用户名: 密码: 验证码:
基于分子动力学的金属纳米颗粒和纳米线的变形行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文使用分子动力学方法模拟研究了金属纳米颗粒和金属纳米线的变形行为,主要包括:Cu纳米粒子和Cu/Ag核壳纳米粒子的压缩变形,Cu纳米线、Ni纳米线和孪晶结构纳米线的拉伸变形,以及不同原子配比的Al-Cu合金纳米线的拉伸变形。从而获得了一些低维纳米材料的机械性能及变形机制。
     通过模拟尺寸为4 nm、6 nm和8 nm的Cu纳米粒子的压缩变形,发现Cu纳米粒子的压缩应力、温度及结构势能均随压缩应变增加而呈锯齿形上升特征。通过观察原子结构演化可得到:在压缩应力锯齿形上升时,纳米粒子内部的缺陷原子较多,是纳米粒子在自由表面限制下的蓄能过程;而压缩应力锯齿形下降时,缺陷原子迅速消失,意味着表面限制已被冲破,纳米粒子开始释放能量。把该锯齿形压缩应力与纳米尺度摩擦的锯齿形摩擦力进行对比,发现二者的产生原理相似。
     通过模拟Cu/Ag核壳纳米粒子的压缩变形,发现了核壳相界面对纳米粒子变形的影响规律。原子结构图显示,Cu/Ag核壳纳米粒子的压缩过程中,大量单一类型的Shockley不全位错在核壳界面处形核,并平行地滑过Cu核的{111}面,最终导致Cu/Ag核壳纳米粒子被压为长条状。在被压缩的纳米粒子中还观察到了孪晶结构,经分析,它通过一对反平行的Shockley不全位错运动而形成。原子应力分布图显示,核壳界面处部分原子在压缩方向的压强极高,可保证开动一对反平行的不全位错。
     通过模拟Cu纳米线和Ni纳米线的拉伸变形,发现在初始的结构弛豫中,表面应力能够驱动Cu、Ni纳米线的轴向从<100>晶向转变为<110>晶向。原子结构图显示,再取向过程是通过<112>/6型Shockley不全位错平行运动实现,其中,在Ni纳米线中观察到了滑移面偏转到轴向的运动。对再取向后的纳米线实施拉伸变形,结果显示,拉伸变形实质上是上述再取向过程的逆过程,若卸载,纳米线能够发生形状回复,在Cu纳米线中最高可获得50%的应变回复量。
     基于分子动力学方法,进一步模拟了Cu孪晶结构纳米线的拉伸变形,来分析孪晶界对纳米线机械变形的作用机制。基于无宏观变形的新孪生机制,构建了横截面尺寸从3到6 nm,孪晶带宽度从1.25到10 nm的一系列纳米线。结果显示,孪晶界能增强纳米线的拉伸强度,其最高增幅达60%。通过应力—应变曲线的斜率变化及原子结构演化,发现该强化由延长弹性变形和阻碍位错运动两个先后过程构成,二者为此消彼长的竞争关系,可建立孪晶界面面积(S_T)与自由表面面积(S_F)的比值(S_T/S_F)来表征该竞争关系,当(S_T/S_F)>0.3时,孪晶界延长弹性变形处于优势地位,可被明显地观察到。
     使用分子动力学方法模拟Al-Cu合金纳米线的拉伸变形,通过改变原子比例来控制纳米线的机械性能和变形机制。首先检查对称度较高的AlCu纳米线,发现表面应力能驱使它处于高弹状态,在接下来的变形中发生结构无序转变,可显示较高的拉伸强度,但塑性差。而对于Cu原子比例较高的AlCu_3纳米线,其拉伸应力—应变曲线呈现多次屈服,原子结构分析表明,相邻两屈服点之间包括(0(?)1)孪晶扩展的塑性变形过程和纳米线中部的完整晶体的弹性变形过程,卸载时能获得4%~9%的弹性回复,纳米线的强度和塑性都较好。对于Al原子比例较高的Al_3Cu和Al_(15)Cu纳米线,它们的塑性较好,但拉伸强度明显下降。
In this thesis,deformation behaviors of nanomaterials,including Cu nanoparticles, eore/shell-type Cu/Ag nanoparticles,defect-free nanowires,twinned nanowires and Al-Cu alloy nanowires were studied by molecular dynamics simulation method.Then,some mechanical properties and deformation mechanisms of lower-dimension nanomaterials were obtained.
     The compressive deformation of Cu nanoparticles with diameter of 4 nm,6 nm and 8 nm was examined by using molecular dynamics simulation.The compressive stress increased in a zigzag fashion with strain,accompanying with the temperature zigzag rise and the potential energy zigzag rise.The analysis of atomic structure demonstrated that the compressive stress rise and drop corresponded to that the defective atoms aggregated to form clusters and that the clusters decomposed into single atoms,respectively.The essence of compressive deformation of nanoparticles is a repeated process of storing and releasing energy,as is similar to the stick-slip motion in nanoscale friction process.
     The tmiaxial compressive deformation of core/shell-type Cu/Ag nanoparticles was simulated by molecular dynamics,revealing the role of nano-phase boundaries in the mechanical deformation.The simulations show that single type of Shockley partial dislocations glide across {111} slip planes and then resulted in elongated Cu cores.Twinnings, which originated from the movement of a pair of anti-parallel dislocations,were observed in the compressed core/shell-type Cu/Ag nanoparticles.The ultra-high atomic level stress in the phase boundary can ensure the movement of a pair of anti-parallel dislocations.
     The uniaxial tensile loading of defect-free Cu and Ni nanowies was carried out by utilizing molecular dynamics simulation.The results of structure relaxation showed that the surface stress can drive crystallographic lattice reorientation,in which the axial crystal orientation of nanowires transformed from <100> to <110> with the help of Shockley partial dislocations of Burgers vector <112>/6.Especially,we observed the rotation movement of slip plane in Ni nanowires.The axial tensile loading can drive reverse process of above reorientation.Under tensile loading and unloading,the Cu nanowires exhibit recoverable strains up to 50%.
     The uniaxial tensile deformation of twinned Cu nanowires was examined to reveal the strengthening mechanism of twinning boundary by utilizing molecular dynamics simulation. The initial configurations of nanowires,including the side length of cross section varied from 3 to 6 nm and twin thickness varied from 1.25 to 10 nm,were created basing on new twinning mechanism with zero macroscopic strain.The results showed that twinned nanowires were strengthened by twinning boundaries and the highest increment reached 60%.The slop of stress-strain curves and atomic structural evolution indicated that the strengthening process consists of two competitive processes,including extending elastic deformation and twinning boundaries blocking the movement of dislocations.Therefore,a theory model,that the ratio of twinning boundary area to surface area in twinned nanowires decided the energetic nucleation of dislocation,was built.When the ratio is more than 0.3,the process of extending elastic deformation can be observed in our simulation.
     A molecular dynamics simulation was utilized to study Al-Cu alloy nanowires for obtaining mechanical properties and deformation mechanisms by changing the ratio of Al atom to Cu atom.The simulation results showed that surface stress can force AlCu nanowires into high-elastic states and induce slip and clusters in AlCu_3 nanowires.Two distinct types of deformation mechanisms were observed.One is that the AlCu nanowires underwent the changes of elastic deformation,amorphous transition,necking,and breaking.The other is because the(0(?)1) twinning and crystal region coexist,the calculated tensile curves of AlCu_3 nanowires show many yield points,and unloading can lead to elastic recovery of 4%~9%.We increased the percentage of Al atom to build Al_3Cu and Al_(15)CU nanowires,which showed a good plastic but lower strength than other nanowires.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [2]KIMOTO K,KAMIYA Y,NONOYAMA M,et al.An electron microscope study on fine metal particles prepared by evaporation in argon gas at low pressure[J].Japanese Journal of Applied Physics,1963,2(11):702-713.
    [3]BIRRINGER R,GLEITER H,KLEIN H P,et al.Nanocrystalline materials an approach to a novel solid structure with gas-like disorder[J].Physics Letters A,1984,102(8):365-369.
    [4]李民乾.纳米科学技术—面向21世纪的新科技[J].物理,1992,21(2):65-70.
    [5]KUBO R.Electronic Properties of Metallic Fine Particles.I.[J].Journal of the Physical Society of Japan,1962,17(6):975-986.
    [6]KUBO R,KAWABATA A,KOBAYASHI S.Electronic properties of small particles[J].Annual review of materials science,1984,14(416):49-66.
    [7]HALPERIN W P.Quantum Size Effects in Metal Particles[J].Reviews of Modern Physics,1986,58(3):533-606.
    [8]BALL P,GARWIN L.Science at the atomic scale[J].Nature,1992,355:761-766.
    [9]张立德,牟季美.开拓原子和物质的中间领域-纳米微粒与纳米固体[J].物理,1992,21(3):167-173.
    [10]ZHANG X F,DONG X L,HUANG H,et al.High permittivity from defective carbon-coated Cu nanocapsules[J].Nanotechnology,2007,18:
    [11]ZHANG X F,DONG X L,HUANG H,et al.Microwave absorption properties of the carbon-coated nickel nanocapsules[J].Applied Physics Letters,2006,89(5):053115-053113.
    [12]DONG X L,ZHANG X F,HUANG H,et al.Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations[J].Applied Physics Letters,2008,92(1):013127-013123.
    [13]IIJIMAS.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
    [14]YANG R,QIN Y,LI C,et al.Converting biomechanical energy into electricity by a muscle movement driven nanogenerator[J].Nano Letters,2009,9(3):1201-1205.
    [15]PATOLSKY F,TIMKO B P,ZHENG G F,et al.Nanowire-based nanoelectronic devices in the life sciences[J].MRS Bulletin,2007,32(2):142-149.
    [16]WANG Y B,LI B Q,SUI M L,et al.Deformation-induced grain rotation and growth in nanocrystalline Ni[J].Applied Physics Letters,2008,92(1):011903-011903.
    [17]SHAN Z W,WIEZOREK J M K,KNAPP J A,et al.Large lattice strain in individual grains of deformed nanocrystalline Ni[J].Applied Physics Letters,2008,92(9):091917.
    [18]OHNISHI H,KONDO Y,TAKAYANAGI K.Quantized conductance through individual rows of suspended gold atoms[J].Nature,1998,395(6704):780-783.
    [19]RUBIO G,AGRAIT N,VIEIRA S.Atomic-sized metallic contacts:Mechanical properties and electronic transport[J].Physical Review Letters,1996,76(13):2302-2305.
    [20]ZIMMERMAN J A,KELCHNER C L,KLEIN P A,et al.Surface step effects on nanoindentation [J].Physical Review Letters,2001,87(16):165507.
    [21]AUDOIT G,NI MHUIRCHEARTAIGH T,LIPSON S M,et al.Strain induced photoluminescence from silicon and germanium nanowire arrays[J].Journal of Materials Chemistry,2005,15(45):4809-4815.
    [22]BRUS L E,SZAJOWSKI P F,WILSON W L,et al.Electronic spectroscopy and photophysics of Si nanocrystals:relationship to bulk C-Si and porous Si[J].Journal of the American Chemical Society,1995,117(10):2915-2922.
    [23]LYONS D M,RYAN K M,MORRIS M A,et al.Tailoring the optical properties of silicon nanowire arrays through strain[J].Nano Letters,2002,2(8):811-816.
    [24]BUDA F,KOHANOFF J,PARRINELLO M.Optical properties of porous silicon:a first principles study[J].Physical Review Letters,1992,69(8):1272-1275.
    [25]钱聪,吴希俊,罗伟,等.纳米金属块体材料力学性能研究进展[J].材料导报,2003,17(7):1-9.
    [26]GUO Y,ZHUANG Z,LI X Y,et al.An investigation of the combined size and rate effects on the mechanical responses of FCC metals[J].International Journal of Solids and Structures,2007,44(3-4):1180-1195.
    [27]LUANB Q,ROBBINS M O.The breakdown of continuum models for mechanical contacts[J].Nature,2005,435:929-932.
    [28]LU K.Nanocrystalline metals crystallized from amorphous solids:Nanocrystallization,structure,and properties[J].Materials Science and Engineering R-Reports,1996,16(4):161-221.
    [29]NIEMAN G W,WEERTMAN J R,SIEGEL R W.Tensile-strength and creep-properties of nanocrystalline palladium[J].Scripta Metallurgica Et Materialia,1990,24(1):145-150.
    [30]PALUMBO G,THORPE S J,AUST K T.On the contribution of triple junctions to the structure and properties of nanocrystalline materials[J].Scripta Metallurgica Et Materialia,1990,24(7):1347-1350.
    [31]梁海弋,王秀喜,吴恒安,等.纳米多晶铜微观结构的分子动力学模拟[J].物理学报,2002,51(10):2308-2314.
    [32]SHAN Z W,STACH E A,WIEZOREK J M K,et al.Grain boundary-mediated plasticity in nanocrystalline nickel[J].Science,2004,305(5684):654-657.
    [33]LU L,SUI M L,LU K.Superplastic extensibility of nanocrystalline copper at room temperature[J].Science,2000,287(5457):1463-1466.
    [34]卢柯.纳米晶体Cu的室温超塑延展性[J].中国科学院院刊,2001,1(1):29-31.
    [35]CAO A J,WEI Y G,MAO S X.Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries[J].Applied Physics Letters,2007,90(15):151909.
    [36]WAKAI F,KODAMA Y,SAKAGUCHI S,et al.A superplastic covalent crystal composite[J].Nature,1990,344(6265):421-423.
    [37]NIIHARA K,IZAKI K,NAKAHIRA A.The Si_3N_4/SiC nanocomposites with high strength at elevated temperatures[J].Journal of the Japan Society of Powder and Powder Metallurgy,1990,37(2):352-356.
    [38]LU L,CHEN X,HUANG X,et al.Revealing the maximum strength in nanotwinned copper [J].Science,2009,323(5914):607-610.
    [39]LU L,SHEN Y F,CHEN X H,et al.Ultrahigh strength and high electrical conductivity in copper[J].Science,2004,304(5669):422-426.
    [40]卢柯.纳米孪晶纯铜的强度和导电性研究[J].中国科学院院刊,2004,19(5):352-354.
    [41]申勇峰,卢磊,陈先华,等.纳米孪晶纯铜的强度和导电性[J].物理,2005,34(5):344-347.
    [42]YOUNGDAHL C J,WEERTMAN J R,HUGO R C,et al.Deformation behavior in nanocrystalline copper[J].Scripta Materialia,2001,44(8-9):1475-1478.
    [43]PAN D,KUWANO S,FUJITA T,et al.Ultra-large room-temperature compressive plasticity of a nanocrystalline metal[J].Nano Letters,2007,7(7):2108-2111.
    [44]PAN D,NIEH T G,CHEN M W.Strengthening and softening of nanocrystalline nickel during multistep nanoindentation[J].Applied Physics Letters,2006,88(16):
    [45]WANG K,FUJITA T,ZENG Y Q,et al.Micromechanisms of serrated flow in a Ni_(50)Pd_(30)P_(20) bulk metallic glass with a large compression plasticity[J].Acta Materialia,2008,56(12):2834-2842.
    [46]LIANG W W,ZHOU M,KE F J.Shape memory effect in Cu nanowires[J].Nano Letters,2005,5(10):2039-2043.
    [47]MEHREZ H,CIRACI S.Yielding and fracture mechanisms of nanowires[J].Physical Review B,1997,56(19):12632.
    [48]STALDER A,DURIG U.Study of yielding mechanics in nanometer-sized Au contacts[J].Applied Physics Letters,1996,68(5):637-639.
    [49]SUN Y G,XIA Y A.Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction[J].Nano Letters,2003,3(11):1569-1572.
    [50]DIAO J K,GALL K,DUNN M L.Surface stress induced phase transformation in metal nanowires[J].Nature Materials,2003,2(10):656-660.
    [51]DIAO J K,GALL K,DUNN M L.Surface stress driven reorientation of gold nanowires[J].Physical Review B,2004,70(7):075413.
    [52]DIAO J K,GALL K,DUNN M L.Yield strength asymmetry in metal nanowires [J].Nano Letters,2004,4:1863-1867.
    [53]GALL K,DIAO J K,DUNN M L,et al.Tetragonal phase transformation in gold nanowires [J].Journal of Engineering Materials and Technology-Transactions of the Asme,2005,127 (4):417-422.
    [54]KONDO Y,TAKAYANAGI K.Gold nanobridge stabilized by surface structure [J].Physical Review Letters,1997,79 (18):3455-3458.
    [55]IKEDA H,QI Y,CAGIN T,et al.Strain rate induced amorphization in metallic nanowires [J].Physical Review Letters,1999,82 (14):2900-2903.
    [56]PARK H S,ZIMMERMAN J A.Modeling inelasticity and failure in gold nanowires [J].Physical Review B,2005,72 (5):054106.
    [57]WANG D X,ZHAO J W,HU S,et al.Where,and how,does a nanowire break? [J].Nano Letters,2007,7 (5):1208-1212.
    [58]ZHENG B,WANG Y N,QI M,et al.An examination of surface stress effects and deformation mechanisms in Al-Cu nanowires [J].Modelling and Simulation in Materials Science and Engineering,2008,16 (4):045005.
    [59]LIANG W,ZHOU M.Response of copper nanowires in dynamic tensile deformation [J].Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,2004,218 (6):599-606.
    [60]PARK H S,JI C J.On the thermomechanical deformation of silver shape memory nanowires [J].Acta Materialia,2006,54 (10):2645-2654.
    [61]PARK H S,GALL K,ZIMMERMAN J A.Shape memory and pseudoelasticity in metal nanowires [J].Physical Review Letters,2005,95 (25):255504.
    [62]OTSUKA K,REN X.Physical metallurgy of Ti-Ni-based shape memory alloys [J].Progress in Materials Science,2005,50 (5):511-678.
    [63]PARK H S.Stress-induced martensitic phase transformation in intermetallic nickel aluminum nanowires [J].Nano Letters,2006,6 (5):958-962.
    [64]PARK H S,LAOHOM V.Surface composition effects on martensitic phase transformations in nickel aluminium nanowires [J].Philosophical Magazine,2007,87 (14-15):2159-2168.
    [65]TABIB-AZAR M,NASSIROU M,WANG R,et al.Mechanical properties of self-welded silicon nanobridges [J].Applied Physics Letters,2005,87 (11):113102.
    [66]DIKIN D A,CHEN X,DING W,et al.Resonance vibration of amorphous SiO_2 nanowires driven by mechanical or electrical field excitation [J].Journal of Applied Physics,2003,93 (1):226-230.
    [67]HEIDELBERG A,NGO L T,WU B,et al.A generalized description of the elastic properties of nanowires [J].Nano Letters,2006,6 (6):1101-1106.
    [68]WU B,HEIDELBERG A,BOLAND J J.Mechanical properties of ultrahigh-strength gold nanowires[J].Nature Materials,2005,4:525-529.
    [69]SILVA E,TONG L M,YIP S,et al.Size effects on the stiffness of silica nanowires [J].Small,2006,2(2):239-243.
    [70]ZHANG Y F,HAN X D,ZHENG K,et al.Direct observation of super-plasticity of beta-SiC nanowires at low temperature[J].Advanced Functional Materials,2007,17(17):3435-3440.
    [71]HRN X D,ZHANG Y F,ZHENG K,et al.Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism[J].Nano Letters,2007,7(2):452-457.
    [72]BANHART F.Irradiation of carbon nanotubes with a focused electron beam in the electron microscope[J].Journal of Materials Science,2006,41(14):4505-4511.
    [73]BANHART F,LI J X,KRASHENINNIKOV A V.Carbon nanotubes under electron irradiation:Stability of the tubes and their action as pipes for atom transport[J].Physical Review B,2005,71(24):241408-241404.
    [74]BANHART F,LI J X,TERRONES M.Cutting single-walled carbon nanotubes with an electron beam:Evidence for atom migration inside nanotubes[J].Small,2005,1:953-956.
    [75]RODRIGUEZ-MANZO J A,TERRONES M,TERRONES H,et al.In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles[J].Nature Nanotechnology,2007,2(5):307-311.
    [76]SUN L,BANHART F,KRASHENINNIKOV A V,et al.Carbon nanotubes as high-pressure cylinders and nanoextruders[J].Science,2006,312(5777):1199-1202.
    [77]SHAN Z W,ADESSO G,CABOT A,et al.Ultrahigh stress and strain in hierarchically structured hollow nanoparticles[J].Nature Materials,2008,7(12):947-952.
    [78]LI J X,BANHART F.The deformation of single,nanometer-sized metal crystals in graphitic shells[J].Advanced Materials,2005,17(12):1539-1542.
    [79]SURESH S,LI J.Deformation of the ultra-strong[J].Nature,2008,456(7223):716-717.
    [80]MOOK W M,NOWAK J D,PERREY C R,et al.Compressive stress effects on nanoparticle modulus and fracture[J].Physical Review B,2007,75(21):214112.
    [81]WU X L,LIAO X Z,SRINIVASAN S G,et al.New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals[J].Physical Review Letters,2008,100(9):095701.
    [82]CAI J,YE Y Y.Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys[J].Physical Review B,1996,54(12):8398-8410.
    [83]张邦维,胡望宇,舒小林.嵌入原子方法理论及其在材料科学中的应用[M].长沙:湖南大学出版社,2002.
    [84]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].北京:化学工业出版社,2007.
    [85]HAILE J M,GUPTA S.Extensions of the molecular dynamics simulation method.Ⅱ.Isothermal Systems [J].Journal of Chemical Physics,1983,79 (6):3067-3076.
    [86]SWOPE W C,ANDERSEN H C,BERENS P H,et al.A Computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules:Application to small water clusters [J].Journal of Chemical Physics,1982,76 (1):637-649.
    [87]ANDERSEN H C.Molecular dynamics simulations at constant pressure and/or temperature [J].Journal of Chemical Physics,1980,72 (4):2384-2393.
    [88]NOSe S.A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods [J].Journal of Chemical Physics,1984,81 (1):511-519.
    [89]HOOVER W G.Canonical dynamics equilibrium phase space distributions [J].Physical Review A,1985,31 (3):1695-1697.
    [90]STOTT M J,ZAREMBA E.Quasiatoms:An approach to atoms in nonuniform electronic systems [J].Physical Review B,1980,22 (4):1564.
    [91]N RSKOV J K,LANG N D.Effective-medium theory of chemical binding:Application to chemisorption [J].Physical Review B,1980,21 (6):2131.
    [92]DAW M S,BASKES M I.Semiempirical,Quantum-Mechanical Calculation of Hydrogen Embrittlement in Metals [J].Physical Review Letters,1983,50 (17):1285-1288.
    [93]DAW M S,BASKES M I.Embedded-atom method:derivation and application to impurities,surfaces,and other defects in metals [J].Physical Review B,1984,29 (12):6443-6453.
    [94]FOILES S M.Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method [J].Physical Review B,1985,32 (12):7685-7693.
    [95]JOHNSON R A.Analytic nearest-neighbor model for Fcc metals [J].Physical Review B,1988,37 (8):3924-3931.
    [96]JOHNSON R A.Relationship between defect energies and embedded-atom-method parameters [J].Physical Review B,1988,37 (11):6121.
    [97]BASKES M I,SRINIVASAN S G,VALONE S M,et al.Multistate modified embedded atom method [J].Physical Review B,2007,75 (9):094113-094116.
    [98]MISHIN Y,MEHL M J,PAPACONSTANTOPOULOS D A,et al.Structural stability and lattice defects in copper:Ab initio,tight-binding,and embedded-atom calculations [J].Physical Review B,2001,63 (22):224106.
    [99]BASKES M I.Application of the Embedded-Atom Method to Covalent Materials:A Semiempirical Potential for Silicon [J].Physical Review Letters,1987,59 (23):2666.
    [100]BASKES M I,NELSON J S,WRIGHT A F.Semiempirical modified embedded-atom potentials for silicon and germanium [J].Physical Review B,1989,40 (9):6085.
    [101]BANGWEI Z,YIFANG O.Theoretical calculation of thermodynamic data for bcc binary alloys with the embedded-atom method [J].Physical Review B,1993,48 (5):3022-3029.
    [102]BRAUN O M.Phenomenological theory of kinetic friction for the solid lubricant film [J].Physica Scripta,2008,78 (1):015802
    [103]DIENWIEBEL M,VERHOEVEN G S,PRADEEP N,et al.Superlubricity of graphite [J].Physical Review Letters,2004,92 (12):126101.
    [104]SOCOLIUC A,GNECCO E,MAIER S,et al.Atomic-scale control of friction by actuation of nanometer-sized contacts [J].Science,2006,313 (5784):207-210.
    [105]KITCHENS C L,ROBERTS C B.Copper nanoparticle synthesis in compressed liquid and supercritical fluid reverse micelle systems [J].Industrial & Engineering Chemistry Research,2004,43 (19):6070-6081.
    [106]LANGLOIS C,ALLOYEAU D,LE BOUAR Y,et al.Growth and structural properties of CuAg and CoPt bimetallic nanoparticles [J].Faraday Discussions,2008,138:375-391.
    [107]WILLIAMS P L,MISHIN Y,HAMILTON J C.An embedded-atom potential for the Cu-Ag system [J].Modelling and Simulation in Materials Science and Engineering,2006,14 (5):817-833.
    [108]PLIMPTON S.Fast Parallel Algorithms for Short-Range Molecular-Dynamics [J].Journal of Computational Physics,1995,117 (1):1-19.
    [109]http://lammps.sandia.gov/index.html.
    [110]HUMPHREY W,DALKE A,SCHULTEN K.VMD:Visual molecular dynamics [J].Journal of Molecular Graphics,1996,14 (1):33-38.
    [111]PARK H S,GALL K,ZIMMERMAN J A.Deformation of FCC nanowires by twinning and slip [J].Journal of the Mechanics and Physics of Solids,2006,54 (9):1862-1881.
    [112]PISCHEDDA V,HEARNE G R,DAWE A M,et al.Ultrastability and enhanced stiffness of approximately ~6 nm TiO2 nanoanatase and eventual pressure-induced disorder on the nanometer scale [J].Phys Rev Lett,2006,96 (3):035509.
    [113]CHRISTIAN J W,MAHAJAN S.Deformation Twinning [J].Progress in Materials Science,1995,39 (1-2):1-157.
    [114]WANG J,HUANG H C.Shockley partial dislocations to twin:Another formation mechanism and generic driving force [J].Applied Physics Letters,2004,85 (24):5983-5985.
    [115]YAMAKOVV,WOLF D,PHILLPOT S R,et al.Dislocation-dislocation and dislocation-twin reactions in nanocrystalline Al by molecular dynamics simulation [J].Acta Materialia,2003,51 (14):4135-4147.
    [116]PATOLSKY F,ZHENG G,LIEBER C M.Nanowire sensors for medicine and the life sciences [J].Nanomedicine,2006,1 (1):51-65.
    [117]LIU Z P,YANG Y,LIANG J B,et al.Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process[J].Journal of Physical Chemistry B,2003,107(46):12658-12661.
    [118]LIU Z W,BANDO Y.A novel method for preparing copper nanorods and nanowires[J].Advanced Materials,2003,15(4):303-305.
    [119]CHANGJIANG J,PARK H S.Geometric effects on the inelastic deformation of metal nanowires[J].Applied Physics Letters,2006,89(18):181916-181911-181913.
    [120]LI J.AtomEye:an efficient atomistic configuration viewer[J].Modelling and Simulation in Materials Science and Engineering,2003,11(2):173-177.
    [121]CAO A,WEI Y.Atomistic simulations of the mechanical behavior of fivefold twinned nanowires[J].Physical Review B(Condensed Matter and Materials Physics),2006,74(21):214108-214107.
    [122]FARKAS D,BRINGA E,CARO A.Annealing twins in nanocrystalline fcc metals:A molecular dynamics simulation[J].Physical Review B(Condensed Matter and Materials Physics),2007,75(18):184111-184115.
    [123]胡赓祥,蔡珣,戎咏华.材料科学基础(第二版)[M].上海:上海交通大学出版社,2006.
    [124]LI T,MORRIS J W,CHRZAND C.Ideal tensile strength of B2 transition-metal aluminides [J].Physical Review B,2004,70(5):054107.
    [125]MISHIN Y,MEHL M J,PAPACONSTANTOPOULOS D A.Embedded-atom potential for B2-NiAl[J].Physical Review B,2002,65(22):224114.
    [126]RUBINI S,BALLONE P.Quasiharmonic and molecular-dynamics study of the martensitic transformation in Ni-Al alloys[J].Physical Review B,1993,48(1):99.
    [127]YE Y Y,CHAN C T,HO K M,et al.Pseudoelastic behavior of hypostoichiometric NiAl alloys:A simple model[J].Physical Review B,1994,49(9):5852.
    [128]MISHIN Y.Atomistic modeling of the gamma and gamma'-phases of the Ni-Al system[J].Acta Materialia,2004,52(6):1451-1467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700