacrylamide-vinyl pyrrolidone terpolymers:Synthesis,characterization and preliminary application as embolic agents[J].Biomaterials,26:7002-7011.
    (56)Ma YH;Tang YQ;Billingham NC,et al.2003.Synthesis of biocompatible,stimuli-responsive,physical gels based on ABA triblock copolymers[J].Biomacromolecules,4:864-868.
    (57)Tomatsu I;Hashidzume A;Harada A.2006.Redox-responsive hydrogel system using the molecular recognition of beta-cyclodextrin[J].Macromolecular Rapid Communications,27:238-241.
    (58)Kretschmann O;Choi SW;Miyauchi M,et al.2006.Switchable hydrogels obtained by supramolecu lar cross-linking of adamantyl-containing LCST copolymers with cyclodextrindimers[J].Angewandte Chemie-International Edition,45:4361-4365.
    (59)Deng W;Yamaguchi H;Takashima Y,et al.2007.A chemical-responsive supramolecular hydrogel from modified cycloclextrins[J].Angewandte Chemie-International Edition,46:5144-5147.
    (60)Ogoshi T;Takashima Y;Yamaguchi H,et al.2007.Chemically-responsive sol-gel transition of supramolecular single-walled carbon nanotubes(SWNTs)hydrogel made by hybrids of SWNTs and cyclodextrins[J].Journal of the American Chemical Society,129:4878-+.
    (61)Hwang I;Jeon WS;Kim HJ,et al.2007.Cucurbit[7]uril:A simple macrocyclic,pH-triggered hydrogelator exhibiting guest-induced stimuli-responsive behavior[J].Angewandte Chemie-International Edition,46:210-213.
    (62)Becerril J;Burguete MI;Escuder B,et al.2002.Minimalist peptidomimetic cyclophanes as strong organogelators[J].Chemical Communications,738-739.
    (63)Yount WC;Loveless DM;Craig SL.2005.Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks[J].Journal of the American Chemical Society,127:14488-14496.
    (64)Loveless DM;Jeon SL;Craig SL.2007.Chemoresponsive viscosity switching of a metallo-supramolecular polymer network near the percolation threshold[J].Journal of Materials Chemistry,17:56-61.
    (65)Weng WG;Beck JB;Rowan SJ,et al.2006.Mechanism of gel formation of metallo-supramolecular polymers[J].Abstracts of Papers of the American Chemical Society,231:-.
    (66)Leong WL;Batabyal SK;Kasapis S,et al.2008.Fluorescent Magnesium(Ⅱ)Coordination Polymeric Hydrogel[J].Chemistry-A European Journal,14:8822-8829.
    (67)Meudtner RM;Hecht S.2008.Responsive backbones based on alternating triazole-pyridine/benzene copolymers:From helically folding polymers to metallosupramolecularly crosslinked gels[J].Macromolecular Rapid Communications,29:347-351.
    (68)Paulusse JMJ;van Beek DJM;Sijbesma RP.2007.Reversible switching of the sol-gel transition with ultrasound in rhodium(I)and iridium(I)coordination networks[J].Journal of the American Chemical Society,129:2392-2397.
    (69)Binder WH;Petraru L;Roth T,et al.2007.Magnetic and temperature-sensitive release gels from supramolecular polymers[J].Advanced Functional Materials,17:1317-1326.
    (70)Yagai S;Nakajima T;Kishikawa K,et al.2005.Hierarchical organization of photoresponsive hydrogen-bonded rosettes[J].Journal of the American Chemical Society,127:11134-11139.
    (71)Noro A;Matsushita Y;Lodge TP.2008.Thermoreversible supramacromolecular ion gels via hydrogen bonding[J].Macromolecules,41:5839-5844.
    (72) Nair KP;Breedveld V;Weck M.2008.Complementary hydrogen-bonded thermoreversible polymer networks with tunable properties[J].Macromolecules,41:3429-3438.
    (73) Park T;Zimmerman SC.2006.Formation of a miscible supramolecular polymer blend through self-assembly mediated by a quadruply hydrogen-bonded heterocomplex[J].Journal of the American Chemical Society,128:11582-11590.
    (74) Sijbesma RP;Beijer FH;Brunsveld L,et al.1997.Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding[J].Science,278:1601-1604.
    (75) 刘育;尤长城;张衡益.2001.超分子化学-合成受体的分子识别与组装[M].第一版.天津:南开大学出版社.
    (76) Harada A;Kamachi M.1990.Complex-Formation between Poly(Ethylene Glycol) and Alpha-Cyclodextrin[J].Macromolecules,23:2821-2823.
    (77) Yomatsu I;Hashidzume A;Harada A.2005.Photoresponsive hydrogel system using molecular recognition of atpha-cyclodextrin[J].Macromolecules,38:5223-5227.
    (78) Tomatsu I;Hashidzume A;Harada A.2005.Gel-to-sol and sol-to-gel transitions utilizing the interaction of alpha-cyclodextrin with dodecyi side chains attached to a poly(acrylic acid)backbone[J].Macromolecular Rapid Communications,26:825-829.
    (79) Gao HF;Ohno S;Matyjaszewski K.2006.Low polydispersity star polymers via cross-linking macromonomers by ATRP[J].Journal of the American Chemical Society,128:15111-15113.
    (80) Liu YH;Yang XT;Zhang WA,et al.2006.Star-shaped poly(epsilon-caprolactone) with polyhedral oligomeric silsesquioxane core[J].Polymer,47:6814-6825.
    (81) Lee HJ;Lee K;Choi N.2005.Controlled anionic synthesis of star-shaped polystyrene by the incremental addition of divinylbenzene[J].Journal of Polymer Science Part A-Polymer Chemistry,43:870-878.
    (82) Williamson DT;Long TE.2004.Synthesis of poly(1,3-cyclohexadiene) containing star-shaped elastomers[J].Macromolecular Symposia,215:95-109.
    (83) Natansohn A;Rochon P.2002.Photoinduced motions in azo-containing polymers[J].Chemical Reviews,102:4139-4175.
    (84) Hore DK;Natansohn AL;Rochon PL.2002.Optical anisotropy as a probe of structural order by Stokes polarimetry[J].Journal of Physical Chemistry B,106:9004-9012.
    (85) Zhao J;Si JH;Wang YG,et al.1995.Light-Induced Noncentrosymmetry in Acceptor-Donor-Substituted Azobenzene Solutions[J].Optics Letters,20:1955-1957.
    (86) Wang YG;Zhao JA;Si JH,et al.1995.Dynamic Studies of Degenerate 4-Wave-Mixing in an Azobenzene-Doped Polymer Film with an Optical Pump[J].Journal of Chemical Physics,103:5357-5361.
    (87)Liu H;Jiang XZ;Fan J,et al.2007.Aldehyde surface-functionalized shell cross-linked micelles with pH-tunable core swellability and their bioconjugation with lysozyme[J].Macromolecules,40:9074-9083.
    (88)Zhao Y.2003.Design and study of new azobenzene liquid crystal/polymer materials[J].Chinese Journal of Polymer Science,21:621-629.
    (89)Yoshida M;Kouimura N;Misawa Y,et al.2007.Oligomeric electrolyte as a multifunctional gelator[J].Journal of the American Chemical Society,129:11039-+.
    (90)Huang LH;Hu J;Lang L,et al.2008.“Sandglass”-shaped self-assembly of coil-rod-coil triblock copolymer containing rigid aniline-pentamer[J].Macromolecular Rapid Communications,29:1242-1247.
    (91)Huang LH;Hu J;Lang L,et al.2007.Synthesis of a novel electroactive ABA triblock copolymer and its spontaneous self-assembly in water[J].Macromolecular Rapid Communications,28:1559-1566.
    (92)Hao JC;Hoffmann H.2004.Self-assembled structures in excess and salt-free catanionic surfactant solutions[J].Current Opinion in Colloid & Interface Science,9:279-293.
    (93)Jung HT;Coldren B;Zasadzinski JA,et al.2001.The origins of stability of spontaneous vesicles[J].Proceedings of the National Academy of Sciences of the United States of America,98:1353-1357.
    (94)Kaler EW;Herrington KL;Murthy AK,et al.1992.Phase-Behavior And Structures Of Mixtures Of Anionic And Cationic Surfactants[J].Journal of Physical Chemistry,96:6698-6707.
    (95)Kaler EW;Murthy AK;Rodriguez BE,et al.1989.Spontaneous Vesicle Formation In Aqueous Mixtures Of Single-Tailed Surfactants[J].Science,245:1371-1374.
    (96)Mendes E;Menon SVG.1997.Vesicle to micelle transitions in surfactant mixtures induced by shear[J].Chemical Physics Letters,275:477-484.
    (97)Salkar RA;Mukesh D;Samant SD,et al.1998.Mechanism of micelle to vesicle transition in cationic-anionic surfactant mixtures[J].Langmuir,14:3778-3782.
    (98)Silvander M;Karlsson G;Edwards K.1996.Vesicle solubilization by alkyl sulfate surfactants:A cryo-TEM study of the vesicle to micelle transition[J].Journal of Colloid and Interface Science,179:104-113.
    (99)Svenson S.2004.Controlling surfactant self-assembly[J].Current Opinion in Colloid & Interface Science,9:201-212.
    (100)Tondre C;Caillet C.2001.Properties of the amphiphilic films in mixed cationic/anionic vesicles:a comprehensive view from a literature analysis[J].Advances in Colloid and Interface Science,93:115-134.
    (101)Caillet C;Hebrant M;Tondre C.2000.Sodium Octyl Sulfate/Cetyltrimethylammonium Bromide Catanionic Vesicles:Aggregate Composition and Probe Encapsulation[J].Langmuir,16:9099-9102.
    (102)Fischer A;Hebrant M;Tondre C.2002.Glucose encapsulation in catanionic vesicles and kinetic study of the entrapment/release processes in the sodium dodecyl benzene sulfonate/cetyltrimethylammonium tosylate/water system[J].Journal of Colloid and Interface Science,248:163-168.
    (103)Israelachvili JN.1985.[J].Intermolecular and Surface Forces,251.
    (104)Hoffmann H;Horbaschek K;Witte F.2001.Vesicle phases with semipolar additives[J].Journal of Colloid and Interface Science,235:33-45.
    (105)Yin HQ;Zhou ZK;Huang JB,et al.2003.Temperature-induced micelle to vesicle transition in the sodium dodecylsulfate/dodecyltriethylammonium bromide system[J].Angewandte Chemie-International Edition,42:2188-2191.
    (106)Davies TS;Ketner AM;Raghavan SR.2006.Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating[J].Journal of the American Chemical Society,128:6669-6675.
    (107)Liu SY;Gonzalez YI;Kaler EW.2003.Structural fixation of spontaneous vesicles in aqueous mixtures of polymerizable anionic and cationic surfactants[J].Langmuir,19:10732-10738.
    (1) Rodriguez-Hernandez J;Checot F;Gnanou Y,et al.2005.Toward 'smart' nano-objects by self-assembly of block copolymers in solution[J].Progress in Polymer Science,30:691-724.
    (2) Alarcon CDH;Pennadam S;Alexander C.2005.Stimuli responsive polymers for biomedical applications[J].Chemical Society Reviews,34:276-285.
    (3) Discher DE;Ortiz V;Srinivas G,et al.2007.Emerging applications of polymersomes in delivery:From molecular dynamics to shrinkage of tumors[J].Progress in Polymer Science,32:838-857.
    (4) Lowe AB;McCormick CL.2007.Reversible addition-fragmentation chain transfer(RAFT)radical polymerization and the synthesis of water-soluble(co)polymers under homogeneous conditions in organic and aqueous media[J].Progress in Polymer Science,32:283-351.
    (5) Rapoport N.2007.Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery[J].Progress in Polymer Science,32:962-990.
    (6) Saito R;Ishizu K;Fukutomi T.1990.Cross-Linking of the Inner Poly(Methyl Methacrylate)Core of Poly(Alpha-Methylstyrene-B-Methyl Methacrylate) Micelles in Selective Solvent.1. Effect of Solvent Selectivity[J].Polymer,31:679-684.
    (7) Koji Ishizu AO.1989.Core-shell type polymer microspheres prepared by domain fixing of block copolymer films[J].J.Polym.Sci.,Part A:Polym.Chem.,27:3721-3731.
    (8) Wilson DJ;Riess G.1988.Photochemical stabilization of block copolymer micelles[J].Eur.Polym.J.,24:617-621.
    (9) Guo A;Liu GJ;Tao J.1996.Star polymers and nanospheres from cross-linkable diblock copolymers[J].Macromolecules,29:2487-2493.
    (10) Ding J;Liu G.1998.Water-Soluble Hollow Nanospheres as Potential Drug Carriers[J].J.Phys.Chem.B,102:6107-6113.
    (11) Stewart S;Liu GJ.1999.Hollow nanospheres from polyisoprene-block-poly(2-cinnamoylethyl methacrylate)-block-poly(tert-butyl acrylate)[J].Chemistry of Materials,11:1048-1054.
    (12) Thurmond Ii KB;Huang H;Clark Jr CG,et al.1999.Shell cross-linked polymer micelles:stabilized assemblies with great versatility and potential[J].Colloids Surf.,B:Biointerfaces,16:45-54.
    (13) Thurmond KB;Kowalewski T;Wooley KL.1996.Water-soluble knedel-like structures:The preparation of shell-cross-linked small particles[J].Journal of the American Chemical Society,118:7239-7240.
    (14) Huang HY;Kowalewski T;Remsen EE,et al.1997.Hydrogel-coated glassy nanospheres:A novel method for the synthesis of shell cross-linked knedels[J].Journal of the American Chemical Society,119:11653-11659.
    (15) Butun V;Billingham NC;Armes SP.1998.Synthesis of shell cross-linked micelles with tunable hydrophilic/hydrophobic cores[J].Journal of the American Chemical Society,120:12135-12136.
    (16) Butun V;Lowe AB;Billingham NC,et al.1999.Synthesis of zwitterionic shell cross-linked micelles[J].Journal of the American Chemical Society,121:4288-4289.
    (17) Butun V;Wang XS;Banez MVD,et al.2000.Synthesis of shell cross-linked micelles at high solids in aqueous media[J].Macromolecules,33:1-3.
    (18) Ding J;Liu G.1998.Polystyrene-block-poly(2-cinnamoylethyl methacrylate) Nanospheres with Cross-Linked Shells[J].Macromolecules,31:6554-6558.
    (19) Huang HY;Remsen EE;Kowalewski T,et al.1999.Nanocages derived from shell cross-linked micelle templates[J].Journal of the American Chemical Society,121:3805-3806.
    (20) Zhang Q;Remsen EE;Wooley KL.2000.Shell cross-linked nanoparticles containing hydrolytically degradable,crystalline core domains[J].Journal of the American Chemical Society,122:3642-3651.
    (21) Li YT;Lokitz BS;McCormick CL.2006.RAFT synthesis of a thermally responsive ABC triblock copolymer incorporating N-acryloxysuccinimide for facile in situ formation of shell cross-linked micelles in aqueous media[J].Macromolecules,39:81-89.
    (22) Pilon LN;Armes SP;Findlay P,et al.2006.Synthesis and characterisation of new shell cross-linked micelles with amine-functional coronas[J].European Polymer Journal,42:1487-1498.
    (23) Liu SY;Weaver JVM;Save M,et al.2002.Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles[J].Langmuir,18:8350-8357.
    (24) Weaver JVM;Tang YQ;Liu S Y,et al.2004.Preparation of shell cross-linked micelles by polyelectrolyte complexation[J].Angewandte Chemie International Edition,43:1389-1392.
    (25) Kolb HC;Finn MG;Sharpless KB.2001.Click chemistry:Diverse chemical function from a few good reactions[J].Angewandte Chemie-International Edition,40:2004-2021.
    (26) Finn MG;Kolb HC;Fokin W,et al.2008.Click chemistry-Definition and aims[J].Progress in Chemistry,20:1-4.
    (27) Gondi SR;Vogt AP;Sumerlin BS.2007.Versatile Pathway to Functional Telechelics via RAFT Polymerization and Click Chemistry[J].Macromolecules,40:474-481.
    (28) O'Reilly RK;Joralemon MJ;Hawker CJ,et al.2006.Fluorogenic 1,3-dipolar cycloaddition within the hydrophobic core of a shell cross-linked nanoparticle[J].Chem Eur J.,12:6776-6786.
    (29) O'Reilly RK;Joralemon MJ;Hawker CJ,et al.2007.Preparation of orthogonally-functionalized core Click cross-linked nanoparticles[J].New J Chem,31:718-724.
    (30) Sumerlin BS;Tsarevsky NV;Louche G,et al.2005.Highly Efficient “Click”Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP[J].Macromolecules,38:7540-7545.
    (31) Tsarevsky NV;Sumerlin BS;Matyjaszewski K.2005.Step-growth “click” coupling of telechelic polymers prepared by atom transfer radical polymerization[J].Macromolecules,38:3558-3561.
    (32) Wu J;Eisenberg A.2006.Proton diffusion across membranes of vesicles of poly(styrene-b-acrylic acid) diblock copolymers[J].Journal of the American Chemical Society,128:2880-2884.
    (33)Harada A;Kataoka K.1995.Formation of Polyion Complex Micelles in an Aqueous Milieu from a Pair of Oppositely-Charged Block-Copolymers with Poly(Ethylene Glycol)Segments[J].Macromolecules,28:5294-5299.
    (34)Kabanov AV;Vinogradov SV;Suzdaltseva YG,et al.1995.Water-Soluble Block Polycations as Carriers for Oligonucleotide Delivery[J].Bioconjugate Chemistry,6:639-643.
    (35)Bronstein LM;Sidorov SN;Zhirov V,et al.2005.Metalated diblock and triblock poly(ethylene oxide)-block-poly(4-vinylpyridine)copolymers:Understanding of micelle and bulk structure[J].Journal of Physical Chemistry B,109:18786-18798.
    (36)Gohy JF;Varshney SK;Antoun S,et al.2000.Water-soluble complexes formed by sodium poly(4-styrenesulfonate)and a poly(2-vinylpyridinium)-block-poly(ethyleneoxide)copolymer[J].Macromolecules,33:9298-9305.
    (37)Harada A;Kataoka K.1998.Novel polyion complex micelles entrapping enzyme molecules in the core:Preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid)block copolymer in aqueous medium[J].Macromolecules,31:288-294.
    (38)Harada A;Kataoka K.2001.Pronounced activity of enzymes through the incorporation into the core of polyion complex micelles made from charged block copolymers[J].Journal of Controlled Release,72:85-91.
    (39)Harada A;Kataoka K.2001.Polyion complex micelles with core-shell structure:Their physicochemical properties and utilities as functional materials[J].Macromolecular Symposia,172:1-9.
    (40)Hu ZJ;Jonas AM;Varshney SK,et al.2005.Dilution-induced spheres-to-vesicles morphological transition in micelles from block copolymer/surfactant complexes[J].Journal of the American Chemical Society,127:6526-6527.
    (41)Jang WD;Nakagishi Y;Nishiyama N,et al.2006.Polyion complex micelles for photodynamic therapy:Incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property[J].Journal of Controlled Release,113:73-79.
    (42)Kataoka K;Ishihara A;HaradaA,et al.1998.Effect of the secondary structure of poly(L-lysine)segments on the micellization in aqueous milieu of poly(ethylene glycol)poly(L-lysine)block copolymer partially substituted with a hydrocinnamoyl group at the N-epsilon-position[J].Macromolecules,31:6071-6076.
    (43)Motomura N;Ichihara T;Takayama T,et al.1998.Practical method for reducing truncation artifacts in fan beam transmission CT system[J].Journal of Nuclear Medicine, 39:178p-178p.
    (44)Nagasaki Y;Yasugi K;Yamamoto Y,et al.2001.Sugar-installed polymeric micelle for a vehicle of an active targeting drug delivery system.[J].Abstracts of Papers of the American Chemical Society,221:U434-U434.
    (45)Nishiyama N;Kataoka K.2006.Nanostructured devices based on block copolymer assemblies for drug delivery:Designing structures for enhanced drug function[J].Polymer Therapeutics Ii:Polymers as Drugs,Conjugates and Gene Delivery Systems,193:67-101.
    (46)Vinogradov S;Batrakova E;Li S,et al.1999.Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells[J].Bioconjugate Chemistry,10:851-860.
    (47)Kabanov AV;Bronich TK;Kabanov VA,et al.1996.Soluble stoichiometric complexes from poly(N-ethyl-4-vinylpyridinium)cations and poly(ethylene oxide)-block-polymethacrylate anions[J].Macromolecules,29:6797-6802.
    (48)Kakizawa Y;Kataoka K.2002.Block copolymer micelles for delivery of gene and related compounds[J].Advanced Drug Delivery Reviews,54:203-222.
    (49)Jaturanpinyo M;Harada A;Yuan XF,et al.2004.Preparation of bionanoreactor based on core-shell structured polyion complex micelles entrapping trypsin in the core cross-linked with glutaraldehyde[J].Bioconjugate Chemistry,15:344-348.
    (50)Harada A;Kataoka K.1999.On-off control of enzymatic activity synchronizing with reversible formation of supramolecular assembly from enzyme and charged block copolymers[J].Journal of the American Chemical Society,121:9241-9242.
    (51)Park JS;Akiyama Y;Yamasaki Y,et al.2007.Preparation and characterization of polyion complex micelles with a novel thermosensitive poly(2-isopropyl-2-oxazoline)shell via the complexation of oppositely charged block ionomers[J].Langmuir,23:138-146.
    (52)Kakizawa Y;Harada A;Kataoka K.1999.Environment-sensitive stabilization of core-shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond[J].Journal of the American Chemical Society,121:11247-11248.
    (53)van der Burgh S;de Keizer A;Stuart MAC.2004.Complex coacervation core micelles.Colloidal stability and aggregation mechanism[J].Langmuir,20:1073-1084.
    (54)Hao JC;Hoffmann H.2004.Self-assembled structures in excess and salt-free catanionic surfactant solutions[J].Current Opinion in Colloid & Interface Science,9:279-293.
    (55)Jung HT;Coldren B;Zasadzinski JA,et al.2001.The origins of stability of spontaneous vesicles[J].Proceedings of the National Academy of Sciences of the United States of America,98:1353-1357.
    (56)Kaler EW;Herrington KL;Murthy AK,et al.1992.Phase-Behavior And Structures Of Mixtures Of Anionic And Cationic Surfactants[J].Journal of Physical Chemistry,96:6698-6707.
    (57)Kaler EW;Murthy AK;Rodriguez BE,et al.1989.Spontaneous Vesicle Formation In Aqueous Mixtures Of Single-Tailed Surfactants[J].Science,245:1371-1374.
    (58)Mendes E;Menon SVG.1997.Vesicle to micelle transitions in surfactant mixtures induced by shear[J].Chemical Physics Letters,275:477-484.
    (59)Salkar RA;Mukesh D;Samant SD,et al.1998.Mechanism of micelle to vesicle transition in cationic-anionic surfactant mixtures[J].Langmuir,14:3778-3782.
    (60)Silvander M;Karlsson G;Edwards K.1996.Vesicle solubilization by alkyl sulfate surfactants:A cryo-TEM study of the vesicle to micelle transition[J].Journal of Colloid and Interface Science,179:104-113.
    (61)Svenson S.2004.Controlling surfactant self-assembly[J].Current Opinion in Colloid & Interface Science,9:201-212.
    (62)Tondre C;Caillet C.2001.Properties of the amphiphilic films in mixed cationic/anionic vesicles:a comprehensive view from a literature analysis[J].Advances in Colloid and Interface Science,93:115-134.
    (63)Caillet C;Hebrant M;Tondre C.2000.Sodium Octyl Sulfate/Cetyltrimethylammonium Bromide Catanionic Vesicles:Aggregate Composition and Probe Encapsulation[J].Langmuir,16:9099-9102.
    (64)Fischer A;Hebrant M;Tondre C.2002.Glucose encapsulation in catanionic vesicles and kinetic study of the entrapment/release processes in the sodium dodecyl benzene sulfonate/cetyltrimethylammonium tosylate/water system[J].Journal of Colloid and Interface Science,248:163-168.
    (65)Mueller A;O'Brien DF.2002.Supramolecular materials via polymerization of mesophases of hydrated amphiphiles[J].Chemical Reviews,102:727-757.
    (66)O'Brien DF;Armitage B;Benedicto A,et al.1998.Polymerization of preformed self organized assemblies[J].Accounts of Chemical Research,31:861-868.
    (67)Liu SY;Gonzalez YI;Danino D,et al.2005.Polymerization of wormlike micelles induced by hydrotropic salt[J].Macromolecules,38:2482-2491.
    (68)Liu SY;Gonzalez YI;Kaler EW.2003.Structural fixation of spontaneous vesicles in aqueous mixtures of polymerizable anionic and cationic surfactants[J].Langmuir,19:10732-10738.
    (69)Zhu ZY;Gonzalez YI;Xu HX,et al.2006.Polymerization of Anionic Wormlike Micelles[J].Langmuir,22:949-955.
    (1)Aniansson EAG;Wall SN.1975.Correction and Improvement of on Kinetics of Step-Wise Micelle Association by Aniansson,Eag and Wall,Sn [J].Journal of Physical Chemistry,79:857~858.
    (2)Aniansson EAG;Wall SN;almgren M,et al.[J].Journal of Physical Chemistry,80:905~922.
    (3)Aniansson EAG;Wall SN;Almgren M,et al.1976.Theory of Kinetics of Micellar Equilibria and Quantitative Interpretation of Chemical Relaxation Studies of Micellar Solutions of Ionic Surfactants [J].Journal of Physical Chemistry,80:905~922.
    (4)Kahlweit M.1982.Kinetics of Formation of Association Colloids [J].Journal of Colloid and Interface Science,90:92~99.
    (5)Lessner E;Teubner M;Kahlweit M.1981.Relaxation Experiments in Aqueous-Solutions of Ionic Micelles.1.Theory and Experiments on the System H2o-Sodium Tetradecyl Sulfate-Naclo4 [J].Journal of Physical Chemistry,85:1529~1536.
    (6)Halperin A;Alexander S.1989.Polymeric Micelles-Their Relaxation Kinetics [J].Macromolecules,22:2403~2412.
    (7)Goldmints I;Holzwarth JF;Smith KA,et al.1997.Micellar dynamics in aqueous solutions of PEO-PPO-PEO block copolymers [J].Langmuir,13:6130~6134.
    (8)Waton G;Michels B;Zana R.2001.Dynamics of block copolymer micelles in aqueous solution[J].Macromolecules,34:907~910.
    (9)Kositza MJ;Bohne C;Alexandridis P,et al.1999.Dynamics of micro-and macrophase separation of amphiphilic block-copolymers in aqueous solution [J].Macromolecules,32:5539~5551.
    (10)Goldmints I;vonGottberg FK;Smith KA,et al.1997.Small-angle neutron scattering study of PEO-PPO-PEO micelle structure in the unimer-to-micelle transition region [J].Langmuir,13:3659~3664.
    (11)Hecht E;Hoffmann H.1995.Kinetic and Calorimetric Investigations on Micelle Formation of Block-Copolymers of the Poloxamer Type [J].Colloids and Surfaces a-Physicochemical and Engineering Aspects,96:181~197.
    (12)Michels B;Waton G;Zana R.1997.Dynamics of micelles of poly(ethylene oxide)poly(propylene oxide) poly(ethylene oxide) block copolymers in aqueous solutions [J].Langmuir,13:3111~3118.
    (13)Waton G;Michels B;Zana R.1999.Dynamics of micelles of polyethyleneoxide-polypropyleneoxide-polyethyleneoxide block copolymers in aqueous solutions [J].Journal of Colloid and Interface Science,212:593~596.
    (14)Wang YM;Mattice WL;Napper DH.1993.Simulation of the Formation of Micelles by Diblock Copolymers under Weak Segregation [J].Langmuir,9:66~70.
    (15)Esselink FJ;Dormidontova E;Hadziioannou G.1998.Evolution of block copolymer micellar size and structure evidenced with cryo electron microscopy [J].Macromolecules,31:2925~ 2932.
    (16)Esselink FJ;Dormidontova EE;Hadziioannou G.1998.Redistribution of block copolymer chains between mixed micelles in solution [J].Macromolecules,31:4873~4878.
    (17)Dormidontova EE.1999.Micellization kinetics in block copolymer solutions:Scaling model [J].Macromolecules,32:7630~7644.
    (18)Bednar B;Edwards K;Almgren M,et al.1988.Rates of Association and Dissociation of Block Copolymer Micelles-Light-Scattering Stopped-Flow Measurements [J].Makromolekulare Chemie-Rapid Communications,9:785~790.
    (19)Honda C;Abe Y;Nose T.1996.Relaxation kinetics of micellization in micelle-forming block copolymer in selective solvent [J].Macromolecules,29:6778~6785.
    (20)Honda C;Hasegawa Y;Hirunuma R,et al.1994.Micellization Kinetics of Block-Copolymers in Selective Solvent [J].Macromolecules,27:7660~7668.
    (21)Iyama K;Nose T.1998.Kinetics of micelle formation with change of micelle shape in a dilute solution of diblock copolymers [J].Macromolecules,31:7356~7364.
    (22)Bosse F;Eisenberg A.1994.Kinetics of Coil Overlap in Ionomer Blends by H-1-Nmr in Dmso-D6 .1.Effect of Electrolytes,Water,Molecular-Weight,Ion Content,and Temperature [J].Macromolecules,27:2846-2852.
    (23)Bosse F;Eisenberg A.1994.Kinetics of Coil Overlap in Ionomer Blends by H-1-Nmr in Dmso-D6 .2.Mechanistic Aspects [J].Macromolecules,27:2853-2863.
    (24)Li Y;Bronich TK;Chelushkin PS,et al.2008.Dynamic properties of block ionomer complexes with polyion complex cores [J].Macromolecules,41:5863-5868.
    (25)Chelushkin PS;Lysenko EA;Bronich TK,et al.2008.Polyion complex nanomaterials from block polyelectrolyte micelles and linear polyelectrolytes of opposite charge.2.Dynamic properties [J].Journal of Physical Chemistry B,112:7732-7738.
    (26)Holappa S;Kantonen L;Andersson T,et al.2005.Overcharging of polyelectrolyte complexes by the guest polyelectrolyte studied by fluorescence spectroscopy [J].Langmuir,21:11431-11438.
    (27)Alarcon CDH;Pennadam S;Alexander C.2005.Stimuli responsive polymers for biomedical applications [J].Chem.Soc.Rev.,34:276~285.
    (28)Rodriguez-Hernandez J;Checot F;Gnanou Y,et al.2005.Toward 'smart' nano-objects by self-assembly of block copolymers in solution [J].Prog.Polym.Sci.,30:691~724.
    (29)Schild HG.1992.Poly (N-Isopropylacrylamide)-Experiment,Theory and Application [J].Prog.Polym.Sci.,17:163~249.
    (30)Bronstein LM;Sidorov SN;Zhirov V,et al.2005.Metalated diblock and triblock poly(ethylene oxide)-block-poly(4-vinylpyridine) copolymers:Understanding of micelle and bulk structure [J].Journal of Physical Chemistry B,109:18786-18798.
    (31)Gohy JF;Varshney SK;Antoun S,et al.2000.Water-soluble complexes formed by sodium poly(4-styrenesulfonate) and a poly(2-vinylpyridinium)-block-poly(ethyleneoxide)copolymer [J].Macromolecules,33:9298-9305.
    (32)Harada A;Kataoka K.1995.Formation of Polyion Complex Micelles in an Aqueous Milieu from a Pair of Oppositely-Charged Block-Copolymers with Poly(Ethylene Glycol) Segments[J].Macromolecules,28:5294-5299.
    (33)Harada A;Kataoka K.1998.Novel polyion complex micelles entrapping enzyme molecules in the core:Preparation of narrowly-distributed micelles from lysozyme and poly(ethyleneglycol)-poly(aspartic acid) block copolymer in aqueous medium [J].Macromolecules,31:288-294.
    (34)Harada A;Kataoka K.2001.Pronounced activity of enzymes through the incorporation into the core of polyion complex micelles made from charged block copolymers [J].Journal of Controlled Release,72:85-91.
    (35)Harada A;Kataoka K.2001.Polyion complex micelles with core-shell structure:Their physicochemical properties and utilities as functional materials [J].Macromolecular Symposia,172:1-9.
    (36)Hu ZJ;Jonas AM;Varshney SK,et al.2005.Dilution-induced spheres-to-vesicles morphological transition in micelles from block copolymer/surfactant complexes [J].Journal of the American Chemical Society,127:6526-6527.
    (37)Jang WD;Nakagishi Y;Nishiyama N,et al.2006.Polyion complex micelles for photodynamic therapy:Incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property [J].Journal of Controlled Release,113:73-79.
    (38)Kabanov AV;Vinogradov SV;Suzdaltseva YG,et al.1995.Water-Soluble Block Polycations as Carriers for Oligonucleotide Delivery [J].Bioconjugate Chemistry,6:639-643.
    (39)Kataoka K;Ishihara A;Harada A,et al.1998.Effect of the secondary structure of poly(L-lysine) segments on the micellization in aqueous milieu of poly(ethylene glycol) poly(L-lysine) block copolymer partially substituted with a hydrocinnamoyl group at the N-epsilon-position [J].Macromolecules,31:6071-6076.
    (40)Motomura N;Ichihara T;Takayama T,et al.1998.Practical method for reducing truncation artifacts in fan beam transmission CT system [J].Journal of Nuclear Medicine,39:178p-178p.
    (41)Nagasaki Y;Yasugi K;Yamamoto Y,et al.2001.Sugar-installed polymeric micelle for a vehicle of an active targeting drug delivery system.[J].Abstracts of Papers of the American Chemical Society,221:U434-U434.
    (42)Nishiyama N;Kataoka K.2006.Nanostructured devices based on block copolymer assemblies for drug delivery:Designing structures for enhanced drug function [J].Polymer Therapeutics Ii:Polymers as Drugs,Conjugates and Gene Delivery Systems,193:67-101.
    (43)Vinogradov S;Batrakova E;Li S,et al.1999.Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells [J].Bioconjugate Chemistry,10:851-860.
    (44)Kabanov AV;Bronich TK;Kabanov VA,et al.1996.Soluble stoichiometric complexes from poly(N-ethyl-4-vinylpyridinium) cations and poly(ethylene oxide)-block-polymethacrylate anions [J].Macromolecules,29:6797-6802.
    (45)Kakizawa Y;Kataoka K.2002.Block copolymer micelles for delivery of gene and related compounds [J].Advanced Drug Delivery Reviews,54:203-222.
    (46)Jaturanpinyo M;Harada A;Yuan XF,et al.2004.Preparation of bionanoreactor based on core-shell structured polyion complex micelles entrapping trypsin in the core cross-linked with glutaraldehyde [J].Bioconjugate Chemistry,15:344-348.
    (47)Harada A;Kataoka K.1999.On-off control of enzymatic activity synchronizing with reversible formation of supramolecular assembly from enzyme and charged block copolymers [J].Journal of the American Chemical Society,121:9241-9242.
    (48)Chen HL;Morawetz H,Kinetics of polymer complex interchange in poly(acrylic acid)-poly(oxyethylene) solutions.In 1982;Vol.15,pp 1445-1447.
    (49)Bednar B;Morawetz H;Shafer JA,Kinetics of the cooperative complex formation and dissociation of poly(acrylic acid) and poly(oxyethylene).In 1984;Vol.17,pp 1634-1636.
    (50)Stuart MAC;Besseling NAM;Fokkink RG 1998.Formation of micelles with complex coacervate cores [J].Langmuir,14:6846-6849.
    (51)He E;Ravi P;Tarn KC.2007.[J].Langmuir,23:2382-2388.
    (52)Jain NJ;Aswal VK;Goyal PS,et al.1998.[J].J.Phys.Chem.B.,102:8452-8458.
    (53)Perreur C;Habas JP;Lapp A,et al.2006.[J].Polymer,47:841-848.
    (54)Ma JH;Guo C;Tang YL,et al.2007.[J].Langmuir,23:3075-3083.
    (55)Mezei A;Meszaros R;Varga I,et al.2007.Effect of mixing on the formation of complexes of hyperbranched cationic polyelectrolytes and anionic surfactants [J].Langmuir,23:4237-4247.
    (56)Bakeev KN;Izumrudov VA;Kuchanov SI,et al.1992.Kinetics and Mechanism of Interpolyelectrolyte Exchange and Addition-Reactions [J].Macromolecules,25:4249-4254.
    (1) Rodriguez-Hernandez J;Checot F;Gnanou Y,et al.2005.Toward 'smart' nano-objects by self-assembly of block copolymers in solution[J].Progress in Polymer Science,30:691-724.
    (2) Alarcon CDH;Pennadam S;Alexander C.2005.Stimuli responsive polymers for biomedical applications[J].Chemical Society Reviews,34:276-285.
    (3) Discher DE;Ortiz V;Srinivas G,et al.2007.Emerging applications of polymersomes in delivery:From molecular dynamics to shrinkage of tumors[J].Progress in Polymer Science,32:838-857.
    (4) Lowe AB;McCormick CL.2007.Reversible addition-fragmentation chain transfer(RAFT)radical polymerization and the synthesis of water-soluble(co)polymers under homogeneous conditions in organic and aqueous media[J].Progress in Polymer Science,32:283-351.
    (5) Rapoport N.2007.Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery[J].Progress in Polymer Science,32:962-990.
    (6) Chung JE;Yokoyama M;Okano T.2000.Inner core segment design for drug delivery control of thermo-responsive polymeric micelles[J].Journal of Controlled Release,65:93-103.
    (7) Jiang M;Li M;Xiang ML,et al.1999.Interpolymer complexation and miscibility enhancement by hydrogen bonding[J].Polymer Synthesis Polymer-Polymer Complexation,146:121-196.
    (8) Liu HB;Farrell S;Uhrich K.2000.Drug release characteristics of unimolecular polymeric micelles[J].Journal of Controlled Release,68:167-174.
    (9) Mahltig B;Werner C;Muller M,et al.2001.Protein adsorption on preadsorbed polyampholytic monolayers[J].Journal of Biomaterials Science-Polymer Edition,12:995-1010.
    (10) Qiu Q;Somasundaran P;Pethica BA.2002.Hydrophobic complexation of poly(vinyl caprolactam) with sodium dodecyl sulfate and dodecyltrimethylammonium bromide in solution[J].Langmuir,18:3482-3486.
    (11) Salvage JP;Rose SF;Phillips GJ,et al.2005.Novel biocompatible phosphorylcholine-based self-assembled nanoparticles for drug delivery[J].Journal of Controlled Release, 104:259-270.
    (12)Theodoly O;Cascao-Pereira L;Bergeron V,et al.2005.A combined streaming-potential optical reflectometer for studying adsorption at the water/solid surface [J].Langmuir,21:10127-10139.
    (13)Webber GB;Wanless EJ;Armes SP,et al.2001.Adsorption of amphiphilic diblock copolymer micelles at the mica/solution interface [J].Langmuir,17:5551-5561.
    (14)Wei H;Zhang XZ;Zhou Y,et al.2006.Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate) [J].Biomaterials,27:2028-2034.
    (15)Elghanian R;Storhoff JJ;Mucic RC,et al.1997.Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J].Science,277:1078-1081.
    (16)He L;Musick MD;Nicewarner SR,et al.2000.Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization [J].Journal of the American Chemical Society,122:9071-9077.
    (17)Nath N;Chilkoti A.2004.Label free colorimetric biosensing using nanoparticles [J].Journal of Fluorescence,14:377-389.
    (18)Taton TA;Mirkin CA;Letsinger RL.2000.Scanometric DNA array detection with nanoparticle probes [J].Science,289:1757-1760.
    (19)Taton TA;Mucic RC;Mirkin CA,et al.2000.The DNA-mediated formation of supramolecular mono-and multilayered nanoparticle structures [J].Journal of the American Chemical Society,122:6305-6306.
    (20)Goia DV;Matijevic E.1999.Tailoring the particle size of monodispersed colloidal gold [J].Colloids and Surfaces a-Physicochemical and Engineering Aspects,146:139-152.
    (21)Douglas T;Strable E;Willits D,et al.2002.Protein engineering of a viral cage for constrained nanomaterials synthesis [J].Advanced Materials,14:415-+.
    (22)Keren K;Krueger M;Gilad R,et al.2002.Sequence-specific molecular lithography on single DNA molecules [J].Science,297:72-75.
    (23)Schmid G;Baumle M;Beyer N.2000.Ordered two-dimensional monolayers of Au-55 clusters [J].Angewandte Chemie-International Edition,39:181-+.
    (24)Alivisatos AP.1996.Semiconductor clusters,nanocrystals,and quantum dots [J].Science,271:933-937.
    (25)Daniel MC;Astruc D.2004.Gold nanoparticles:Assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology [J].Chemical Reviews,104:293-346.
    (26)Shenhar R;Rotello VM.2003.Nanoparticles:Scaffolds and building blocks [J].Accounts of Chemical Research,36:549-561.
    (27)Xu L;Guo Y;Xie RG,et al.2002.Three-dimensional assembly of Au nanoparticles using dipeptides [J].Nanotechnology,13:725-728.
    (28)Eustis S;El-Sayed MA.2006.Why gold nanoparticles are more precious than pretty gold:Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes [J].Chemical Society Reviews,35:209-217.
    (29)Storhoff JJ;Mirkin CA.1999.Programmed materials synthesis with DNA [J].Chemical Reviews,99:1849-1862.
    (30)Hicks JF;Zamborini FP;Osisek A,et al.2001.The dynamics of electron self-exchange between nanoparticles [J].Journal of the American Chemical Society,123:7048-7053.
    (31)Fullam S;Rensmo H;Rao SN,et al.2002.Noncovalent self-assembly of silver and gold nanocrystal aggregates in solution [J].Chemistry of Materials,14:3643-3650.
    (32)Mirkin CA.2000.Programming the assembly of two-and three-dimensional architectures with DNA and nanoscale inorganic building blocks [J].Inorganic Chemistry,39:2258-2272.
    (33)Shenton W;Davis SA;Mann S.1999.Directed self-assembly of nanoparticles into macroscopic materials using antibody-antigen recognition [J].Advanced Materials,11:449.
    (34)Connolly S;Fitzmaurice D.1999.Programmed assembly of gold nanocrystals in aqueous solution [J].Advanced Materials,11:1202-1205.
    (35)Bockstaller MR;Lapetnikov Y;Margel S,et al.2003.Size-selective organization of enthalpic compatibilized nanocrystals in ternary block copolymer/particle mixtures [J].Journal of the American Chemical Society,125:5276-5277.
    (36)Zehner RW;Lopes WA;Morkved TL,et al.1998.Selective decoration of a phase-separated diblock copolymer with thiol-passivated gold nanocrystals [J].Langmuir,14:241-244.
    (37)Dai Q;Worden JG;Trullinger J,et al.2005.A “nanonecklace” synthesized from monofunctionalized gold nanoparticles [J].Journal of the American Chemical Society,127:8008-8009.
    (38)Worden JG;Dai Q;Huo Q.2006.A nanoparticle-dendrimer conjugate prepared from a one-step chemical coupling of monofunctional nanoparticles with a dendrimer [J].Chemical Communications,1536-1538.
    (39)Bae KH;Choi SH;Park SY,et al.2006.Thermosensitive pluronic micelles stabilized by shell cross-linking with gold nanoparticles [J].Langmuir,22:6380-6384.
    (40)Lee H;Choi SH;Park TG.2006.Direct visualization of hyaluronic acid polymer chain by self-assembled one-dimensional array of gold nanoparticles [J].Macromolecules,39:23-25.
    (41)Xu HX;Xu J;Jiang XZ,et al.2007.Thermosensitive unimolecular micelles surface-decorated with gold nanoparticles of tunable spatial distribution [J].Chemistry of Materials,19:2489-2494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700