用户名: 密码: 验证码:
胶东郭城断裂带脉岩岩浆演化过程:对岩石圈演化及金成矿的制约
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深源脉岩是区域性岩石圈引张环境下的产物,对大陆动力学研究具有重要的指示意义。其与金矿床密切伴生的时空关系也一直是地学界研究的重要课题。论文选取胶东金矿集中区中郯庐断裂带的次级郭城深大断裂带内脉岩为研究对象,在充分野外地质调查和岩相学研究基础上,进行了详细的锆石U-Pb年代学、岩石地球化学、同位素地球化学、斑晶矿物微区地球化学研究,同时对脉岩斑晶矿物中硫化物熔融包裹体进行了细致的形态学及微区成分测试,探讨了脉岩的岩石成因、源区性质、成岩过程,以及其所揭示的壳幔岩浆混合信息对华北克拉通东部岩石圈演化及金成矿深部过程的制约。主要成果和结论如下:
     1.郭城断裂带内脉岩控岩构造以NE向张性断裂为主,受控于郯庐断裂带早白垩世左行走滑引张体系。95%以上脉岩成矿后侵位,井下穿脉巷道工程(垂直脉岩走向)揭露的局部地段脉岩累加厚度远远超过围岩厚度,有相当数量脉岩宽度超过5 m,是华北克拉通内罕见的脉岩高密度侵位地区。这些高密度产出的脉岩,其岩浆演化过程对华北克拉通中生代晚期岩石圈演化具有很好的指示意义。岩相学研究将断裂带脉岩划分为闪长玢岩、煌斑岩及二长斑岩三类,以闪长玢岩最为发育,煌斑岩产出有限(1%~2%)。
     2.锆石LA-ICP-MS U-Pb测年结果表明二长斑岩和闪长玢岩分别形成于114±2和116±1 Ma。结合最新关于金成矿的同位素年代学资料(黄铁矿亚样品Rb-Sr等时线及绢云母和白云母Ar-Ar坪年龄,123~119 Ma),进一步确认了郭城断裂带脉岩的侵位,代表了胶东地区成矿后一次重要的岩浆活动事件。
     3.主量元素组成显示断裂带不同类型脉岩SiO_2含量介于44.75%~71.38%,属高钾钙碱性—钾玄质岩系列。具明显高MgO(Mg~#=30~70)、Cr(5.4×10~(-6)~571.4×10~(-6))和Ni(3.3×10~(-6)~235.5×10~(-6))含量,且变化范围较大。岩石富集大离子亲石元素(如Sr、Rb、Ba、U等)和轻稀土元素((La/Yb)_N=18~66),相对亏损高场强元素(如Nb、Ta、Zr、Hf、Ti等)和重稀土。Sr-Nd-Pb同位素组成不均一,具高I_(Sr)(t)(0.70775~0.71164)、低ε_(Nd)(t)(-20.8~-13.5)和~(206)Pb/~(204)Pb(17.128~17.557)特点,且线性关系明显。
     岩石成因与幔源岩浆地壳物质混染、富集地幔部分熔融以及拆沉下地壳部分熔融熔体与地幔橄榄岩反应模式相区别。地球化学组成继承了岩浆源区性质并与幔源铁镁质岩浆和壳源长英质岩浆的混合作用有关,表现为主成分共分母协变图及微量元素相关图和同分母比值图中样品分析点的直线性相关特点,以及同时具有高的Mg、Cr、Ni含量和富集Sr、K、Rb、Ba、Pb等元素特征,与同位素组成所揭示的壳幔岩浆混合信息吻合。Sr-Nd同位素二元混合模拟显示,软流圈岩浆与地壳重熔型花岗质岩浆混合能够满足脉岩的同位素及元素组成要求,煌斑岩和闪长玢岩地幔物质参与成岩的比例(60%~95%)大于二长斑岩(<40%)。定量模型计算表明,脉岩的不相容元素和稀土元素组成也受到了辉石、角闪石、钾长石、斜长石、黑云母、磷灰石、锆石等矿物分离结晶作用的影响。MFC(岩浆混合—分离结晶)是控制岩浆演化过程的重要机制,进一步确定了华北克拉通东部中生代晚期岩石圈深部壳幔作用存在的地质事件。
     4.电子探针微区分析结果显示,断裂带脉岩中辉石和角闪石斑晶幔部相对核部均出现了MgO(Mg~#)、Cr_2O_3含量急剧升高的组成特点,斜长石斑晶具有反环带,斑晶成分变异揭示脉岩为壳幔岩浆混合作用的产物,与岩相学观察见角闪石斑晶包裹黑云母及出现大量长针状磷灰石现象吻合,丰富了胶东及部分报道的华北克拉通东部同时期脉岩的富集地幔来源认识。壳幔作用形成机制与岩石圈引张密切相关,张性活动导致了软流圈上涌,并可诱发地壳物质局部熔融形成长英质岩浆房。当深部高温软流圈岩浆注入壳源岩浆房后,由于温度、粘度、化学成分等不同,二者之间发生物质—能量交换,形成了不均一混合岩浆源区。温压计算显示脉岩源区处于中—下地壳范围,压力最大为0.79~1.33 GPa(26~44km),温度约924~1278℃。斑晶矿物微区地球化学研究的成果,有力确认了华北克拉通东部早白垩世软流圈上涌底侵的深部动力学过程。
     5.郭城断裂带高密度壳幔岩浆混合成因(软流圈岩浆注入至壳源长英质岩浆房)脉岩的侵位,为华北克拉通东部中生代晚期岩石圈的底侵减薄过程提供了直接证据。表明该阶段软流圈上涌,以及其对岩石圈地幔及下地壳的侵蚀过程应是岩石圈减薄的主导机制。动力学背景与早白垩世郯庐断裂带受伊泽奈崎板块高速斜向俯冲所引起的大规模第二次左行走滑引张活动有关。结合华北克拉通中生代构造演化,阶段性活动岩浆岩研究资料,及中生代早期拆沉模式研究基础(如徐淮地区高镁闪长岩中榴辉岩捕虏体、辽西兴隆沟高镁火山岩等),论文明确提出了华北克拉通东部岩石圈减薄的拆沉—底侵双阶段演化模式,并第一次明确指出了郯庐断裂带在岩石圈减薄过程中具有非常重要的作用—应力释放效应。
     6.岩相学研究在断裂带闪长玢岩斑晶矿物中发现了硫化物(磁黄铁矿)熔融包裹体与硅酸盐熔融包裹体共生现象。硫化物球粒状及“卡脖子”状形态学特征,以及电子探针微区成分测试结果表明,壳幔岩浆混合过程中能在岩浆房局部出熔形成富金硫化物熔体。脉岩斑晶矿物中岩浆硫化物残余与Fe-氧化物共生现象,指示岩浆演化后期挥发份的析出能够导致硫化物熔体破坏分解,进而释放金属元素进入成矿流体。硫化物包裹体与矿石硫化物一致的Au/Cu(~2.5)和Ag/Au(~2.0)比值,以及脉岩与矿石硫化物接近的Pb同位素组成,表明成矿流体继承了源区硫化物熔体的元素和同位素组成特点。该发现在华北克拉通中生代脉岩中尚属首次,为脉岩与金成矿的密切关系的研究提供了重要证据。
Deep-source mafic dikes, controlled by regional lithosphere extension, play an important role inunderstanding the continental dynamics. Their temporal-spatial relationship to gold deposits hasbeen a significant research field for many geologists. In this study, we focus on the EarlyCretaceous dikes intruded intensively in the Guocheng fault zone secondary to the Tan-Lu faultsystem (deep to upper mantle), Jiaodong Peninsula within the southeast margin of the North Chinacraton (NCC). After extensive field work and petrographic study, the results of zircon U-Pbchronology, whole-rock geochemistry, isotopic geochemistry and microscopic geochemistry of theGuocheng dikes, and the morphology and microscopic analyses of sulfide melt inclusions inphenocrysts from these rocks are presented. These results are used in an attempt to investigate thesource and petrogenesis of these dikes, constrain the Mesozoic lithosphere thinning of the easternNCC, and understand the gold enrichment process in the magmatic chamber and the transfer of oremetals from the magma to the hydrothermal fluid during gold ore formation. The main results andconclusions are summarized as the follows:
     (1) These dikes in the Guocheng fault zone dominantly intruded in NE direction extensionalfaults, resulted from the extensional strike-slip movement of the Tan-Lu fault system in the EarlyCretaceous. 95 % volume of the dikes emplaced immediately after gold ore formation, and thecumulative thickness is locally far more than their wall rocks revealed by laneways crosscut theserocks vertically, which is perhaps the best example and accordingly an ideal place to test the dikepetrogenesis and their implications for the evolution of the eastern NCC. Petrographic study showsthat these dikes are dominated by diorite porphyry with lesser amounts of lamprophyre andmonzonite porphyry.
     (2) Zircon cathodoluminescence (CL) images show well-developed magmatic oscillatory zonesand the acquired LA-ICP-MS zircon U-Pb weighted mean ~(206)pb/~(238)U ages are 114±2 Ma (MSDW=1.5) for monzonite porphyry and 116±1 Ma (MSDW=0.8) for diorite porphyry,respectively. Earlier magmatic events in the northwest Jiaodong Peninsula represented by someinherited or captured zircons also occur in these dikes. Our results, combined with preciouslypublished data on gold deposits (Rb-Sr dating of auriferous pyrite and Ar-Ar dating of muscoviteand sericite), further confirm a significant magmatic action after gold ore formation in theJiaodong Peninsula.
     (3) Bulk-rock geochemical data show that the Guocheng dikes range in composition from quartzmonzonite to monzogabbro with an SiO_2 content varying from 44.75% to 71.38%. These dikes arecomposed of high-K calc-alkaline to shoshonitic or ultrapotassic rocks, which are characterized byhigh and wide MgO (Mg~#= 30-70), Cr (5.4-571.4 ppm) and Ni (3.3-235.5 ppm) contents. Theyare enriched in large ion lithophile elements (LILE, e.g., Sr, Rb, Ba) and light rare earth elements(LREE; (La/Yb)_N=18-66), depleted in high field strength elements (HFSE, e.g., Nb, Ta, Zr, Hf, Ti)and heavy rare earth elements (HREE), and possess uniform isotopic compositions having highinitial ~(87)Sr/~(86)Sr (0.70775-0.71164) and lowε_(Nd) (t) (-20.8-13.5) and ~(206)pb/~(204)pb (17.128-17.557).
     Since crustal contamination during the magma ascent is insignificant, the Guocheng dikes couldreflect the nature of their magma source. Their geochemical features can not been interpreted bypartial melting of an enriched mantle or melts derived from foundered lower crust, withsubsequent interaction with mantle peridotite. Therefore, we propose that these rocks originatedfrom the mixing between mantle-derived mafic and crust-derived felsic magmas, resulting in highcontents of Mg, Cr and Ni and enrichment of Sr, K, Rb, Ba and Pb simultaneously, which isconsistent with linear relationship of their isotopic compositions. A simple modeling of Sr-Ndisotope show that mixing the depleted mantle with granitic melt remelted from crust can accountfor the present Sr-Nd isotope features and element compositions, in which the proportion of crustalmaterials participated in monzonite porphyry (>60%) is higher than those in diorite porphyry andlamprophyre (5%-40%). Quantitative model indicates the behaviors of incompatible elements andREE are also influenced by fractional crystallization of pyroxene, hornblende, plagioclase,K-feldspar, biotite, apatite and zircon. MFC (mixing and fractional crystallization) dominantlycontrol the magma evolution of the Guocheng dikes, confirming the existence of crust-mantleinteraction in the eastern NCC during the Late Mesozoic.
     (4) Electron probe microanalyses (EPMA) show that the amphibole and clinopyroxenephenocryst's mantle in diorite porphyry and lamprophyre respectively has sharply higher MgO(Mg~#) and Cr_2O_3 contents in contrast to their cores. The plagioclase phenocryst in monzoniteporphyry has reverse zoning. These compositional variations of phenocrysts indicate that the dikesoriginated from a mixing magma source, which coincides with the petrography exhibiting biotiteenclaves in amphibole phenocrysts and the presence of acicular apatites. This crust-mantleinteraction is related to the lithosphere extension, which results in asthenosphere upwelling leadingto decompressional melting of crustal materials to form felsic magma reservoir. Along with hightemperature asthenosphere magma injecting into the crust-derived magma chamber, material andenergy exchange occurred, as different temperature, viscosity and chemical compositions of themixing members, to form the inhomogeneous mixing magma source of these dikes. Mineral chemistry show that the pressure and temperature of the magma source is about 0.79-1.33 GPa(26-44 km; middle-lower crust level) and 924-1278℃respectively. Our findings make sure adeep dynamical process of asthenosphere upwelling in the eastern NCC during the Late Mesozoic.
     (5) Crust-mantle magma mixing genesis (with asthenosphere magma injecting into crust-derivedmagma reservoir) of the Guocheng dikes provides direct evidence for asthenospheric underplatingthinning process of the eastern NCC during the Late Mesozoic. It indicates that asthenosphereupwelling and its chemical erosion to lithospheric mantle and lower crust may be the dominantthinning mechanism in the Cretaceous. Dynamical background is probably due to the secondextensional sinistral strike-slip movement of the Tan-Lu fault system triggered by the obliquesubduction of the Izanagi plate. Combined with tectonic evolution of the NCC and stagedmagmatisms during the Mesozoic, and the existence of the Early Mesozoic foundering lower crust(e.g., researches on eclogite xenoliths entrained by adakitic intrusions from the Xuzhou-Huaibeiregion, Xinglonggou high Mg volcanic rocks in western Liaoning), we propose that the NCC hadexperienced staged thinning process, i.e., delamination thinning in the Early Mesozoic andunderplating thinning in the Late Mesozoic respectively, and firstly point out the Tan-Lu faultzone may play a significant role in the lithosphere thinning, i.e., stress release.
     (6) Based on petrographic study in detail, we discovered primary melt inclusions (PMIs) inequilibrium with silicate melt inclusions in phenocrysts (including hornblende, plagioclase andbiotite) from diorite porphyry. The globular shape and necking of the sulfides and differentsulfide/silicate melt ratios in single inclusions indicate that these sulfides were trapped in amolten stage, documenting the fact that the magma had exsolved sulfide melt upon crust-mantlemagma mixing in some parts of the magma chamber. EPMA microscopic analyses show that Auwould be preferentially enriched in the sulfide liquid. Relicts of the magmatic sulfides coexistingwith Fe-oxides in phenocrysts from the diorite porphyry indicate that the sulfide melt can beinstantaneously destabilized during later stage of the magma evolution and release Au to anore-forming hydrothermal fluid. The mean Au/Cu and Ag/Au ratios of sulfide melt inclusions,within an average factor of about 2.5 and 2.0 respectively, is identical to those of ore sulfides,and the dikes have Pb isotopic compositions similar to ore sulfides, suggest that the ore-forminghydrothermal fluid inherited the element and isotope features of the sulfide melt in the magmasource. This discovery in the Mesozoic dikes in the NCC is the first, providing a critical linkbetween mafic dikes and gold deposits and showing new insights into the formation of othermagmatic hydrothermal deposits.
引文
(1)高山.岩石圈地球化学讲义.中国地质大学(武汉),2007.
    (2)山东省第一地质矿产勘查院.山东省海阳市土堆-沙旺矿区金矿详查报告.2001
    [1]Bernard-Griffiths J, Fourcade S, Dupuy C. Isotopic study (Sr, Nd, O and C) of lamprophyres and associated dykes from Tamazert (Morroco): crustal contamination processes and source characteristics. Earth and Planetary Science Letters, 1991, 103: 190-199
    [2]Currie K L, Williams P R. An Archean calc-alkaline lamprophyre suite, northeastern Yilgarn Block, western Australia. Lithos, 1993, 31: 33-50
    [3]Thompson R N, Leat P T, Dickin A P, et al. Strongly potassic mafic magmas from lithospheric mantle sources during continental extension and heating: evidence from Miocene minettes of northwest Colorado, U.S.A. Earth and Planetary Science Letters, 1990, 98:139-153
    [4]Xu X W, Zhang B L, Qin K Z, et al. Origin of lamprophyres by the mixing of basic and alkaline melts in magma chamber in Beiya area, western Yunnan, China. Lithos, 2007, 99: 339-362
    [5]Prelevi(?) D, Foley S F, Cvetkovi(?) V, et al. Origin of minette by mixing of lamproite and dacite magmas in Veliki Majdan, Serbia. Journal of Petrology, 2004, 45:759-792
    [6]Canning J C, Henney P J, Morrison M A, et al. Geochemistry of late Caledonian minettes from northern Britain; implications for the Caledonian sub-continental lithospheric mantle. Mineralogical Magazine, 1996, 60:221-236
    [7]Fowler M B, Henney P J. Mixed Caledonian appinite magmas: implications for lamprophyre fractionation and high Ba-Sr granite genesis. Contributions to Mineralogy and Petrology, 1996, 126:199-215
    [8]Rock N M S, Groves D I. Do lamprophyres carry gold as well as diamonds? Nature, 1988, 332:253-255
    [9]Taylor W R, Rock N M S, Groves D I, et al. Geochemistry of Archean shoshonitic lamprophyres from the Yilgarn Block, Western Australia: Au abundance and association with gold mineralization. Applied geochemistry, 1994, 9:197-222
    [10]倪师军,李朝阳,张诚,等.中基性脉岩对金矿成矿的贡献-以小秦岭金矿区为例.成都理工学院学报,1994,21(3):70-78
    [11]张勇,陈斌,邵济安,等.华北太行晚中生代煌斑岩地球化学特征及成因探讨.岩石矿物学杂志,2003,22(1):29-33
    [12]孙丰月,石准立,冯本智.胶东金矿地质及幔源C-H-O流体分异成岩成矿.长春:吉林人民出版社,1995,1-170
    [13]程小久,程景平,王江海.胶东蓬家夼金矿区钾玄质煌斑岩的元素地球化学研究.地球化学,1998,27(1):91-100
    [14]孙景贵,胡受奚,凌洪飞.胶东金矿区高钾-钾质脉岩地球化学与俯冲-壳幔作用研 究.岩石学报,2000,16(3):401-412
    [15]胡受奚,孙景贵,凌洪飞,等.中生代苏-鲁活动大陆边缘榴辉岩、煌斑岩、金矿及富集地幔间的成因联系.岩石学报,2001,17(3):425-435
    [16]刘燊.山东地区中生代岩浆作用与地壳拉张-兼论煌斑岩与金成矿的关系.[博士学位
    论文].贵阳:中国科学院地球化学研究所,2004,1-105
    [17]Guo F, Fan W M, Wang Y J, et al. Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collisional belt. Lithos, 2004, 78:291-305
    [18]Yang J H, Chung S L, Zhai M G, et al. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 2004, 73:145-160
    [19]罗镇宽,苗来成.胶东招莱地区花岗岩和金矿床.北京:冶金工业出版社,2002,1-157
    [20]黄智龙,刘丛强,朱成明.云南老王寨金矿区煌斑岩成因及其与金矿化的关系.北京:地质出版社,1999,1-251
    [21]Menzies M A, Fan W M, Zhang M. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. In: Prichard H M, Alabaster T, Harris N B, et at., eds. Magmatic processes and plate tectoniccs. London: Geological Society Special Publications, 1993, 76: 71-78.
    [22]Griffin W L, Zhang A D, O'Reilly S Y, et at. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In: Flower M, Chung S L, Lo C H, et al., eds. Mantle dynamics and plate interactions in East Asia. Washington: American Geophysical Union, 1998, 100:107-126
    [23]Fan W M, Zhang H F, Baker J, et al. On and off the North China Craton: Where is the Archaean keel? Journal of Petrology, 2000, 41:933-950
    [24]徐义刚.岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄.矿物岩石地球化学通报,1999,18(1):1-5
    [25]Xu Y G, Huang X L., Ma J L, et al. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton: constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contributions to Mineralogy and Petrology, 2004, 147:750-767
    [26]Xu Y G. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin'anling-Taihangshan gravity lineament. Lithos, 2007, 96:281-298
    [27]路凤香,郑建平,李伍平,等.中国东部显生宙地幔演化的主要样式:“蘑菇云”模型.地学前缘,2000,7(1):97-107
    [28]郑建平,路凤香,O'Reilly S Y,et al.华北地台东部古生代与新生代岩石圈地幔特征及其演化.地质学报,1999,73(1):47-56
    [29]Zheng J P, Sun M, Lu F X, et al. Mesozoic lower crustal xenoliths and their significance in lithospheric evolution beneath the Sino-Korean Craton. Tectonophysics, 2003, 361:37-60
    [30]Zheng J P, Griffin W L, O'Reilly S Y, et al. 3.6 Ga lower crust in central China: New evidence on the assembly of the North China craton. Geology, 2004, 32:229-232
    [31]张宏福,郑建平.华北中生代玄武岩的地球化学特征与岩石成因:以辽宁阜新为例.科
    学通报,2003,48(6):603-609
    [32]Zhang H F, Sun M, Zhou X H, et al. Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology, 2002, 144:241-253
    [33]Li S G, Xiao Y L, Liou D L, et al. Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogite: Timing and processes. Chemical geology, 1993, 109: 89-111
    [34]邓晋福,刘厚祥,赵海玲,等.燕辽地区燕山期火成岩与造山模型.现代地质,1996,10(2):137-148
    [35]Gao S, Rudnick R L, Carlson R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters, 2002, 198: 307-322
    [36]Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton. Nature, 2004, 432:892-897
    [37]Xu W L, Gao S, W Q H, et al. Mesozoic crustal thickening of the eastern North China craton: Evidence from eclogite xenoliths and petrologic implications. Geology, 2006, 34:721-724
    [38]Xu W L, Hergt J M, Gao S, et al. Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth and Planetary Science Letters, 2008, 265:123-137
    [39]Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 2005, 103-119
    [40]Wu F Y, Yang J H, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chemical Geology, 2005, 221: 127-156
    [41]Yang J H, Sun J F, Chen F, et al. Sources and petrogenesis of Late Triassic dolerite dikes in the Liaodong Peninsula: Implications for post-collisional lithosphere thinning of eastern North China craton. Journal of Petrology, 2007, 47:1973-1997
    [42]Yang J H, Wu F Y, Wilde S A, et al. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chemical Geology, 2007, 242:155-175
    [43]张旗,金惟俊,王元龙,等.大洋岩石圈拆沉与大陆下地壳拆沉:不同的机制及意义-兼论“下地壳+岩石圈地幔拆沉模式”.岩石学报,2006,22(11):2631-2638
    [44]张旗,金惟俊,王元龙,等.大陆下地壳拆沉模式初探.岩石学报,2006,22(2):265-276
    [45]马杏垣.中国岩石圈动力学纲要-1:400万中国及邻近海域岩石圈动力学图说明书.北京:地质出版社,1987
    [46]付明希,胡圣标,汪集旸.华北东部中生代热体制转换及其构造意义.中国科学D辑:地球科学,2004,34(6):514-520
    [47]夏琼夏,支霞臣,孟庆,等.汉诺坝幔源橄榄岩包体的微量元素和Re-Os同位素地球化
    学:SCLM的性质和形成时代.岩石学报,2004,20(5):1215-1224
    [48]支霞臣,彭子成,陈道公,等.苏皖地区幔源橄榄岩捕虏体的锇同位素组成、模式年龄及其意义.岩石学报,2001,17(1):11-18
    [49]支霞臣,秦协.中国东部地幔橄榄岩捕虏体的Re-Os同位素地球化学:岩石圈地幔的形成年龄和减薄机制的制约.岩石学报,2004,20(5):989-998
    [50]刘勇胜,高山,柳小明,等.汉诺坝下地壳-上地慢包体的岩石圈热动力学记录.科学通报,2003,48(14):1575-1581
    [51]闫峻,陈江峰,谢智,等.鲁东晚白垩世玄武岩中的幔源捕虏体:对中国东部岩石圈减薄时间制约的新证据.科学通报,2003,48(14):1570-1574
    [52]翟明国,朱日祥,刘建明,等.华北东部中生代构造体制转折的关键时限.中国科D辑:地球科学,2003,33(10):913-920
    [53]姜耀辉,蒋少涌,赵葵东,等.辽东半岛煌斑岩SHRIMP锆石U-Pb年龄及其对中国东部岩石圈减薄开始时间的制约.科学通报,2005,50(19):2161-2168
    [54]黄华,高山,胡兆初,等.辽西彰武地区中生代高镁安山岩地球化学及其对新生下地壳拆沉作用的指示.中国科学D辑:地球科学,2007,37(10:1287-1300
    [55]许文良,杨承海,杨德彬,等.华北克拉通东部中生代高Mg闪长岩-对岩石圈减薄机制的制约.地学前缘,2006,13(2):120-129
    [56]张连昌,沈远超,刘铁兵,等.山东胶莱盆地北缘金矿Ar-Ar法和Rb-Sr等时线年龄与成矿时代.中国科学D辑:地球科学,2002,32(9):727-734
    [57]翟建平,徐光平,胡凯.乳山金矿煌斑岩及流体和氢、氧、锶同位素研究.矿床地质,1996,15(4):358-364
    [58]沈远超,杨金中,刘铁兵,等.胶东新型金矿-层间滑动角砾岩型金矿床.地质与勘探,2002,38(2):11-14
    [59]Hofmann A W, White W M. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters, 1982, 57:421-436
    [60]Zindler A, Hart S. Chemical geodynamics. Earth and Planetary Science Letters, 1986, 14: 493-571
    [61]Hart S R, Hauri E H, Oschmann L A, et al. Mantle plumes and entrainment: isotopic evidence. Science, 1992, 256:517-520
    [62]Schilling J G. Icelandic mantle plume: geochemical evidence along the Reykjanes Ridge. Nature, 1973, 242:565-571
    [63]All(?)gre C J. Chemical geodynamics. Tectonophysics, 1982, 81:109-132
    [64]Hofmann A W. Mantle geochemistry: the message from oceanic volcanism. Nature, 1997, 385:219-229
    [65]Niu Y L, Regelous M, Wendt I J, et al. Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component. Earth and Planetary Science Letters, 2002, 199:327-345
    [66]Ito E, Takahashi E. Post-spinel transformations in the system Mg_2SiO_4-Fe_2SiO_4 and some geophysical implications. Journal of Geophysical Research, 1989, 94:10637-10646
    [67]Schubert G, Turcotte D, Olson P. Mantle convection in the earth and planets. Cambridge University Press, 2001
    [68]Grand S P. Mantle shear structure beneath the Americas and surrounding oceans. Journal of Geophysical Research, 1994, 99:11591-11621
    [69]Van der Hilst R D, Widiyantoro S, Engdahl E R. Evidence for deep mantle circulation from global tomography. Nature, 1997, 386:578-584
    [70]王兴阵,陶琰,马言胜.壳幔混合及花岗质岩浆的形成.矿物岩石地球化学通报,2006,25(2):183-188
    [71]Aguill(?)n-Robles A, Calmus T, Benoit M, et al. Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California? Geology, 2001, 29:531-534
    [72]Polat A, Kerrich R. Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: implications for late Archean subduction zone petrogenetic processes. Contributions to Mineralogy and Petrology, 2001, 141:36-52
    [73]赵振华.微量元素地球化学研究进展.见:张本仁,傅家谟,编.地球化学进展.北京:化学工业出版社,2005,199-248
    [74]Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 1990, 347:662-665
    [75]Castillo P R, Janney P E, Solidum R U. Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 1999, 134, 33-51
    [76]Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 1993, 362:144-146
    [77]Xu J F, Shinjio R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 2002, 30:1111-1114
    [78]王强,赵振华,熊小林,等.底侵玄武质下地壳的熔融:来自安徽沙溪adakite质富钠石英闪长玢岩的证据.地球化学,2001,30(4):353-362
    [79]Chopin C. Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contributions to Mineralogy and Petrology, 1984, 86: 107-118
    [80]Smith D C. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 1984, 310:641-644
    [81]Sobolev N V, Shatsky V S. Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature, 1990, 343:742-746
    [82]Xu S T, Su W, Liu Y C, et al. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 1992, 256:80-82
    [83]Dobrzhinetskaya L, Green Ⅱ H W, Wang S. Alpe Arami: A peridotite massif from depths of more than 300 kilometers. Science, 1996, 271: 1841-1845
    [84]郑永飞.深俯冲大陆板块折返过程中的流体活动.科学通报,2004,49(10):917-929
    [85]Ernst W G, Liou J G, Hacker B R. Petrotectonic significance of high- and ultrahigh-pressure metamorphic belts: inferences for subduction-zone histories. International Geology Review, 1994, 36:213-237
    [86]Nie S, Yin A, Rowley D B, et al. Exhumation of the Dabie Shan ultra-high-pressure rocks and accumulation of the Songpan-Ganzi flysch sequence, central China. Geology, 1994, 22: 999-1002
    [87]Sobolev A V, Hofmann A W, Sobolev S V, et al. An olivine-free mantle source of Hawaiian shield basalts. Nature, 2005, 434:590-597
    [88]Gao S, Zhang B R, Jin Z M, et al. How mafic is the lower continental crust? Earth and Planetary Science Letters, 1998, 106:101-117
    [89]高山.大陆地壳组成研究的进展.见:张本仁,傅家谟,编.地球化学进展.北京:化学工业出版社,2005,44-78
    [90]Fyfe W S, Leonardos O H Jr. Ancient metamorphic-migmatite belts of the Brazilian African coasts. Nature, 1973, 244:501-502
    [91]杜杨松,刘金辉,秦新龙,等.岩浆底侵作用研究进展,自然科学进展,2003,13(3):237-242
    [92]Wilson J T. A possible origin of the Hawaiian Islands. Canadian Journal of Physics, 1963,41: 863-870
    [93]Morgan W J. Convection plumes in the lower mantle. Nature, 1971, 230:42-43
    [94]Maruyama S. Plume tectonics. Journal of the Geological Society of Japan, 1994, 100 (1):24-49
    [95]周连成,白伟明,赵俐红,等.地幔柱研究述评.海洋地质动态,2004,20(8):16-19
    [96]杜杨松.壳幔成矿学初探.矿床地质,1999,18(4):341-346
    [97]邓军,刘伟,孙忠实,等.幔源流体判别标志及多层循环成矿作用动力学-以山东夏甸金矿床为例.中国科学D辑:地球科学,2002,32(增刊):96-104
    [98]毛景文,赫英,丁悌平.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据.矿床地质,2002,21(2):121-128
    [99]Peacock S A. Fluid processes in subduction zones. Science, 1990, 248:329-337
    [100]Trull T, Nadeau S, Pineau F, et al. C-He systematics in hotspot xenoliths: Implications for mantle carbon contents and carbon recycling. Earth and Planetary Science Letters, 1993, 118:43-64
    [101]Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences, 1997, 44 (3): 373-388
    [102]Mungall J E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 2002, 30:915-918
    [103]Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 1972, 67:184-197
    [104]姚春亮,陆建军,郭维民,等.斑岩铜矿若干问题的最新研究进展.矿床地质,2007,26(2):221-229
    [105]Cooke D R, Hollings P, Walshe J L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 2005, 100(5): 801-818
    [106]Rosenbaum G, Giles D, Saxon M, et al. Subduction of the Nazca Ridge and the Inca Plateau: Insights into the formation of ore deposits in Peru. Earth and Planetary Science Letters, 2005, 239:18-32
    [107]侯增谦,潘小菲,杨志明.初论大陆环境斑岩铜矿.现代地质,2007,21(2):332-351
    [108]Li J W, Vasconcelos P M, Zhang J, et al. ~(40)Ar/~(39)Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong gold province, eastern China. Journal of Geology, 2003, 111:741-751
    [109]Li J W, Vasconcelos P M, Zhou M F, et al. Geochronology of the Pengjiakuang and Rushan gold deposits, eastern Jiaodong gold province, northeastern China: Implications for regional mineralization and geodynamic setting. Economic Geology, 2006, 101: 1023-1038
    [110]Wei J H, Liu C Q, Tang H F. Rb-Sr and U-Pb isotopic systematics of pyrite and granite in Liaodong gold province, North, China: implication for the age and genesis of a gold deposit. Geochemical Journal, 2003, 37:567-577
    [111]毛景文,李厚民,王义天,等.地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据.地质学报,2005,79(6):839-857
    [112]岳可芬,赫英.中国东部地幔岩包体及其中硫化物相金含量的比较研究.中国科学D:地球科学,2008,38(1):78-86
    [113]邓晋福,莫宣学,赵海玲,等.中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境.矿床地质,1999,18(4):309-315
    [114]胡瑞忠,陶琰,钟宏,等.地幔柱成矿系统:以峨眉山地幔柱为例.地学前缘,2005,12(1):42-54
    [115]毕金龙.地幔柱及其成矿作用综述.地质与资源,2005,14(3):223-226
    [116]Oppliger G L, Murphy J B, Brimhall G H. Is the ancestral Yellowstone hotspot responsible for the Tertiary "Carlin" mineralization in the Great Basin of Nevada? Geology, 1997, 25: 627-630
    [117]Isley A E, Abbott D H. Plume-related mafic volcanism and the deposition of banded iron formation. Journal of geophysical research, 1999, 104:15461-15477
    [118]王登红,李建康,刘峰,等.地幔柱研究中几个问题的探讨及其找矿意义.地球学报,2004,25(5):489-494
    [119]Heinrich C A, G(?)nther D, Aud(?)tat A, et al. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology, 1999, 27:755-758
    [120]Heinrich C A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Mineralium Deposita, 2005, 39: 864-889
    [121]Halter W E, Pettke T, Heinrich C A, et al. Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: methods of quantification. Chemical Geology, 2002, 183, 63-86
    [122]Halter W E, Pettke T, Heinrich C A. The origin of Cu/Au ratios in porphyry-type ore deposits. Science, 2002, 296:1844-1846
    [123]Halter W E, Bain N, Becker K, et al. From andesitic volcanism to the formation of a porphyry Cu-Au mineralizing magma chamber: the Farall(?)n Negro Volcanic Complex, northwestern Argentina. Journal of Volcanology and Geothermal Research, 2004, 136: 1-30
    [124]Halter W E, Pettke T, Heinrich C A. Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusionsin an andesitic complex Ⅰ: analytical approach and data evaluation. Contributions to Mineralogy and Petrology, 2004, 147:385-396
    [125]Halter W E, Heinrich C A, Pettke T. Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex Ⅱ: evidence for magma mixing and magma chamber evolution. Contributions to Mineralogy and Petrology, 2004, 147:397-412
    [126]Halter W E, Heinrich C A, Pettke T. Magma evolution and the formation of porphyry Cu-Au ore fluids: evidence from silicate and sulfide melt inclusions. Mineralium Deposita, 2005, 39:845-863
    [127]Aud(?)tat A, Gunther D, Christoph, et al. Causes for large-scale metal zonation around mineralized plutons: Fluid inclusion LA-ICP-MS evidence from the Mole Granite, Australia. Economic Geology, 2000, 95(8): 563-1581
    [128]Redmond P B, Einaudi M T, Inan E E, et al. Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah. Geology, 2004, 32(3): 217-220
    [129]Landtwing M R, Pettke T, Halter W E, et al. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: The Bingham porphyry. Earth and Planetary Science Letters, 2005, 235:229-243
    [130]Harris A C, Kamenetsky V S, White N C, et al. Melt inclusions in veins: Linking magmas and porphyry Cu deposits. Science, 2003, 302:2109-2111
    [131]Williams-Jones A E, Heinrich C A. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geology, 2005, 100(7): 1287-1312
    [132]Cole J W, Gamble J A, Burt R M, et al. Mixing and mingling in the evolution of andesite-dacite magmas; evidence from co-magmatic plutonic enclaves, Taupo Volcanic Zone, New Zealand. Lithos, 2001, 59:25-46
    [133]Coombs M L, Eichelberger J C, Rutherford M J. Magma storage and mixing conditions for the 1953-1974 eruptions of Southwest Trident Volcano, Katmai National Park, Alaska. Contributions to Mineralogy and Petrology, 2000, 140:99-118
    [134]Dietrich A, Lehmann B, Wallianos A. Bulk rock and melt inclusion geochemistry of Bolivian tin porphyry systems. Economic Geology, 2000, 95:313-326
    [135]Ulrich T, G(u|¨)nther D, Heinrich C A. The Evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Economic Geology, 2002, 97:1889-1920
    [136]Stille P, Oberhansli R, Wenger-Schenk K. Hf-Nd isotopic and trace element constraints on the genesis of alkaline and calc-alkaline lamprophyres. Earth and Planetary Science Letters, 1989, 96:209-219
    [137]Tatsumi Y, Koyaguchi T. An absarokite from a phlogopite lherzolite source. Contributions to Mineralogy and Petrology, 1989, 102:34-40
    [138]罗天明.脉岩与热液脉状金矿化的时空伴生及其地质意义.矿产与地质,1992,6(28):118-125
    [139]苏小四.脉岩与脉状金矿:一个简要的评述.长春科技大学学报,1994,24(1):28-38
    [140]季海章,赵懿英,卢冰,等.胶东地区煌斑岩与金矿关系初探.地质与勘探,1992,(2):15-18
    [141]Wyman D, Kerrich R. Lamprophyres a source of gold. Nature, 1988, 332:209-210
    [142]Muller D, Groves D I. Potassic igneous rocks and association gold-copper mineralization 3rd edn. Berlin: Springer-Verlag, 2000, 85-157
    [143]徐红.胶东乳山金矿及有关黑色脉岩的氧同位素研究:壳幔演化与成岩成矿同位素 地球化学.北京:地震出版社,1993,157-158
    [144]Golding S D, McNaughton N J, Barley M E, et al. Archean carbon and oxygen reservoirs: Their significance for fluid sources and circulation paths for Archean mesothermal gold deposits of the Norseman-Wiluna belt, Western Australia. Economic Geology Monograp, 1989, 6:376-388
    [145]周喜文,魏春景,耿元生,等.胶北荆山群泥质低压麻粒岩电子探针独居石Th-Pb定年及其对多阶段变质演化的制约.科学通报,2005,50(4):369-374
    [146]邱检生,王玉华,王德滋,等.郯庐中南段与中生代火山-次火山作用有关金(铜)矿床的成矿控制因素及成矿规律.矿床地质,1998,17(增刊):119-122
    [147]范宏瑞,胡芳芳,杨进辉,等.胶东中生代构造体制转折过程中流体演化和金的大规模成矿.岩石学报,2005,21(5):1317-1328
    [148]李华芹,刘家齐,魏林.热液矿床流体包裹体研究及其地质应用.北京:地质出版社,1993.1-114
    [149]申萍,沈远超,李光明,等.胶东金牛山金矿床构造-流体-成矿作用体系研究.地质科学,2004,39(2):272-283
    [150]杨金中,沈远超,刘铁兵,等.山东蓬家夼金矿床成矿流体地球化学特征.矿床地质,2000,19(3):235-244
    [151]陈衍景,Pirajno F,赖勇,等.胶东矿集区大规模成矿时间和构造环境.岩石学报,2004,20(4):907-922
    [152]Xu J W, Zhu G, Tong W X, et al. Formation and evolution of the Tancheng-Lujiang wrench fault system: a major shear system to the northwest of the Pacific Ocean. Tectonophysics, 1987, 134:273-310
    [153]Wang L G, Qiu Y M, McNaughton N J, et al. Constrains on crustal evolution and gold metallogeny in the northwestern Jiaodong peninsula, China, from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews, 1998, 13:275-291
    [154]刘辅臣,卢作祥,范永香,等.玲珑金矿中基性脉岩与矿化关系探讨.地球科学-中国地质大学学报,1984,(4):37-45
    [155]邱检生,王德滋,周金城,等.山东中生代橄榄安粗岩系火山岩的地质、地球化学特 征及岩石成因.地球科学-中国地质大学学报,1996,21(5):546-552
    [156]张群喜,王生龙.山东谢家沟金矿脉岩特征及其与金矿成矿关系.安徽地质,2007,17(1):24-27
    [157]李新俊,李绪俊,孙国胜.罗山金矿煌斑岩地质特征及其找矿意义.黄金,1999,20(6):10-12
    [158]申玉科,邓军,徐叶兵.煌斑岩在玲珑金矿田形成过程中的地质意义.地质与勘探,2005,41(3):45-49
    [159]杨忠芳,徐景奎,赵伦山,等.胶东区域地壳演化与金成矿作用地球化学.北京:地质出版社,1998,1-157
    [160]李兆龙,杨敏之,李治平,等.胶东金矿床地质地球化学.天津:天津科学技术出版社,1993,1-300
    [161]Zhang X H, Zhang H F, Tang Y J, et al. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology, 2008, 249:262-281
    [162]Miao L C, Fan W M, Liu D Y, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences, 2008, 32: 348-370
    [163]李锦轶,高立明,孙桂华,等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束.岩石学报,2007,23(3):565-582
    [164]Yang J H, Wu F Y, Shao J A, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 2006, 246, 336-352.
    [165]赵磊.华北板块北缘中段晚古生代镁铁-超镁铁岩的岩石地球化学特征及其构造意义.[博士学位论文].北京:北京大学,2008,1-99
    [166]Liu F L, Gerdes A, Zeng L S, et al. SHRIMP U-Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China. Geochimica et Cosmochimica Acta, 2008, 72:2973-3000
    [167]Zhang R Y, Yang J S, Wooden J L, et al. U-Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China: Implications for mantle metasomatism and subduction-zone UHP metamorphism. Earth and Planetary Science Letters, 2005, 237: 729-743
    [168]Wan Y S, Li R W, Wilde S A, et al. UHP metamorphism and exhumation of the Dabie Orogen, China: Evidence from SHRIMP dating of zircon and monazite from a UHP granitic gneiss cobble from the Hefei Basin. Geochimica et Cosmochimica Acta, 2005, 69: 4333-4348
    [169]Liu Y S, Gao S, Yuan H L, et al. U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust. Chemical Geology, 2004, 211 (1-2): 87-109
    [170]王清晨,林伟.大别山碰撞造山带的地球动力学.地学前缘,2002,9(4):257-265
    [171]李曙光,李惠民,陈移之,等.大别-苏鲁地体超高压变质年代学-Ⅱ.锆石U-Pb同位素体系.中国科学D辑:地球科学,1997,27(3):200-206
    [172]Maruyama S, Isozaki Y, Kimura G, et al. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. The Island Arc, 1997, 6:121-142
    [173]Engebretson D C, Cox A, Gordon R G. Relative motions between oceanic and continental plates in the Pacific basin. Geological Society of America, 1985, 206:1-59
    [174]郭敬辉,陈福坤,张晓曼,等.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学.岩石学报,2005,21(4):1281-1301
    [175]张田,张岳桥.胶东半岛中生代侵入岩浆活动序列及其构造制约.高校地质学报,2007,13(2):323-336
    [176]Yang J H, Chung S L, Wilde S A, et al. Petrogenesis of post-orogenic syenites and crustal growth in the Sulu orogenic belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology, 2005, 214:99-125
    [177]Hacker B R, Ratschbacher L, Webb L, et al. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing. Journal of Geophysical Research, 2000, 105:13339-13364
    [178]许文良,王清海,王冬艳,等.华北克拉通东部中生代岩石圈减薄的过程与机制:中生代火成岩和深源捕虏体证据.地学前缘,2004,11(3):309-317
    [179]吴福元,杨进辉,柳小明.辽东半岛中生代花岗质岩浆作用的年代学格架.高校地质学报,2005,11(3):305-317
    [180]朱光,刘国生,Dunlap W J,等.庐断裂带同造山走滑运动的~(40)Ar/~(39)Ar年代学证据.科学通报,2004,49(2):190-198
    [181]朱光,王道轩,刘国生,等.郯庐断裂带的演化及其对西太平洋板块运动的响应.地质科学,2004,39(1):36-49
    [182]邱检生,王德滋,罗清华,等.鲁东胶莱盆地青山组火山岩的~(40)Ar/~(39)Ar定年-以五莲分岭山火山机构为例.高校地质学报,2001,7(3):351-355
    [183]凌文黎,谢先军,柳小明,等.鲁东中生代标准剖面青山群火山岩锆石U-Pb年龄及其构造意义.中国科学D辑:地球科学,2006,36(5):401-411
    [184]支霞臣,陈道公,张宗清,等.山东蓬莱、邻朐新生代碱性玄武岩的钕、锶同位素组成.地质论评,1994,40(6):526-533
    [185]徐贵忠,周瑞,闫臻,等.论胶东地区中生代岩石圈减薄的证据及其动力学机制.大地构造与成矿学,2001,25(4):368-380
    [186]张连昌,沈远超,刘铁兵,等.山东蓬家夼金矿硫铅碳氧同位素地球化学.矿物学报,2002,22(3):255-260
    [187]邹为雷,曾庆栋,李光明.胶东发云夼金矿床地质特征及其金矿类型辨析.矿床地质,2003,22(1):88-94
    [188]邹为雷,沈远超,曾庆栋,等.蓬家夼金矿与发云夼金矿地质地球化学特征对比研究-兼议层间滑动角砾岩型金矿成矿模式.黄金,2001,3:1-7
    [189]杨金中,赵玉灵,沈远超,等.胶莱盆地与金矿床成矿.黄金,1999,20(9):1-61
    [190]张志臣,曲少飞,丁宪华,等.乳山西涝口金矿床地质特征及找矿标志.山东国土资 源,2006,22(2):48-52
    [191]罗忠明.山东牟平辽上金矿床地质特征.山东地质,2000,16(3):22-25
    [192]Wyllie P J, Cox K G, Biggar G M. The habit of apatite in synthetic systems and igneous rocks. Journal of Petrology, 1962, 3:238-243
    [193]徐夕生,范钦成,O'Reilly S Y,等.安徽铜官山石英闪长岩及其包体锆石U-Pb定年与成因探讨.科学通报,2004,49(18):1883-1891
    [194]胡芳芳,范宏瑞,杨进辉,等.胶东文登长山南花岗闪长岩体的岩浆混合成因:闪长质包体及寄主岩石的地球化学、Sr-Nd同位素和锆石Hf同位素证据.岩石学报,2005,21(3):569-586
    [195]Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geosand Newsl, 2004, 28:353-370
    [196]Anderson T. Correction of common lead in U-Pb analyses that do not report ~(204)Pb. Chemical Geology, 2002, 192:59-79
    [197]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,2004,49(16): 1589-1604
    [198]Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 2000, 18:423-439
    [199]Griffin W L, Belousova E A, Shee S R, et al. Crustal evolution in the northern Yilarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 2004, 131:231-282
    [200]Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the ocean basins. London: Geological Society Special Publications, 1989, 42:313-345
    [201]陈丹玲,孙勇,刘良,等.柴北缘鱼卡河榴辉岩的超高压变质年龄:锆石LA-ICP-MS微区定年.中国科学D辑:地球科学,2007,37(增刊Ⅰ):279-287
    [202]宋明春,赵庆龄.山东省日照市官山闪长玢岩锆石SHRIMP年龄:印支期岩浆热事件及其对超高压变质岩折返历史的限定.地质通报,2004,23(12):1254-1258
    [203]罗镇宽,苗来成,关康,等.辽宁阜新排山楼金矿区岩浆岩锆石SHRIMP定年及其意义.地球化学,2001,30(5):483-490
    [204]邱检生,徐夕生,罗清华.鲁西富钾火山岩和煌斑岩的~(40)Ar/~(39)Ar定年及源区示踪.科学通报,2001,46(18):1500-1508
    [205]邵济安,张永北,张履桥,等.大同地区早中生代煌斑岩-碳酸岩岩墙群.岩石学报,2003,19(1):93-104
    [206]邵济安,李献华,张履桥,等.南口-古崖居中生代双峰式岩墙群形成机制的地球化学制约.地球化学,2001,30(6):517-524
    [207]韩宝福,加加美宽雄,李惠民.河北光头山碱性花岗岩的时代、Nd-Sr同位素特征及其对华北早中生代壳幔相互作用的意义.岩石学报,2004,20(6):1375-1388
    [208]牟保磊,邵济安,储著银,等.河北矾山钾质碱性超镁铁岩-正长岩杂岩体Sm-Nd年龄 和Sr-Nd同位素特征.岩石学报,2001,17(3):358-365
    [209]任康绪,阎国翰,牟保垒,等.辽西凌源河坎子碱性杂岩体地球化学特征及地质意义.岩石矿物学杂志,2004,23(3):193-202
    [210]胡华斌,毛景文,刘敦一,等.鲁西铜石岩体的锆石SHRIMP U-Pb年龄及其地质意义.地学前缘,2004,11:453-460
    [211]许文良,王清海,杨德彬,等.蚌埠荆山“混合花岗岩”SHRIMP锆石U-Pb定年及其地
    质意义.中国科学D辑:地球科学,2004,34(5):423-428
    [212]曲晓明,王鹤年.郭家岭岩体壳幔岩浆混合作用与侵位机制的动力学研究.地质科学,1997,32(4):445-454
    [213]Yang J H, Wu F Y, Chung S L, et al. A three-component mixing model in granite origin: Geochemical and Nd- and Sr-isotopic evidence from the Gudaoling mafic enclaves and host granites (NE China). Geochimica et Cosmochimica Acta, 2004, 68:4469-4493
    [214]林景仟,谭东娟,金烨.鲁西地区中生代火成活动的~(40)Ar/~(39)Ar年龄.岩石矿物学杂志,1996,15(3):213-220
    [215]林强,葛文春,曹林,等.大兴安岭中生代双峰式火山岩的地球化学特征.地球化学,2003,32(3):208-222
    [216]Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science, 1971, 8:523-548
    [217]Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 1976, 58: 63-81
    [218]邱家骧.岩浆岩岩石学.北京:地质出版社,1985,1-340
    [219]杨进辉.胶东地区金矿床成矿时代及其成矿地球动力学背景:兼论壳幔相互作用与
    成岩成矿.[博士学位论文].北京:中国科学院地质与地球物理研究所,2000,1-132
    [220]Jahn B M, Wu F Y, Lo C H, et al. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 1999, 157:119-146
    [221]徐红,徐光平.胶东煌斑岩的地球化学特征及成因探讨.岩石矿物学杂志,2000,19(1):36-44
    [222]Yang J H, Zhou X H. Rb-Sr, Sm-Nd, and Pb isotope systematics of pyrite: Implications for the age and genesis of lode gold deposits. Geology, 2001, 29:711-714
    [223]刘建明,叶杰,徐九华,等.胶东金矿床碳酸盐矿物的碳-氧和锶-钕同位素地球化学研究.岩石学报,2003,19(4):775-784
    [224]闫峻,陈江峰.鲁东青山组中性火山岩的地球化学特征:岩石成因和地质意义.地球化学,2007,36(1):1-10
    [225]侯明兰,丁昕,蒋少涌.胶东蓬莱河西金矿床铅、硫同位素地球化学特征.地球学报,2004,25(2):145-150
    [226]宋玉财,胡文瑄,连国建,等.胶东大庄子金矿微量元素及Pb-S同位素地球化学研究究.南京大学学报(自然科学),2004,40(6):659-673
    [227]张连昌,沈远超,曾庆栋,等.山东中生代胶莱盆地北缘金矿床硫铅同位素地球化学.矿物岩石地球化学通报,2001,20(4):380-384
    [228]林文蔚,赵一鸣,赵国红,等.胶东金矿铅同位素地质特征及成矿年代讨论.长春科技大学学报,1999,29(2):116-121
    [229]Morimoto N, Fabries J, Ferguson A K, et al. Nomenclature of pyroxenes. American Mineralogist, 1988, 73:1123-1133
    [230]Liotard J M, Briot D, Boivin P. Petrological and geochemical relationships between pyroxene megacrysts and associated alkali-basalts from Massif Central (France). Contributions to Mineralogy and Petrology, 1988, 98:81-90
    [231]吕勇军,罗照华,任忠宝,等.西南天山托云盆地新生代玄武岩中巨晶的研究.中国科学D辑:地球科学,2006,36(2):154-166
    [232]邱家骧,曾广策.中国东部新生代玄武岩中低压单斜辉石的矿物化学及岩石学意义.岩石学报,1987,(4):1-9
    [233]Putirka K D, Mikaelian H, Ryerson F, et al. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 2003, 88:1542-1554
    [234]Leake B E, Woolley A R, Arps C E S, et al. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names. American Mineralogist, 1997, 82:1019-1037
    [235]Schmidt M W. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 1992, 110:304-310
    [236]Holland T, Blundy J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 1994, 116:433-447
    [237]薛怀民,董树文,简平.大别山造山带前陆阳新二长质侵入体的矿物化学、地球化学与锆石SHRIMP定年.中国科学D辑:地球科学,2006,36(2):133-142
    [238]樊祺诚,张宏福,隋建立,等.岩浆底侵作用与汉诺坝现今壳-幔边界组成-捕虏体岩石学与地球化学证据.中国科学D辑:地球科学,2005,35(1):1-14
    [239]Foster M D. Interpretation of the composition of trioctahedral micas. U. S. Geological Survey Professional Paper, 1960, 354B: 11-49
    [240]Wones D R, Eugster H P. Stability of biotite: Experiment, theory, and application. The
    American Mineralogist, 1965, 50:1228-1272
    [241]周珣若.花岗岩混合作用.地学前缘,1994,1(1-2):87-97
    [242]马昌前,杨坤光,唐仲华,等.花岗岩类岩浆动力学-理论方法及鄂东花岗岩类例析.武汉:中国地质大学出版社,1994,1-260
    [243]Didier J, Barbarin B. Enclaves and granite petrology. Elsevier: Amsterdam, 1991, 1-625
    [244]Langmuir C H. A general mixing equation with applications to Icelandic basalts. Earth and Planetary Science Letters, 1978, 37:380-392
    [245]Mason D R. Compositional variation in ferromagnesian minerals from porphyry copper-generating and barren intrusions of the Western Highlands, Papua New Guinea. Economic Geology, 1978, 73:878-890
    [246]黄小龙,徐义刚,杨启军,等.滇西莴中晚始新世高镁富钾火山岩中单斜辉石斑晶环带结构的成因:岩浆补给-混合过程.高校地质学报,2007,13(2):250-260
    [247]Anderson A T. Probable relations between plagioclase zoning and magma dynamics, Fuego Volcano, Guatemala. American Mineralogist, 1984, 69:660-676
    [248]Vernon R H. Restite, xenoliths and microgranitoid enclaves in granites. Journal and Proceedings of the Royal Society of New South Wales, 1983, 116:77-103
    [249]Lesher C E. Decoupling of chemical and isotopic exchange during magma mixing. Nature, 1990, 344:235-237
    [250]Salters J M, Stracke A. Composition of the depleted mantle. Geochemistry Geophysics Geosystems, 2004, 5:Q05004
    [251]张华锋,翟明国,童英,等.胶东半岛三佛山高Ba-Sr花岗岩成因.地质论评,2006,52(1):43-53
    [252]Wu F Y, Jahn B M, Wild S A, et al. Highly fractionated Ⅰ-type granites in NE China (Ⅰ): geochronology and petrogenesis. Lithos, 2003, 66:241-273
    [253]陈卫锋,陈培荣,黄宏业,等.湖南白马山岩体花岗岩及其包体的年代学和地球化学研究.中国科学D辑:地球科学,2007,37(7):873-893
    [254]Rollinson H R. Using geochemical data: evaluation, presentation, interpretation. Essex: Longman Scientific & Technical, 1993, 1-352
    [255]Liu J L, Guan H M, Ji M, et al. Late Mesozoic metamorphic core complexes: new constrains on lithosphere thinning in North China. Progress in Natural Science, 2006, 16(6): 633-638
    [256]Wilde S A, Zhou X H, Nemchin A A, et al. Mesozoic crust-mantle interaction beneath the North China craton: A consequence of the dispersal of Gondwanaland and accretion of Asia. Geology, 2003, 31: 817-820
    [257]吴福元,孙德有,张广良,等.论燕山运动的深部地球动力学本质.高校地质学报,2000,6(3):379-388
    [258]Xu Y G. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china: evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26:747-757
    [259]张宏福,周新华,范蔚茗,等.华北东南部中生代岩石圈地幔性质、组成、富集过程及其形成机理.岩石学报,2005,21(4):1271-1280
    [260]Rudnick R L, Fountain D M. Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 1995, 33:267-309
    [261]Yuan X C. Velocity structure of the Qinling lithosphere and mushroom cloud model. Science in China Series D-Earth Sciences, 1996, 39(3): 235-244
    [262]Rudnick R L. Making contimental crust. Nature, 1995, 378:. 571-578
    [263]吴福元,葛文春,孙德有,等.中国东部岩石圈减薄研究中的几个问题.地学前缘,2003,10(3):51-60
    [264]谢成龙.郯庐断裂带南段晚中生代岩浆活动及其对岩石圈减薄的指示.[博士学位论文].合肥:合肥工业大学,2009,1-192
    [265]Jull M, Kelemen P B. On the conditions for lower crustal convective instability. Journal of Geophysical Research, 2001, 106:6423-6446
    [266]王晓蕊,高山,柳小明,等.辽西四合屯早白垩世义县组高镁安山岩的地球化学:对下地壳拆沉作用和Sr/Y变化的指示.中国科学D辑:地球科学,2005,35(8):700-709
    [267]Zeng Q D, Liu T B, Shen Y C. The Tanlu fault zone and gold ore metallogenesis in eastern China. International Geology Review, 2001, 43:176-190
    [268]徐义刚.华北岩石圈减薄的时空不均一特征.高校地质学报,2004,10(3):324-331
    [269]Guo F, Fan W M, Wang Y J, et al. Geochemistry of late Mesozoic mafic magmatism in west Shandong Province, eastern China: Characterizing the lost lithospheric mantle beneath the North China Block. Geochemical Journal, 2003, 37:63-77
    [270]Guo F, Fan W M, Wang Y J, et al. Late mesozoic mafic intrusive complexes in North China Block: constraints on the nature of subcontinental lithospheric mantle. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26:759-771
    [271]闫峻,陈江峰.华北地块东部晚中生代至新生代岩石圈不均一减薄与改造模式.地质论评,2005,51(1):16-26
    [272]孟繁聪,李天福,薛怀民,等.胶莱盆地晚白垩世不同地幔源区的两种基性岩浆-诸城玄武岩和胶州玄武岩的对比.岩石学报,2006,22(6):1644-1656
    [273]沈渭洲,赵连泽,赵明,等.济阳拗陷第三纪玄武岩的Nd-Sr同位素研究.岩石学报,2002,18(1):47-58
    [274]赖勇,刘玉琳,黄宝玲,等.五大连池和宽甸地幔包体的惰性气体同位素特征-MORB型地幔和交代型地幔.岩石学报,2005,21(5):1373-1381
    [275]Basu A R, Wang J W, Huang W K, et al. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs. Earth and Planetary Science Letters, 1991, 105: 149-169
    [276]Peng Z C, Zartman R E, Futa K, et al. Pb, Sr and Nd isotopic systematics and chemical characteristics of Cenozoic basalts, Eastern China. Chemical geology, 1986, 59:3-33
    [277]Naldrett A J. A Portion of the system Fe-S-O between 900 and 1080 ℃ and its application to sulfide ore magmas. Journal of Petrology, 1969, 10:171-201
    [278]Skinner B J, Peck D L. An immiscible sulfide melt from Hawaii. Economic Geology Monograph, 1969, 4:310-322
    [279]Naldrett A J. Sulfide melts-crystallization temperatures, solubilities in silicate melts, and Fe, Ni, and Cu partitioning between basaltic magmas and olivine. In: Whitney J A, Naldrett A J, eds. Ore deposition associated with magmas. Reviews in Economic Geology, 1989, 4: 5-21
    [280]Lesher C M. Komatiite-associated nickel sulfide deposits. Reviews in Economic Geology, 1989, 4:45-101
    [281]Frost K M, Groves D I. Magmatic contacts between immiscible sulfide and komatiite melts; implications for genesis of Kambalda sulfide ores. Economic Geology, 1989, 84: 1697-1704
    [282]Larocque A C L, Stimac J A, Keith J D, et al. Evidence for open-system behavior in immiscible Fe-S-O liquids in silicate magmas: implications for contributions of metals and sulfur to ore-forming fluids. The Canadian Mineralogist, 2000, 38:1233-1249
    [283]Stavast W J A, Keith J D, Christiansen E H, et al. The fate of magmatic sulfides during intrusion or eruption, Bingham and Tintic districts, Utah. Economic Geology, 2006, 101: 329-345
    [284]Yang X M, Lentz D R, Sylvester P J. Gold contents of sulfide minerals in granitoids from southwestern New Brunswick, Canada. Mineralium Deposita, 2006, 41: 369-386
    [285]Whitney J A. Fugacities of sulfurous gases in pyrrhotite-bearing silicie magmas. American Mineralogist, 1984, 69:68-78
    [286]Davis A S, Clague D A, Schulz M S, et at. Low sulfur content in submarine lavas: An unreliable indicator of subaerial eruption. Geology, 1991, 19:750-753
    [287]Nilsson K, Peach C L. Sulfur speciation, oxidation state, and sulfur concentration in backarc magmas. Geochimica et Cosmochimica Acta, 1993, 57:3807-3813.
    [288]Keith J D, Whitney J A, Hattori K, et al. The Role of magmatic sulfides and mafic alkaline magmas in the Bingham and Tintic mining districts, Utah. Journal of Petrology, 1997, 38: 1679-1690
    [289]Waite K A, Keith J D, Christiansen E H, et al. Petrogenesis of the volcanic and intrusive rocks associated with the Bingham porphyry Cu-Mo deposit, Utah. Society of Economic Geologists Guidebook Series, 1997, 29:69-90
    [290]Hattori K H, Keith J D. Contribution of maric melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Mineralium Deposita, 2001, 36:799-806
    [291]Candela P A, Holland H D. A mass transfer model for copper and molybdenum in magmatic hydrothermal systems: The origin of porphyry-type ore deposits. Economic Geology, 1986, 81:1-19
    [292]Jugo P J, Candela P A, Piccoli P M. Magmatic sulfides and Au:Cu ratios in porphyry deposits: an experimental study of copper and gold partitioning at 850 ℃, 100 MPa in a haplogranitic melt-pyrrhotite-intermediate solid solution-gold metal assemblage, at gas saturation. Lithos, 1999, 46:573-589
    [293]刘若新,樊祺诚,林卓然,等.地幔流体包裹体中多种固相充填物的发现及其意义.科学通报,1993,38(23):2177-2180
    [294]徐九华,谢玉玲,陈绪松,等.雷琼地幔岩中的硫化物及Au-Pt合金的发现.地球科学-中国地质大学学报,2002,27(增刊):280-286
    [295]Moore J G, Fabbi B P. An estimate of the juvenile sulfur content of basalt. Contributions to Mineralogy and Petrology, 1971, 33:118-127
    [296]Sun W D, Arculus R J, Kamenetsky V S, et at. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 2004, 431 : 975-978
    [297]Wallace P J, Carmichael I S E. S speciation in submarine basaltic glasses as determined by measurements of SK X-ray wavelength shifts. American Mineralogist, 1994, 79:161-167
    [298]O'Neill H St C, Mavrogenes J A. The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400 ℃ and 1 bar. Journal of Petrology, 2002, 43: 1049-1087
    [299]Huang Z L, Zhu C M, Xiao H Y, et al. Do lamprophyric magma carry gold?-Evidence from high temperature and ultrahigh pressure experiments. Chinese Science Bulletin, 1999, 44:2073-2076
    [300]Hattori K. High-sulfur magma, a product of fluid discharge from underlying mafic magma-evidence from Mount-Pinatubo, Philippines. Geology, 1993, 21:1083-1086

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700