用户名: 密码: 验证码:
光谱分析中的组分分辨及其在自聚集体系中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢键自聚集是指同种物质的分子通过氢键作用相互结合的现象,由此形成的分子团簇称为聚集体或分子缔合体,在自然界中普遍存在。具有氢键自聚集的物质与非自聚集物质相比,呈现出不同的物理特性。要从微观机制上理解和解释自聚集物质的物理特性,或者与自聚集物质相关的物理现象,就必须考虑它们的分子自聚集状态。氢键自聚集的实验研究始终存在一个难点。既便在化学上是完全纯净的,自聚集物质中也总是包含了分子的单体和各种聚集体,构成复杂的混合体系,可称为自聚集体系。自聚集体系中的组分,即分子单体和聚集体,极难通过实验分离。能够获得的实验数据总是混杂了自聚集体系中所有组分的信息,给研究带来了很大困难。
     红外光谱技术是研究自聚集体系的重要工具,但是也无法避免组分信息相互混杂的问题。红外光谱本身具有的指认组分和反映组分结构的能力,在用于自聚集体系研究时,总是受到组分光谱相互叠加混淆的干扰和限制。在光谱分析中应用组分分辨技术,是一条有希望的解决途径。原则上,只要自聚集体系的总光谱是由组分光谱线性叠加而成的,既便对体系没有任何了解,组分分辨技术仍然有办法确定自聚集体系中的组分数目,解析出组分的光谱和浓度。但是,组分分辨技术的合理应用并不简单。目前发展出的各种组分分辨方法都是在其它应用背景下,在自聚集体系的光谱分析中的适用性和使用效果仍有待考察。更重要的是,方法的分辨能力是有限制的,超出分辨能力限制的分析是不可靠的。体系的分辨难度也是有区别的,可能存在无法分辨所有组分的体系。但是对于如何判别和评估方法和体系的组分分辨能力却缺乏系统性的工作。然而,这一点对于组分分辨技术在自聚集体系的光谱分析中的应用却恰恰是至关重要的。这是因为,自聚集体系的组成在得到完全解析之前是未知的,也不可能人为地制备出已知组成的标准样品,因此没有办法对分辨方法的使用效果作出实际测试,也难以评估方法的分辨能力。而做不到这一点,也就无法确认分辨的有效性和可靠性,也无法真正合理有效地应用组分分辨技术开展自聚集体系的光谱研究工作。
     本文的工作以组分分辨能力为中心,从组分分辨的基本规律入手解决这个问题。首先对光谱分析中的组分分辨基础理论进行了系统研究。修正了主成分分析的误差理论,提出判断主成分显著性的根本依据,成功解释了组分分辨确定的组分数目与实际组成不一致的原因。通过线性空间中的几何模型,确定了影响体系组分分辨能力的关键因素,结合噪声分布提出了组分分辨能力的理论极限。采用分辨界线图的形式,分析和总结了体系分辨能力的变化规律。建立在组分分辨基本规律的基础上,创造性地发展出一套分析和评估体系组分分辨能力的标准曲线等效分析法。通过实际体系数据和标准曲线等效体系,验证了组分分辨基本规律和等效分析法的有效性。对一些常用组分分辨方法进行了探讨。通过线性空间的几何模型,揭示了SIMPLISMA和ITTFA的本质含义和工作机制。运用本文提出的标准曲线等效分析法,分析和归纳了EFA和FSMWEFA的局部分辨能力。
     以一类重要的自聚集体系类型——醇的自聚集体系为例,应用组分分辨的基本原理,对醇体系光谱数据的一般性分辨规律进行了分析和归纳。从组分分辨的角度,总结了醇体系的组分光谱曲线的特点与影响。利用醇体系组分的化学平衡条件建立醇体系模型,分析总结了醇体系的组分浓度曲线的变化特点,及其对组分分辨能力的影响规律。得到1-2-3、1-2-4、1-3-4类型的三组分醇体系模型,以及1-2-3-4类型的四组分醇体系模型的理论分辨极限,为实际体系分析提供借鉴。
     最后,首次对含有HO(C)_3OH结构的二元醇分子的自聚集体系进行了系统的红外光谱研究。以(R)-1,3-丁二醇为实验对象,采用变浓度实验策略。成功解析出了(R)-1,3-丁二醇惰性溶液中的自聚集体系的组分光谱和组分浓度,确定了体系的主要聚集体类型为三聚体。借鉴四组分醇体系模型,指出二聚体共存的可能性。通过密度泛函理论模型计算研究了单体、二聚体和三聚体的结构,总结了HO(C)_3OH结构对二元醇分子自聚集的影响规律。
Hydrogen bond self-association is the phenomenon that the molecules of the same substance aggregate to form molecule cluster, or called as multimer, due to inter-molecular hydrogen bonding. The substances which have hydrogen bond self-association have different physical properties from those non-self-assoication subtances. The state of self-association is essential to understand and explain the physical properties and phenomenons of self-association substances. The study of hydrogen bond self-association is always feazed by one problem. The pure self-association subtances always comprise monomers and multimers, which make them complicated complex. Such complex is called as self-association system. The components in self-association system are very difficult to separate in experiment. The experiment data is always blend of all the information of components, which brings big difficulties to analysis.
     Infrared spectroscopy (IR) can provide information of molecular structure, which makes it an important tool for studying hydrogen bond self-association system. However, intermixing of component spectra cripples the ability of IR to study self-association system. Curve resolution methods are promising to settle this problem. Curve resolution methods can determine the number of components in the system and resolve the spectral and concentration curves of pure components, without any knowledge of the system. However, it is not simple to apply curve resolution methods to self-association system. Most methods were developed under other backgrounds. Their applicability to self-association system needs more study. More important, the ability of curve resolution methods is not unlimited. Analysis oversteps limitation is uncertain. Some systems are easy to resolve, and others are not. But there is no systematic study to evaluate the ability of curve resolution of methods and systems. Without such knowledge, the availability and dependability of analysis are doubts. This is the key of rationality of applying curve resolution methods to self-association system.
     Our study focuses on curve resolution ability. First, the basic theory of curve resolution was systematically studied. Error theory of principal component analysis (PCA) was corrected. The criterion to judge the importance of principal component was determined, which succeeds in explaining the difference between the component number determined by curve resolution methods and the real value. The key factors to effect the curve resolution ability were studied and the limit of curve resolution ability in theory was determined. The regulation of curve resolution ability was analysed and summarized in the form of borderline map. Based on the regulation of curve resolution ability, the method of standard curve equivalent analysis was developed to analysis and evalute the curve resolution ability.
     Some widely used methods were analysed. Hypostases of SIMPLISMA and ITTFA were expounded. The ability of local curve resolution of EFA and FSMWEFA were analysed by using standard curve equivalent analysis.
     Then, a very important kind of self-association system, alcohol system, was used for instance to show how to study the regulation of resolving a specified kind of system. The regulation of resolving spectral data of alcohol systems was analysed on the basis of curve resolution theory. The properties of alcohol spectra and their effect on curve resolution were summarized. Alcohol system models were built to study the properties of concentration curves in alcohol systems and their effect on curve resolution. The resolution limits in theory of alcohol system models with type 1-2-3, 1-2-4, 1-3-4 and 1-2-3-4 were determined.
     Finally, the self-association system of diol containing HO(C)_3OH structure was detailed studied for the first time. IR spectroscopy, gradient concentration experiment and curve resolution methods were applied to (R)-1,3-butanediol system. Spectral and concentration curves of components in (R)-1,3-butanediol self-association system were resolved. The major part of multimers was determined to be trimer. The exsistance of dimer was revealed by alcohol system model. Structures of monomers, dimers and trimers were studied by density functional theory (DFT). The effect of HO(C)_3OH structure on diol self-association was summarized.
引文
[1] Curtiss L. A., and Blander M., Thermodynamic Properties of Gas-Phase Hydrogen-Bonded Complexes, Chem. Rev., 1988, 88: 827-841
    [2]王庆文,杨玉桓,高鸿宾,有机化学中的氢键问题,天津,天津大学出版社,1993:21-64
    [3] Kolb C. E., Jayne J. T., and Worsnop D. R., Gas Phase Reaction of Sulfur Trioxide with Water Vapor, J. Am. Chem. Soc., 1994, 116: 10314-10315
    [4] Hofmann M., and Schleyer P. v. R., Acid Rain: Ab Initio Investigation of the H2O·SO3 Complex and Its Conversion into H2SO4, J. Am. Chem. Soc., 1994, 116: 4947-4952
    [5] Carlon H. R., Spontaneous Droplet Nucleation in Clean, Saturated Moist Air at Atomspheric Pressure, J. Phys. D: Appl. Phys., 1984, 17: 1221-1228
    [6] Latimer W. M., and Rodebush W. H., Polarity and Ionization from the Standpoint of the Lewis Theory of Valence, J. Am. Chem. Soc., 1920, 42: 1419-1433
    [7] Kollman P. A., and Allen L. C., Hydrogen Bonded Dimers and Polymers Involving Hydrogen Fluoride, Water and Ammonia, J. Am. Chem. Soc., 1970, 92(4): 753-759
    [8] Popkie H., Kistenmacher H., and Clementi E., Study of the Structure of Molecular Complexes. IV. The Hartree-Fock Potential for the Water Dimer and Its Application to the Liquid State, J. Chem. Phys., 1973, 59(3): 1325-1336
    [9] Dill J. D., Allen L. C., Topp W. C., et al., A Systematic Study of the Nine Hydrogen-Bonded Dimers Involving NH3, OH2, and HF, J. Am. Chem. Soc., 1975, 97(25): 7220-7226
    [10] Matsuoka O., Clementi E., and Yoshimine M., CI Study of the Water Dimer Potential Surface, J. Chem. Phys., 1976, 64(4): 1351-1361
    [11] Frisch M. J., Pople J. A., and Del Bene J. E., Molecular Orbital Study of the Dimers (AHn)2 Formed from NH3, OH2, FH, PH3, SH2, and CIH, J. Phys. Chem., 1985, 89: 3664-3669
    [12] Frisch M. J., Del Bene J. E., Binkley J. S, et al., Extensive Theoretical Studies of the Hydrogen-Bonded Complexes (H2O)2, (H2O)2H+, (HF)2, (HF)2H+, F2H-, and (NH3)2, J. Chem. Phys., 1986, 84(4): 2279-2289
    [13] Bleiber A., Sauer J., The Vibrational Frequency of the Donor OH Group in the H-Bonded Dimers of Water, Methanol and Silanol. Ab Initio Calculations Including Anharmonicities, Chem. Phys. Lett., 1995, 238: 243-252
    [14] MóO., Yá?ez M., and Elguero J., Cooperative (Nonpairwise) Effects in Water Trimers: An ab Initio Molecular Orbital Study, J. Chem. Phys., 1992, 97(9): 6628-6638
    [15] Xantheas S. S., and Dunning T. H. Jr., The Structure of the Water Trimer from ab Initio Calculations, J. Chem. Phys., 1993, 98(10): 8037-8040
    [16] González, L., MóO., Yá?ez M., et al., Cooperative Effects in Water Trimers. The Performance of Density Functional Approaches, J. Mol. Struct. (Theochem), 1996, 371: 1-10
    [17] Schütz M., Bürgi T., Leutwyler S., et al., Fluxionality and Low-Lying Transition Structures of the Water Trimer, J. Chem. Phys., 1993, 99(7): 5228-5238
    [18] Del Bene J., and Pople J. A., Theory of Molecular Interactions. I. Molecular Orbital Studies of Water Polymers Using a Minimal Slater-Type Basis, J. Chem. Phys., 1970, 52(9): 4858-4866
    [19] Honegger E., and Leutwyler S., Intramolecular Vibrations of Small Water Clusters, J. Chem. Phys., 1988, 88(4): 2582-2595
    [20] Knochenmuss R., and Leutwyler S., Structures and Vibrational Spectra of Water Clusters in the Self-Consistent-Field Approximation, J. Chem. Phys., 1992, 96(7): 5233-5244
    [21] Xantheas S. S., and Dunning T. H. Jr., Ab Initio Studies of Cyclic Water Clusters (H2))n, n=1-6. I. Optimal Structures and Vibrational Spectra, J. Chem. Phys., 1993, 99(11): 8774-8792
    [22] Xantheas S. S., Ab Initio Studies of Cyclic Water Clusters (H2O)n, n=1-6. III. Comparison of Density Functional With MP2 Results, J. Chem. Phys., 1995, 102(11): 4505-4517
    [23] Gregory J. K., and Clary D. C., Structure of Water Clusters. The Contribution of Many-Body Forces, Monomer Relaxation, and Vibrational Zero-Point Energy, J. Phys. Chem., 1996, 100: 18014-18022
    [24] Coker D. F., Miller R. E., and Watts R. O., The Infrared Predissociation Spectra of Water Clusters, J. Chem. Phys., 1985, 82(8): 3554-3562
    [25] Engdahl A., and Nelander B., On the Structure of the Water Trimer. A Matrix Isolation Study, J. Chem. Phys., 1987, 86(9): 4831-4837
    [26] Choppin G. R., Studies of the Hydrogen Bonded Structures of Water and Methanol, J. Mol. Struct., 1978, 45: 39-54
    [27] Perchard J. P., Anharmonicity and Hydrogen Bonding II-A Near Infrared Study of Water Trapped in Nitrogen Matrix, Chem. Phys., 2001, 266: 109-124
    [28] Liu K, Crusan J. D., and Saykally R. J., Water Cluster, Science, 1996, 271: 929-933
    [29] Liu K., Brown M. G., Carter C., et al., Characterization of a Cage Form of the Water Hexamer, Nature, 1996, 381: 501-503
    [30] Vernon M. F., Krajnovich D. J., Kwok H. S., et al., Infrared Vibrational Predissociation Spectroscopy of Water Clusters by the Crossed Laser-Molecular Beam Technique, J. Chem. Phys., 1982, 77(1): 47-57
    [31] Frochtenicht R., Kaloudis M., Koch M, et al., Vibrational Spectroscopy of Small Water Complexes Embedded in Large Liquid Helium Clusters, J. Chem. Phys., 1996, 105(15): 6128-6140
    [32] Liu K., Brown M. G., Cruzan J. D., et al., Terahertz Laser Spectroscopy of the Water Pentamer: Structure and Hydrogen Bond Rearrangement Dynamics, J. Phys. Chem. A, 1997, 101: 9011-9021
    [33] Paul J. B., Provencal R. A., Chapo C., et al., Infrared Cavity Ringdown Spectroscopy of Water Clusters : O-D Strctching Bands, J. Chem. Phys., 1998, 109(23): 10201-10206
    [34] Paul J. B., Provencal R. A., Chapo C., et al., Infrared Cavity Ringdown Spectroscopy of the Water Cluster Bending Vibrations, J. Phys. Chem. A, 1999, 103: 2972-2974
    [35] Weltner W. Jr., Pitzer K. S., Methyl Alcohol: The Entropy, Heat Capacity and Polymerization Equilibria in the Vapor, and Potential Barrier to Internal Rotation, J. Am. Chem. Soc., 1951, 73: 2606-2610
    [36] Fletcher A. N., Self-Association of Methanol Vapor. Evidence for Dimers and Tetramers, J. Phys. Chem., 1971, 75(12): 1808-1814
    [37] Dixon J. R., George W. O., Hossain F. Md., et al., Hydrogen-Bonded Forms of Methanol. IR Spectra and ab Initio Calculations, J. Chem. Soc., Faraday Trans., 1997, 93(20): 3611-3618
    [38] Kristiansson O., Investigation of the OH Stretching Vibration of CD3OH in CCl4, J. Mol. Struct., 1999, 477: 105-111
    [39] Schwager F., Marand E., and Davis R. M., Determination of Self-Association Equilibrium Constants of Ethanol by FTIR Spectrosocpy, J. Phys. Chem., 1996, 100: 19268-19272
    [40] George W. O., Has T., Hossain F. Md., et al., Hydrogen-Bonded Forms of Ethanol-IR Spectra and ab Initio Computations, J. Chem. Soc., Faraday Trans., 1998, 94: 2701-2708
    [41] Murdoch K. M., Ferris T. D., Wright J. C., et al., Infrared Spectroscopy of Ethanol Clusters in Ethanol-Hexane Binary Solutions, J. Chem. Phys., 2002, 116(13): 5717-5724
    [42] Buck U., Gu X. J., Lauenstein Ch., et al., Infrared Photodissociation of Size-Selected Methanol Clusters, J. Chem. Phys., 1990, 92(10): 6017-6029
    [43] Huisken F., and Stemmler M., Infrared Spectroscopy of Methanol Clusters Adsorbed on Large Arx Host Clusters, J. Chem. Phys., 1993, 98(10): 7680-7691
    [44] Ehbrecht M., and Huisken F., Vibrational Spectroscopy of Ethanol Molecules andComplexes Selectively Prepared in the Gas Phase and Absorbed on Large Argon Clusters, J. Phys. Chem. A, 1997, 101: 7768-7777
    [45] Renner T. A., Kucera G. H., and Blander M., A Study of Hydrogen Bonding in Methanol Vapor by Measurement of Thermal Conductivity, J. Chem. Phys., 1977, 66(1): 177-184
    [46] Schriver L., Burneau A., and Perchard J. P., Infrared Spectrum of the Methanol Dimer in Matrices. Temperature and Irradiation Effects in Solid Nitrogen, J. Chem. Phys., 1982, 77(10): 4926-4932
    [47] Provencal R. A., Paul J. B., Roth K., et al., Infrared Cavity Ringdown Spectroscopy of Methanol Clusters: Single Donor Hydrogen Bonding, J. Chem. Phys., 1999, 110(9): 4258-4267
    [48] Brink G., and Glasser L., Dielectric Studies of Molecular Association. A Model for the Association of Ethanol in Dilute Solution, J. Phys. Chem., 1978, 82(9): 1000-1005
    [49] Sarkar S., and Joarder R. N., Molecular Clusters in Liquid Ethanol at Room Temperature, J. Chem. Phys., 1994, 100(7): 5118-5122
    [50] Buck U., and Schmidt B., A Perturbation Approach to Predict Infrared Spectra of Small Molecular Clusters Applied to Methanol, J. Chem. Phys., 1993, 98(12): 9410-9424
    [51] MóO., Yá?ez M., and Elguero J., Study of the Methanol Trimer Potential Energy Surface, J. Chem. Phys., 1997, 107(9): 3592-3601
    [52] Tschumper G. S., Gonzales J. M., and Schaefer H. F. III., Assignment of the Infrared Spectra of the Methanol Trimer, J. Chem. Phys., 1999, 111(7): 3027-3034
    [53] Dyczmons V., Dimers of Ethanol, J. Phys. Chem. A, 2004, 108: 2080-2086
    [54] González L., MóO., and Yá?ez M., Density Functional Theory Study on Ethnaol Dimers and Cyclic Ethanol Trimers, J. Chem. Phys., 1999, 111(9): 3855-3861
    [55] Curtiss L. A., Ab Initio Calculations on Hydrogen Bonding in Alcohols: Dimers of CH3OH, CH3CH2OH, and CF3CH2OH, Int. J. Quan. Chem.: Quan. Chem. Symp., 1977, 11: 459-467
    [56] Curtiss L. A., Molecular Orbital Studies of Methanol Polymers Using a Minimal Basis Set, J. Chem. Phys., 1977, 67(3): 1144-1149
    [57] Berman N. S., and McKetta J. J., The Thermodynamic Properties of 2-Butanol, J. Phys. Chem., 1962, 66: 1444-1448
    [58] Crowder G. A., and Townsend M. J., Vibrational Spectra of 1-Butanol, J. Mol. Struct., 1977, 42: 27-30
    [59] Czarnecki M. A., Maeda H., Ozaki Y., et al., Resolution Enhancement and Band Assignments for the First Overtone of OH Stretching Mode of Butanols by Two-DimensionalNear-Infrared Correlation Spectroscopy. Part I: sec-Butanol, Appl. Spectrosc., 1998, 52(7): 994-1000
    [60] Czarnecki M. A., Maeda H., Ozaki Y., et al., Resolution Enhancement and Band Assignments for the First Overtone of OH Stretching Modes of Butanols by Two-Dimensional Near-Infrared Correlation Spectroscopy. 2. Thermal Dynamics of Hydrogen Bonding in n- and tert-Butyl Alcohol in the Pure Liquid, J. Phys. Chem. A, 1998, 102: 9117-9123
    [61] Iwahashi M., Suzuki M., Katayama N., et al., Molecular Self Assembling of Butan-1-ol, Butan-2-ol and 2-Methypropan-2-ol in Carbon Tetrachloride Solution as Observed by Near-Infrared Spectroscopic Measurements, Appl. Spectrosc., 2000, 54(2): 268-276
    [62] Czarnecki M. A., Czarnik-Matusewicz B., Ozaki Y., et al., Resolution Enhancement and Band Assignments for the First Overtone of OH(D) Stretching Modes of Butnaols by Two-Dimensional Near-Infrared Correlation Spectroscopy. 3. Thermal Dynamics of Hydrogen Bonding in Butan-1-(ol-d) and 2-Methylpropan-2-(ol-d) in the Pure Liquid States, J. Phys. Chem. A, 2000, 104: 4906-4911
    [63] Provencal R. A., Casaes R. N., Roth K., et al., Hydrogen Bonding in Alcohol Clusters: A Comparative Study by Infrared Cavity Ringdown Laser Absorption Spectroscopy, J. Phys. Chem. A, 2000, 104: 1423-1429
    [64] Bich E., Hensen U., Michalik M., et al., 1H NMR Spectroscopic and Thermodynamic Studies of Hydrogen Bonding in Liquid n-Butanol+Cyclohexane, tert-Butanol+Cyclohexane, and n-Butanol+Pyridine Mixtures, Phys. Chem. Chem. Phys., 2002, 4: 5827-5832
    [65] Fanourgakis G. S., Shi Y. J., Consta S., et al., A Spectroscopic and Computer Simulation Study of Butanol Vapors, J. Chem. Phys., 2003, 119(13): 6597-6608
    [66] Shinomiya K., and Shinomiya T., An Equilibrium Model of the Self-Association of 1- and 3- Pentanols in Heptane, Bull. Chem. Soc. Jpn., 1990, 63(4): 1093-1097
    [67] Gupta R. B., and Brinkley R. L., Hydrogen-Bond Cooperativity in 1-Alkanol+n-Alkane Binary Mixtures, AIChE J., 1998, 44(1): 207-213
    [68] Schi?berg D., Mentel T., and Luck W. A. P., Infrared Spectroscopy Structure Investigation of 1-Hexanol: Dependence on High Pressure, J. Mol. Struct., 1985, 129(3-4): 237-247
    [69] Stubbs J. M., and Ilja Siepmann J., Aggregation in Dilute Solutions of 1-Hexanol in n-Hexane: A Monte Carlo Simulation Study, J. Phys. Chem. B, 2002, 106: 3968-3978
    [70] Fletcher A. N., and Heller C. A., Self-Association of Alcohols in Nonpolar Solvents, J. Phys. Chem., 1967, 71(12): 3742-3756
    [71] Czarnecki M. A., Effect of Temperature and Concentration on Self-Association ofOctan-1-ol Studied by Two-Dimensional Fourier Transform Near-Infrared Correlation Spectroscopy, J. Phys. Chem. A, 2000, 104: 6356-6361
    [72] Cazrnecki M. A., Near-Infrared Spectroscopic Study of Hydrogen Bonding in Chiral and Racemic Octan-2-ol, J. Phys. Chem. A, 2003, 107: 1941-1944
    [73] Czarnecki M. A., and Orzechowski K., Effect of Temperature and Concentration on Self-Association of Octan-3-ol Studied by Vibrational Spectroscopy and Dielectric Measurements, J. Phys. Chem. A, 2003, 107: 1119-1126
    [74] Czarnecki M. A., Czarnecka M., Liu Y., et al., FT-NIR Study of Dissociation of Decan-1-ol in the Liquid Phase-I, Spectrochim. Acta, A, 1995, 51(6): 1005-1015
    [75] Kuhn L. P., The Hydrogen Bond. I. Intra- and Intermolecular Hydrogen Bonds in Alcohols, J. Am. Chem. Soc., 1952, 74: 2492-2499
    [76] Fletcher A. N., Molecular Structure of Ethanol-d1 Solutions. A Near-Infrared Study of Hydrogen Bonding, J. Phys. Chem., 1972, 76(18): 2562-2571
    [77] F?erland G. M., Libnau F. O., Kvalheim O. M., et al., Self-Association of Medium-Chain Alcohols in n-Decane Solutions, Appl. Spectrosc., 1996, 50(10): 1264-1272
    [78] Czarnecki M. A., and Ozaki Y., The Temperature-Induced Changes in Hydrogen Bonding of Decan-1-ol in the Pure Liquid Phase Studied by Two-Dimensional Fourier Transform Near-Infrared Correlation Spectroscopy, Phys. Chem. Chem. Phys., 1999, 1: 797-800
    [79] Ohno K., Yoshida H., Watanabe H., et al., Conformational Study of 1-Butanol by the Combined Use of Vibrational Spectrosocpy and ab Initio Molecular Orbital Calculations, J. Phys. Chem., 1994, 98: 6924-6930
    [80] Hagemann H., Mareda J., Chiancone C., et al., Conformational Studies of 2-Butanol Using Temperature-Dependent Raman Measurements and MM3 Calculations, J. Mol. Struct., 1997, 410-411: 357-360
    [81] Wang F., and Polavarapu P. L., Vibrational Circular Dichroism: Predominant Conformations and Intermolecular Interactions in (R)-(-)-2-Butanol, J. Phys. Chem. A, 2000, 104: 10683-10687
    [82] King A. K., and Howard B. J., A High-Resolution Microwave Study of the Conformations of Butan-2-ol in a Supersonic Expansion, J. Mol. Spectrosc., 2001, 205: 38-42
    [83] Salcedo D., and Costas M., Self-Association of 1,2-Diols. Apparent Heat Capacities of 1,2-Diols in n-Heptane and Carbon Tetrachloride, J. Chem. Soc., Faraday Trans., 1997, 93(21): 3781-3789
    [84] Friedemann R., and Jabs A., Theoretical Studies on the Structure of 1,3-Diol Systems. Part1. Monomers, Dimers and Monohydrates, J. Mol. Struct. (Theochem), 1993, 283: 191-197
    [85] Friedemann R., Fengler A., Naumann S., et al., Theoretical Studies on the Structure of Chiral 1,2-Diol Systems. Monomers, Dimers and Monohydrates, J. Mol. Struct. (Theochem), 1995, 357: 217-223
    [86] Nakao Y., Sugeta H., and Kyogoku Y., Hydrogen Bonding of 2,4-Pentanediol and Related Molecules Studied by Infrared and 1H NMR Spectroscopy, Spectrochim. Acta A, 1986, 42(2-3): 251-257
    [87] Kuhn L. P., The Hydrogen Bond. II. The Intramolecular Bond in Cyclic 1,2-Diols, J. Am. Chem. Soc., 1954, 76: 4323-4326
    [88] Kuhn L. P., The Hydrogen Bond. III. The Effect of the Size of Substituents Upon the Length of the Hydrogen Bond in Various Substituted 1,2-Diols, J. Am. Chem. Soc., 1958, 80: 5950-5954
    [89] Kuhn L. P., and Wires R. A., The Hydrogen Bond. VI. Equilibrium Between Hydrogen Bonded and Nonbonded Conformation ofα,ω-Diol Monomethyl Ethers, J. Am. Chem. Soc., 1964, 86: 2161-2165
    [90] Kuhn L. P., Schleyer P. von R., Baitinger W. F. Jr., et al., Conformational Effects and Hydrogen Bonding in 1,4-Diols, J. Am. Chem. Soc., 1964, 86: 650-658
    [91] Fishman E., and Chen T. L., An Investigation of the Hydrogen Bonding Characteristics of Butanediols, Spectrochim. Acta A, 1969, 25: 1231-1242
    [92] Morantz D. J., and Waite M. S., Anharmonics Effects and Intra-Molecular Hydrogen Bonding in Alkane-Diols, Spectrochim. Acta A, 1971, 27: 1133-1137
    [93] Busfield W. K., Ennis M. P., and McEwen I. J., An Infrared Study of Intramolecular Hydrogen Bonding inα,ωDiols, Spectrochim. Acta A, 1973, 29: 1259-1264
    [94] van Duin M., Baas J. M. A., and van de Graaf B., Empirical Force Field Calculations. 27. A Study on the Conformations of the Simple Vicinal Diols, J. Org. Chem., 1986, 51: 1298-1302
    [95] Coleman, W. M., and Gordon B. M., Examination of the Matrix Isolation Fourier Transform Infrared Spectra of Organic Compounds: Part X, Appl. Spectrosc., 1988, 42(4): 671-674
    [96] Hasanein A. A., and Kovac S., CNDO/2 Study of the Intramolecular Hydrogen Bond in 1,2-, 1,3-, 1,4-Butanediol, J. Mol. Struct., 1974, 22(3): 457-462
    [97] Caminati W., Conformation and Hydrogen Bond in 1,2-Propanediol, J. Mol. Spectrosc., 1981, 86(1): 193-201
    [98] Kinneging A. J., Mom V., Mijlhoff F. C., et al., The Molecular Structure of1,3-Propanediol in the Gas Phase, An Electron Diffraction Study, J. Mol. Struct., 1982, 82(3-4): 271-275
    [99] Caminati W., and Corbelli G., The Six-Membered Ring Chair Conformation of Butane-1,3-diol in the Gas Phase, J. Mol. Struct., 1982, 78: 197-202
    [100] Lozynski M., Rusinska-Roszak D., and Mack H.-G., Hydrogen Bonding and Density Functional Calculations: The B3LYP Approach as the Shortest Way to MP2 Results, J. Phys. Chem. A, 1998, 102: 2899-2903
    [101] Yeh T.-S., Chang Y.-P., Su T.-M., et al., Global Conformational Analysis of 1,2-Ethanediol, J. Phys. Chem., 1994, 98 : 8921-8929
    [102] Csonka G. I., Anh N.,ángyán J., et al., Ab Initio and DFT Investigations of Intramolecular Hydrogen Bonding in 1,2-Ethanediol, Chem. Phys. Lett., 1995, 245(1): 129-135
    [103] Kazerouni M. R., Hedberg L., and Hedberg K., Conformational Analysis. 21. Ethane-1,2-diol. An Electron-Diffraction Investigation, Augmented by Rotational Constants and ab Initio Calculations, of the Molecular Structure, Conformational Composition, SQM Vibrational Force Field, and Anti-Gauche Energy Difference with Implications for Internal Hydrogen Bonding, J. Am. Chem. Soc., 1997, 119: 8324-8331
    [104] Nagy P. I., Dunn W. J. III., Alagona G., et al., Theoretical Calculations on 1,2-Ethanediol. Gauche-Trans Equilibrium in Gas-Phase and Aqueous Solution, J. Am. Chem. Soc., 1991, 113: 6719-6729
    [105] Nagy P. I., Dunn W. J. III., Alagona G., et al., Theoretical Calculations on 1,2-Ethanediol. 2. Equilibrium of the Gauche Conformers with and without an Intramolecular Hydrogen Bond in Aqueous Solution, J. Am. Chem. Soc., 1992, 114: 4752-4758
    [106] Cramer C. J., and Truhlar D. G., Quantum Chemical Conformational Analysis of 1,2-Ethanediol: Correlation and Solvation Effects on the Tendency to Form Internal Hydrogen Bonds in the Gas Phase and in Aqueous Solution, J. Am. Chem. Soc., 1994, 116: 3892-3900
    [107] Caminati W., Melandri S., and Favero P. G., Free-Jet Absorption Microwave Spectrum of 1,3-Propanediol, J. Mol. Spectrosc., 1995, 171: 394-401
    [108] Lockley T. J. L., Hearn P. I. Jr., King A. K., et al., Detection and Analysis of a New Conformational Isomer of Propan-1,2-diol by Fourier Transform Microwave Spectroscopy, J. Mol. Struct., 2002, 612(2-3): 199-206
    [109] Vázquez S., Mosquera R. A., Rios M. A., et al., Ab Initio-Gradient Optimized Molecular Geometry and Conformational Analysis of 1,3-Propanediol at the 4-21G Level, J. Mol. Struct. (Theochem), 1988, 181(1-2): 149-167
    [110] Vázquez S., Mosquera R. A., Rios M. A., et al., Ab Initio-Gradient Optimized Molecular Geometry and Conformational Analysis of 1,2-Propanediol at the 4-21G Level, J. Mol. Struct. (Theochem), 1989, 184: 323-342
    [111] Tr(?)tteberg M., and Hedberg K., Structure and Conformations of 1,4-Butanediol: Electro-Diffraction Evidence for Internal Hydrogen Bonding, J. Am. Chem. Soc., 1994, 116: 1382-1387
    [112] Wang F., and Polavarapu P. L., Predominant Conformation of (2R,3R)-(-)-2,3-Butanediol, J. Phys. Chem. A, 2001, 105: 6991-6997
    [113] Lopes Jesus A. J., Rosado M. T. S., Leit?o M. Luísa P., et al., Molecular Structure of Butanediol Isomers in Gas and Liquid States : Combination of DFT Calculations and Infrared Spectroscopy Studies, J. Phys. Chem. A, 2003, 107: 3891-3897
    [114] Fukuroi T., Fujiwara Y., Fujiwara S., et al., Conformation Determination of 2,4-Pentanediol by Neclear Magnetic Resonance, Anal. Chem., 1968, 40(6): 879-889
    [115] Manzanares C. E., Reynolds D., Lewis E. K., et al., Matrix Isolation FT-IR, FT-Raman Spectroscopy, Conformational ab Initio Calculations, and Vibrational Frequencies of meso and racemic-2,4-Penatanediol, J. Mol. Struct., 2004, 689: 183-190
    [116] Tucker E. E., Farnham S. B., and Christian S. D., Association of Methanol in Vapor and in n-Hexadecane. A Model for the Association of Alcohols, J. Phys. Chem., 1969, 73(11): 3820-3829
    [117] Tucker E. E., and Becker E. D., Alcohol Association Studies. II. Vapor Pressure, 220-MHz Proton Magnetic Resonance, and Infrared Investigations of tert-Butyl Alcohol Association in Hexadecane, J. Phys. Chem., 1973, 77(14): 1783-1795
    [118] Kretschmer C. B., and Wiebe R., Pressure-Volume-Temperature Relationships of Alcohol Vapors, J. Am. Chem. Soc., 1954, 76: 2579-2583
    [119] Cheam V., Farnham S. B., and Christian S. D., Vapor Phase Association of Methanol. Vapor Density Evidence for Trimer Formation, J. Phys. Chem., 1970, 74(23): 4157-4159
    [120] Barrow G. M., Heat Capacity, Gas Imperfection, Infrared Spectra, and Internal Rotation Barries of Ethyl Alcohol, J. Chem. Phys., 1952, 20(11): 1739-1744
    [121] Anderson B. D., Rytting J. H., Lindenbaum S., et al., A Calorimetric Study of the Self-Association of Primary Alcohols in Isooctane, J. Phys. Chem., 1975, 79(22): 2340-2344
    [122] Campbell C., Brink G., and Glasser L., Dielectric Studies of Molecular Association. Concentration Dependence of Dipole Moment of 1-Octanol in Solution, J. Phys. Chem., 1975, 79(6): 660-665
    [123] Pettersson M., Tuominen S., and R?s?nen M., IR Spectroscopic Study of H2O2, HDO2, and D2O2 Isolated in Ar, Kr, and Xe Matrices, J. Phys. Chem. A, 1997, 101: 1166-1171
    [124] Dong J., Ozaki Y., and Nakashima K., Infrared, Raman, and Near-Infrared Spectroscopic Evidence for the Coexistence of Various Hydrogen-Bond Forms in Poly(acrylic acid), Macromolecules, 1997, 30: 1111-1117
    [125] Irusta L., Iruin J. J., Fernández-Berridi M. J., et al., Infrared Spectroscopic Studies of the Self-association of Ethyl Urethane, Vib. Spectrosc., 2000, 23: 187-197
    [126] Engdahl A., Nelander B., and Karlstr?m G., A Matrix Isolation and ab Initio Study of the Hydrogen Peroxide Dimer, J. Phys. Chem. A, 2001, 105: 8393-8398
    [127] Solomon J. E., Raman Measurements of Temperature Effects on Self-Association in Glycerol, J. Phys. Chem., 1977, 81(15): 1492-1493
    [128] Egashira K., and Nishi N., Low-Frequency Raman Spectroscopy of Ethanol-Water Binary Solution: Evidence for Self-Association of Solute and Solvent Molecules, J. Phys. Chem. B, 1998, 102: 4054-4057
    [129] Shekaari H., Modarress H., and Hadipour N., Thermodynamic Investigation on Self-Association of Alcohols in Carbon Tetrachloride by FT-NMR Spectroscopy, J. Phys. Chem. A, 2003, 107: 1891-1895
    [130] Huisken F., Kulcke A., Laush C., et al., Dissociation of Small Methanol Clusters after Excitation of the O-H Stretch Vibration at 2.7μ, J. Chem. Phys., 1991, 95(6): 3924-3929
    [131] Buck U., and Ettischer I., Vibrational Predissociation Spectra of Size Selected Methanol Clusters: New Experimental Results, J. Chem. Phys., 1998, 108(1): 33-38
    [132] Huisken F., Kaloudis M., Koch M., et al., Experimental Study of the O-H Ring Vibrations of the Methanol Trimer, J. Chem. Phys., 1996, 105(19): 8965-8968
    [133]梁逸曾,俞汝勤,主编,化学分析手册(第十分册)化学计量学,第二版,北京,化学工业出版社,2000:195-197
    [134] Stordrange L., Christy A. A., Kvalheim O. M., et al., Study of the Self-Association of Alcohols by Near-Infrared Spectroscopy and Multivariate 2D Techniques, J. Phys. Chem. A, 2002, 106: 8543-8553
    [135] Nodland E., Studies of Self-Association in Alcohols (ROH) as Functions of Concentrations and Temperature. Part II: Curve Resolution of Concentration Series, Appl. Spectrosc., 2000, 54(9): 1339-1349
    [136] Sugeta H., Spectrophotometric Determination of Formation Constants and Estimation of Molar Absorption Spectra of Individual Components in Chemical Equilibria. Infrared Study ofIntermolecular Hydrogen Bonding of 2-Aminopyridine, Bull. Chem. Soc. Jpn., 1981, 54: 3706-3710
    [137] Windig W., and Guilment J., Interactive Self-Modeling Mixture Analysis, Anal. Chem., 1991, 63(14): 1425-1432
    [138] Gemperline P. J., A Priori Estimates of the Elution Profiles of the Pure Components in Overlapped Liquid Chromatography Peaks Using Target Factor Analysis, J. Chem. Inf. Comput. Sci., 1984, 24(4): 206-212
    [139] de Juan A., van den Bogaert B., Cuesta Sánchez F., et al., Application of the Needle Algorithm for Exploratory Analysis and Resolution of HPLC-DAD Data, Chemom. Intell. Lab. Syst., 1996, 33: 133-145
    [140] Maeder M., Evolving Factor Analysis for the Resolution of Overlapping Chromatographic Peaks, Anal. Chem., 1987, 59: 527-530
    [141] Keller H. R., and Massart D. L., Peak Purity Control in Liquid Chromatography with Photodiode-Array Detection by a Fixed Size Moving Window Evolving Factor Analysis, Analytica Chimica Acta, 1991, 246: 379-390
    [142] Kvalheim O. M., and Liang Y. Z., Heuristic Evolving Latent Projections: Resolving Two-Way Multicomponent Data. 1. Selectivity, Latent-Projective Graph, Datascope, Local Rank, and Unique Resolution, Anal. Chem., 1992, 64: 936-946
    [143] Liang Y. Z., Kvalheim M., Keller H. R., et al., Heuristic Evolving Latent Projections : Resolving Two-Way Multicomponent Data. 2. Detection and Pesolution of Minor Constituents, Anal. Chem., 1992, 64: 946-953
    [144] Tse Y.-C., and Newton M. D., Theoretical Observations on the Structural Consequences of Cooperativity in H…O Hydrogen Bonding, J. Am. Chem. Soc., 1977, 99(2): 611-613
    [145] Kleeberg H., Klein D., and Luck W. A. P., Quantitative Infrared Spectroscopic Investigations of Hydrogen-Bond Cooperativity, J. Phys. Chem., 1987, 91: 3200-3203
    [146] Maes G., and Smets J., Hydrogen Bond Cooperativity. A Quantitative Study Using Matrix-Isolation FT-IR Spectroscopy, J. Phys. Chem., 1993, 97: 1818-1825
    [147] Masella M., and Flament J. P., Relation Between Cooperative Effects in Cyclic Water, Methanol/Water, and Methanol Trimers and Hydrogen Bonds in Methanol/Water, Ethanol/Water, and Dimethylether/Water Heterodimers, J. Chem. Phys., 1998, 108(17): 7141-7151
    [148] Errera J., and Mollet P., Intermolecular Forces and O-H Absorption Bands in Alcohols at 3μ, Nature, 1936, 138: 882
    [149]许禄,主编,化学计量学——一些重要方法的原理和应用,北京,科学出版社,2004:11-13
    [150]倪永年,化学计量学在分析化学中的应用,北京,科学出版社,2004:162-166
    [151] Malinowski E. R., Abstract Factor Analysis-A Theory of Error and Its Application to Analytical Chemistry, In Kowalski B. R., Chemometrics: Theory and Application. ACS Symp. Ser. 52., Washington D. C., American Chemical Society, 1977: 53-72
    [152] Malinowski E. R., Theory of Error in Factor Analysis, Anal. Chem., 1977, 49(4): 606-612
    [153]梁逸曾,俞汝勤,主编,化学分析手册(第十分册)化学计量学,第二版,北京,化学工业出版社,2000:262-265
    [154] Malinowski E. R., Determination of the number of factors and the experimental error in a data matrix, Anal. Chem., 1977, 49(4): 612-617
    [155] Liang X. H., Andrews J. E., and de Haseth J. A., Resolution of Mixture Components by Target Transformation Factor Analysis and Determinant Analysis for the Selection of Targets, Anal. Chem., 1996, 68: 378-385
    [156] Koch W., and Holthausen M. C., A Chemist’s Guide to Density Functional Theory, second edition, Weinleim, WILEY-VCH, 2001
    [157] Ditchfield R., Hehre W. J., and Pople J. A., Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules, J. Chem. Phys., 1971, 54(2): 724-728
    [158] Hehre W. J., Ditchfield R., and Pople J. A., Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, J. Chem. Phys., 1972, 56(5): 2257-2261
    [159] Frisch M. J., Pople J. A., and Stephen Binkley J., Self-Consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets, J. Chem. Phys., 1984, 80(7): 3265-3269
    [160] Frisch M. J., Trucks G. W., Schlegel H. B., et al., Gaussian 98, revision A. 11.4, Gaussian, Inc.: Pittsbergh, PA, 1998
    [161] Bellamy L. J., and Pace R. J., Hydrogen Bonding by Alcohols and Phenols-I. The Nature of the Hydrogen Bond in Alcohol Dimers and Polymers, Spectrochim. Acta, 1966, 22(3): 525-533
    [162] Chen X., Walthall D. A., and Brauman J. I., Acidities in Cyclohexanediols Enhanced by Intramolecular Hydrogen Bonds, J. Am. Chem. Soc., 2004, 126: 12614-12620

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700