用户名: 密码: 验证码:
冷原子量子存储中的激光稳频与锁相技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息是量子物理和信息科学交叉发展起来的新学科,主要包含了量子计算、量子通信和量子密码术三个方面。在理论上,量子计算机有超强的计算能力以及量子密码有绝对可靠的信息传输安全性。关于量子计算以及量子密码的理论工作已经很完善,已经提出了很多原理甚至算法。然而在实用化进程中,量子计算以及量子密码都遇到了大难题。量子计算亟需解决量子存储的问题,以使系统的量子比特数更多。远距离乃至全球的量子密码通信需要解决量子中继的问题。这也需要一个量子存储器。要想实现量子存储,首先需要寻找一种适合用于量子存储的媒介。
     光子的高传播速度和低损耗使其非常适合作为量子信息的传输媒介。而冷原子的稳态性以及和环境的弱耦合,使冷原子十分适合作为量子信息的存储媒介。冷原子技术的进步有望给量子存储带来突破性进展,从而推进量子信息的实用化进程。
     冷原子指的是处于极冷状态的稀薄原子气体,一般温度只有数十μK的量级。这种状态下原子的热运动速度很小,对于~(87)Rb原子来说最概然速度约为0.05m/s(作为参照,室温下这个速度约为250m/s,和客机的速度不多)。如此慢速的原子动能很小,可以很容易地被激光囚禁在一定的局域空间里,并且多普勒效应基本可以忽略。同时,冷原子的稀薄性使得原子间的相互作用力非常小,可以认为每个原子都是一个静止的孤立体系。这种孤立体系一直是科学家们梦寐以求的,是基础科学研究非常理想的载体。
     冷原子的获得很大程度上归功于室温原子的激光冷却技术以及冷原子的激光陷俘技术的进步。由于对激光冷却以及激光陷俘做出了巨大贡献,朱棣文等人荣获了1997年的诺贝尔物理学奖。这掀起了冷原子研究的热潮。不久后,2001年、2005年的诺贝尔物理学奖都是与冷原子有直接的关系。十多年了,激光冷却和俘获原子的技术得到了充分的发展,出现了各种各样的形式。但不管什么样的冷却和陷俘手段,基本上都对激光这一重要的工具有苛刻的要求,否则无法达到冷却和陷俘的目的。最重要的一个要求是很窄的线宽以及很高的频率稳定度。本论文第二章和第三章的工作就是分别为了解决这两个问题的,为冷原子实验平台构建了最基本的条件。第二章中,通过给激光器增加一个光栅型外腔反馈的办法,压窄了半导体激光器的线宽。第三章中,通过射频调制的饱和吸收稳频方法,使激光器的频率锁定到十分稳定的原子的超精细跃迁线上。论文中实现的稳频系统能直接替换从德国进口的昂贵系统。在第三章的内容里,详细分析了射频调制的饱和吸收稳频方法所需要的误差信号的产生机制,并给出了不同调制频率下误差信号的理论曲线。对误差信号产生机制进行了深入研究之后,本文提出了同时利用色散和吸收来产生误差信号的新算法,有望扩大频率锁定范围和压窄线宽。关于射频调制饱和吸收稳频的误差信号产生的内容国内所见的文献很少提及。这两章的工作为冷原子的获得提供了基础。
     冷原子独特的性质早使它深入到了各个领域特别是微尺度物质科学当中,这包括了量子信息学这一门新兴的交叉学科。
     为了能开展基于冷原子系综的量子存储实验,除了需要有获得冷原子的设施之外,还需要有能对冷原子系综进行量子操控的手段。比如像基于EIT现象的量子存储实验中,就需要两台频率相差一定的值并且有固定相位关系的锁相激光器系统。本论文第四章的工作是针对半导体激光器锁相的研究,分别设计了模拟OPLL(Optical Phase Lock Loop)和数字OPLL对两台激光器进行了相位锁定,为冷原子量子存储实验提供了必需的操作手段。设计的数字OPLL能够实现频差高达7GHz的两台激光器的相位锁定。类似的锁相研究在国内还未见报道。
     除了上面几项针对冷原子量子存储实验的工作外,本人还承担了城域量子电话网络中的交换节点的设计任务。实现了国内首个8用户的光量子程控交换机,使得方圆20公里内的8个用户能够两两进行量子级别的保密通话或者其它保密应用。该交换机的实现使目前的量子保密通信向实用化和网络化又迈进了一大步。
     综合以上所述,本论文的主要工作和创新点如下:
     1.采用射频调制的饱和吸收稳频法,实现了对自制外延腔半导体激光器的高集成度稳频系统,为冷原子量子存储实验打下了基础。该稳频系统达到了德国进口的同类产品的性能。
     2.采用数字锁相的办法,实现了频差高达7GHz的两台外延腔半导体激光器的锁相,并且有很宽的频率捕获范围,工作稳定性和复现性很好。为基于~(87)Rb电磁诱导透明的量子存储实验做好了准备。国内目前还没有相关的锁相研究见报道。
     3.设计和实现了国内首个8节点的光量子程控交换机,为保密通信向实用化和网络化发展打下了基础。
Quantum information is a new interdiscipline of quantum physics and information science.It mainly includes quantum computing,quntum communication and quntum cryptography.In theory,quantum computer has tremendous calculating capacity,and the quantum cryptography provides an absolute safety of information during transmission.The theoretical works of quantum computing and quantum cryptography are very consummate.A number of principles and algorithms have been made.But during the progress of pragmatizing,both quantum computing and quantum cryptography encounter great difficulties.Quantum computing has to solve the problem of quantum memory to get more quantum bits in a system.Distant or global quantum cryptography communication needs a quantum repeater,which include a quantum memory.In order to achieve quantum memory,first of all a suitable storage medium for quantum should be found.
     The high propagation velocity and low loss make photon a very good medium for transmission of quantum information.And the stationarity and low couple with environment make cold atoms very suitable medium for the storage of quantum information.The advance of cold atomic technology will bring a breakthrough to quantum memory,and promote the process of practical applications in quantum information.
     Cold atoms mean rarefied atoms vapor at ultracold state,which is usually at tens ofμK scale.The thermal velocity of those atoms is very low,about 0.05m/s for ~(87)Rb,on such a state.As a reference,it is about 250m/s at room temperature, approximal to the speed of an airliner.At such a low velocity,the kinetic energy of atoms are very low and it is very easy to trapped those atoms in statinary location. The Doppler effect can be omitted.And,the rarefication property of cold atoms make the interaction between atoms is very week.Each atom can be treated as a stationary isolated system.Such a system,which is the dream of scientists,makes a very good medium for fundamental scientific research.
     The generation of cold atoms is mainly due to the advance in laser cooling technology of atoms at room temperature and laser trapping technology of cold atoms.Because of the tremendous contribution to laser cooling and laser trapping, Steven Chu et al won the 1997 Nobel Prize in physics.This made an upsurge on the research on cold atoms.Soon after that,the 2001 and 2005 Nobel Prize in physics were all direct related to cold atoms.Over the past decade,the laser cooling and trapping of atoms technology has been well developed,and in a variety of forms.But no matter what kind of cooling and trapping means,almost all of them make a harsh demand on laser,which plays an important role in cooling and trapping.One of the most important requirements is a very narrow linewidth and high frequency stability. In order to provide the most basic conditions for the platform of cold atoms experiment,the chapterⅡand chapterⅢof this paper are provided to solve the two problems respectively.In the chapterⅡ,we narrowed the linewidth of diode laser by adding a grating feedback to the laser.And in the chapterⅢ,we locked the laser to the hyperfine transition of atoms with super-stability by the means of RF-modulated saturated absorption.The locking system in this paper can substitute the expensive locking system imported from German.And we also analyse the mechanism of error signal generating in the frequency stabilizing method by RF-modulated saturated absorption.The theoretical curves of error signal under difference modulation frequencies are given.After an in-depth study of the mechanism of error signal generation,a new algorithm that adopts both dispersion and absorption to generate the error signal,which may boarden the locking range and narrow the linewidth simultaneously,are proposed.The content of error signal generating in frequency stabilizing by RF-modulated saturated absorption is rare refered by native literatures. The work of these two chapters lays the foundation for the obtaining of cold atoms.
     The particular characters of cold atoms make it widely used by many research field,especially by physical sciences at microscale,including quantum information science,the new interdiscipline.
     In order to start the experiment of quantum memory based on cold atomic ensembles,beside the devices to obtain the cold atoms,the means to operate the quantum states of cold atomic ensembles are also needed.For example,in the quantum memory experiment based on EIT,we need two lasers running at difference frequency and with fixed phase relationship.The work in chapterⅣis to deal with this requirement.We design an analog OPLL(Optical Phase Lock Loop) and a digital OPLL to lock the phase between two lasers,providing necessary means for quantum memory experiments based on cold atomic ensembles.Our digital OPLL can lock the phase between two lasers that run at frequency deviated to 7GHz.Such a research of phase locking between two lasers has not been reported in domestic literatures.
     Apart from the work above,which is for quantum memory based on cold atom ensembles,I also assume the task of design the switching nodes in metro quantum telephone network.An 8-port programmable optical quantum switch is implemented, first one in China,ensuring that 8 subscribers can establish a quantum phone call or other secrety applications to each other within a radius of 20 kilometers.The implementation of such a switch makes a step forward in the current progress of pragmatizing and networking of quantum cryptography communication.
     Sum up the above,the main points of work and innovations of this paper are as follows:
     1.Using the RF-modulated saturated absorption method to stabilize the frequency of our homemade ECDLs,laying the foundation for the quantum memory experiments base on cold atomic ensembles.This frequency stabilizing system achieves the same performance of similar products imported from German.
     2.Lock the phase between two lasers that run at frequency deviated to 7GHz, by our digital OPLL,which has wide capture range of frequency,well stability and reproducibility.Such a research of phase locking between two lasers has not been reported in domestic literatures.
     3.Design and implement an 8 subscribers programmable optical quantum switch,which lays the foundation for pragmatizing and networking of quantum cryptography communication.
引文
陈帅.2005.~(87)Rb原子玻色—爱因斯坦凝聚的实验研究[D]:[博士].北京:北京大学,33-34.
    董磊,马维光,尹王保等.2005.基于LabVIEW的外腔二极管激光器稳频实验[J],光电子·激光,16(03):255-258
    马瑞霖.2006.量子密码通信[M].北京:科学出版社.
    王义道.2007.原子的激光冷却与陷俘[M].北京:北京大学出版社.
    张永德.2005.量子力学[M].北京:科学出版社.
    Agrawal G.1984.Line narrowing in a single-mode injection laser due to external optical feedback[J].IEEE Journal of Quantum Electronics,20(5):468-471.
    Appel J,MacRae A,Lvovsky,A I.2009.A versatile digital GHz phase lock for external cavity diode lasers[J].Measurement Science & Technology,20(5):055302.
    Black E D.2001.An introduction to Pound-Drever-Hall laser frequency stabilization[J].American Journal of Physics,69(1):79-87.
    Bjorklund G C;Levenson M D;Lenth W,et al.1983.Frequency-modulation(FM) spectroscopy - Theory of lineshapes and signal-to-noise analysis[J].Applied Physics B - Photophysics And Laser Chemistry,32(3):145-152.
    Cacciapuoti L;de Angelis M;Fattori M,et al.2005.Analog plus digital phase and frequency detector for phase locking of diode lasers[J].Review Of Scientific Instruments,76(5):053111.
    Chaneliere T,Matsukevich D N,Jenkins S D,et al.2005.Storage and retrieval of single photons transmitted between remote quantum memories[J].Nature,438(7069):833-836.
    Chen S,Chen Y A,Strassel T,et al.2006.Deterministic and storable single-photon source based on a quantum memory[J].Physical Review Letters,97(17):173004.
    Chen T Y;Liang H;Liu Y,et al.2009.Field test of a practical secure communication network with decoy-state quantum cryptography[J].Optics Express,17(8):6540-6549.
    Choi K S,Deng H,Laurat J,et al.2008.Mapping photonic entanglement into and out of a quantum memory[J].Nature,452(7183):67-71.
    Chou C W,de Riedmatten H,Felinto D,et al.2005.Measurement-induced entanglement for excitation stored in remote atomic ensembles[J].Nature,438(7069):828-832.
    Daniel A S.2008a.Rubidium 85 D Line Data.Available online at http://steck.us/alkalidata (revision 0.1.1,2 May 2008).
    Daniel A S.2008b.Rubidium 87 D Line Data.Available online at http://steck.us/alkalidata (revision 2.0.1,2 May 2008).
    Duan Lu Ming,Lukin M D,Cirac J I,et al.2001.Long-distance quantum communication with atomic ensembles and linear optics[J].Nature,414(6862):413-418.
    Eisaman M D,Andre A,Massou F,et al.2005.Electromagnetically induced transparency with tunable single-photon pulses[J].Nature,438(7069):837-841.
    Felinto D,Chou CW,de Riedmatten H,et al.2005.Control of decoherence in the generation of photon pairs from atomic ensembles[J].Physical Review A,72(5):053809.
    Fleischhauer M,Lukin M D.2000.Dark-state polaritons in electromagnetically induced transparency[J].Physical Review Letters,84(22):5094-5097.
    Greiner M,Mandel O,Esslinger T,et al.2002.Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms[J].Nature,415(6867):39-44
    Grimm R,Weidemuller M,Ovchinnikov Y B.2000.Optical dipole traps for neutral atoms[M].Advances in Atomic Molecular,and Optical Physics,Vol.42.Academic Press Inc;San Diego:95-170.
    Henry C.1982.Theory of the linewidth of semiconductor lasers[J].IEEE Journal of Quantum Electronics,18(2):259-264.
    Ketterle W,Davis K B,Joffe M A,et al.1993.High-densities of cold atoms in a dark spontaneous-force optical trap[J].Physical Review Letters,70(15):2253-2256
    Longdell JJ,Fraval E,Sellars MJ,et al.2005.Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid[J].Physical Review Letters,95(6):063601.
    Marino A M,Stroud C R.2008.Phase-locked laser system for use in atomic coherence experiments[J].Review Of Scientific Instruments,79(1):013104.
    Matsukevich D N,Chaneliere T,Jenkins S D,et al.2006.Deterministic single photons via conditional quantum evolution[J].Physical Review Letters,97(1):013601.
    Mewes C,Fleischhauer M.2005.Decoherence in collective quantum memories for photons[J].Physical Review A,72(2):022327.
    Ohtsu M.1992.Highly coherent semiconductor lasers[M].Norwood,MA,USA:Artech House.xi+340.
    Prevedelli M,Freegarde T;Hansch T W.1995.Phase-locking of grating-tuned diode-lasers[J].Applied Physics B-Lasers And Optics,60(2-3):S241-S248.
    Ricci L,Weidemuller M,Esslinger T,et al.1995.A compact grating-stabilized diode-laser system for atomic physics[J].Optics Communications,117(5-6):541-549.
    Sangouard N,Simon C,Zhao B,et al.2008.Robust and efficient quantum repeaters with atomic ensembles and linear optics[J].Physical Review A,7(6):062301.
    Simon J,Tanji H,Thompson JK,et al.2007.Interfacing collective atomic excitations and single photons[J].Physical Review Letters,98(18):183601.
    Telle H R.1993.Stabilization and modulation schemes of laser-diodes for applied spectroscopy[J].Spectrochimica Acta Reviews,15(5):301-327.
    Yang W G,Conkey D B,Wu B,et al.2007.Atomic spectroscopy on a chip[J].Nature Photonics,1(6):331-335.
    Yuan Z S,Chen Y A,Chen S,et al.2007.Synchronized independent narrow-band single photons and efficient generation of photonic entanglement[J].Physical Review Letters,98(18):180503.
    Yuan Z S,Chen Y A,Zhao B,et al.2008.Experimental demonstration of a BDCZ quantum repeater node[J].Nature,454(7208):1098-1101.
    Zhao B,Chen Y A,Bao X H,et al.2009.A millisecond quantum memory for scalable quantum networks[J].Nature Physics,5(2):95-99.
    Zhou B K.1993.An Overview Of Optical-Device Research In China[J].IEEE Communications Magazine,31(7):62-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700