用户名: 密码: 验证码:
低纬度西太平洋硅藻席沉积时空分布及群落组成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大洋硅藻席沉积是硅藻大规模“勃发”的产物,且其样品采集具有很大的偶然性,本文利用在低纬度西太平洋136°~140°E,15°~21°N区域内首次发现的硅藻席沉积岩芯为研究对象,确定了成席硅藻的种类,探讨了硅藻席的时空分布,并对WPD03和WPD12两个岩芯的硅藻进行分析鉴定,通过对深海沉积硅藻组合的变化探讨低纬度西太平洋硅藻席形成时期的环境变化状况,进一步分析了该区域硅藻席沉积的形成机制。
     通过研究,得出如下主要结论:1)出现于这一低纬西太平洋的硅藻席的成席藻类为“树荫种”硅藻Ethmodiscus rex(Wallich)Hendey;2)硅藻席发现站位成带状分布,大致呈北西-南东向展布,且大部分散布在17°N~20°N之间水深在CCD以下4837-6150m较平坦海底的深水区;3)经AMS14C测年结果显示,富含硅藻席的沉积物发生于16.0 ~ 28.6 ka B.P. 14C年期间,即“勃发”发生于末次冰期最盛期;4)在WPD 03和WPD 12两个岩芯共155个样品中共鉴定硅藻40属101种(含变种),且Thalassionema frauenfeldii的相对百分含量最高,Thalassionema nitzschioides、Azpeitia nodulifera、Nitzschia marina、Hemidiscus cuneiformis等次之,这五种硅藻占整个硅藻物种相对百分含量的85%左右,说明在该海域表层水体硅藻席沉积过程中,这五种硅藻最容易与成席硅藻在同时期的环境中生存,形成勃发;5)MIS3期的晚期,该区域表层海水盐度降低,这有助于该区水体的成层化,从而使“树荫种”硅藻开始勃发,导致“秋季倾泻”;6)末次冰期由于南极中层水(AAIW)北扩,南大洋中层水将富含硅酸盐的海水带入了研究区,即南大洋的“硅溢漏”作用,使该区域硅藻得以勃发,同时,铁输入的增多,可能也是造成硅藻勃发的主要原因之一。
The diatom mat deposits are the productions of vast diatoms bloom and the samples are taken with great chances. We take the diatom mat sediment cores first found in low-latitude west pacific 136°~140°E, 15°~21°N as the research object. We ascertain the category that form the diatom mats, discuss the temporal and spatial distribution of the diatom mats, analyze and identify the category of diatoms in the cores WPD03 and WPD12. Discuss the climatic and environmental change at the time the low-latitude west pacific diatom mats formed by deep-sea deposited diatom combination change and further discuss the mechanism of the diatom mat deposits formation in this area.
     Based on above studies, some main conclusions were obtained as follows : 1) the diatoms forming mats in low latitude west pacific is“shade flora”diatom Ethmodiscus rex (Wallich) Hendey; 2) the sites found diatom mats are zone distributed, the direction is NW-SE and most distribute in the deep water area with flat seafloor, between 17°N~20°N and the water depth 4837-6150 m below Carbonate Compensation Depth (CCD); 3) AMS 14C dates show that the sediments rich in diatom mats occurred during 16.0 ~ 28.6 ka B.P., which means the bloom mainly occurred in last glacial maximum, while there are not diatom mats deposits in other layers; 4) A total of 101 diatom taxa (including variation) belonging to 40 genera had been identified from the 155 samples in the two cores WPD 03 and WPD 12, and the relative percentage of Thalassionema frauenfeldii are the highest, Thalassionema nitzschioides、Azpeitia nodulifera、Hemidiscus cuneiformis、Nitzschia marina take the second place. The five diatoms take about 85% of all diatom species relative percentage. It indicates the five diatoms are the easiest to coexist and bloom with the diatoms forming mats in the diatom mats deposit process of the surface water in this areas; 5) the salinity of the sea water in this area is reduced in late MIS3 and it is helpful to stratify the water and therefore make the“shade flora”diatom bloom, leading to“fall dump”; 6) Antarctic Intermediate Water (AAIW) expanded northward in last glacial period and brought silicate-rich water into the studying area, namely,“silicon leakage”processes caused the bloom of diatoms. In addition, the iron input increase is one of the main reasons of the diatom bloom.
引文
[1] Abrantes, F. and M. Moita. Water column and recent sediment data on diatoms and coccolithophorids, off Portugal, confirm sediment record of upwelling events. Oceanologica acta, 1999. 22(1): 67-84.
    [2] Abrantes, F. 200 000 yr diatom records from Atlantic upwelling sites reveal maximum productivity during LGM and a shift in phytoplankton community structure at 185 000 yr. Earth and Planetary Science Letters, 2000. 176(1): 7-16.
    [3] Abrantes, F. Assessing the Ethmodiscus ooze problem: new perspective from a study of an eastern equatorial Atlantic core. Deep-Sea Research I, 2001. 48: 125-135.
    [4] Alldredge, A. and C. Gotschalk. Direct observations of the mass flocculation of diatom blooms: Characteristics, settling velocities and formation of diatom aggregates. Deep-Sea Research, 1989. 36(2): 159-171.
    [5] Andersen, C., N. Koc and M. Moros. A highly unstable Holocene climate in the subpolar North Atlantic: evidence from diatoms. Quaternary Science Reviews, 2004a. 23(20-22): 2155-2166.
    [6] Andersen, C., et al. Nonuniform response of the major surface currents in the Nordic Seas to insolation forcing: Implications for the Holocene climate variability. Paleoceanography, 2004b. 19(2): PA2003.
    [7] Archer, D., et al. A meeting place of great ocean currents: shipboard observations of a convergent front at 2oN in the Pacific. Deep Sea Research Part II: Topical Studies in Oceanography, 1997. 44(9-10): 1827-1849.
    [8] Baldauf, J. and J. Barron. Evolution of biosiliceous sedimentation patterns—Eocene through Quaternary: paleoceanographic response to polar cooling. Geological History of the Polar Oceans: Arctic Versus Antarctic: Dordrecht (Kluwer Academic), 1990: 575–607.
    [9] Barnola, J.M., et al. Vostok ice core provides 160, 000-year record of atmospheric CO2. Nature, 1987. 329: 408–414.
    [10] Barron, J. Miocene to Holocene planktic diatoms. Plankton stratigraphy, 1985: 763-809.
    [11] Barron, J., et al. High-resolution climatic evolution of coastal northern California during the past 16,000 years. Paleoceanography, 2003. 18(1): 1020, doi:10.1029/2002PA000768.
    [12] Bathmann, U.V., et al. Spring development of phytoplankton biomass and composition in major water masses of the Atlantic sector of the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 1997. 44(1-2): 51-67.
    [13] Belyayeva, T. Range and numbers of diatoms in the genus Ethumodiscus Castr. in the Pacific plankton and sediments. Oceanology Acad. Sci. USSR, 1968. 8: 79-85.
    [14] Berger, W.H., C.B. Lange and M.E. Pérez. The early Matuyama Diatom Maximum off SW Africa:a conceptual model. Marine Geology, 2002. 180: 105-116.
    [15] Birks, C. and N. Ko?. A high-resolution diatom record of late-Quaternary sea-surface temperatures and oceanographic conditions from the eastern Norwegian Sea. Boreas, 2002. 31(4): 323-344.
    [16] Bloomer, S.F. and L.A. Mayer. Core-log-seismic integration as a framework for determining the basin-wide significance of regional reflectors in the eastern equatorial Pacific. Geophysical research letters, 1997. 24(3): 321-324.
    [17] Bodén, P. and J. Backman. A laminated sediment sequence from the northern North Atlantic Ocean and its climatic record. Geology, 1996. 24: 507-510.
    [18] Bopp, L., et al. Potential impact of climate change on marine export production. Global Biogeochemical Cycles, 2001. 15(1): 81-99.
    [19] Bopp, L., et al. Response of diatoms distribution to global warming and potential implications: A global model study. Geophysical Research Letters, 2005. 32(19): L19606.
    [20] Boyd, P., et al. Water column and sea-ice primary production during Austral spring in the Bellingshausen Sea. Deep-Sea Research Part II, 1995. 42(4-5): 1177-1200.
    [21] Bradtmiller, L., et al. Diatom productivity in the equatorial Pacific Ocean from the last glacial period to the present: A test of the silicic acid leakage hypothesis. Paleoceanography, 2006. 21(4).
    [22] Broecker, W.S., et al. Late glacial diatom accumulation at 9°S in the Indian Ocean. Paleoceanography, 2000. 15(3): 348-352.
    [23] Brzezinski, M., et al. A switch from Si(OH)4 to NO3- depletion in the glacial Southern Ocean. Geophysical Research Letters, 2002. 29(12): doi:10.1029/2001GL014349.
    [24] Buesseler, K. The decoupling of production and particulate export in the surface ocean. Global Biogeochemical Cycles, 1998. 12(2): 297-310.
    [25] Burckle, L. and R. McLaughlin. Size changes in the marine diatom Coscinodiscus nodulifer A. Schmidt in the equatorial Pacific. Micropaleontology, 1977: 216-222.
    [26] Bustillo, M. and M. García. Age, distribution and composition of Miocene diatom bearing sediments in the Guadalquivir Basin, Spain. Geobios, 1997. 30(3): 335-350.
    [27] Cameron, N. The use of diatom analysis in forensic geoscience. Geological Society London Special Publications, 2004. 232(1): 277-285.
    [28] Carpenter, E., et al. Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean. Marine ecology. Progress series(Halstenbek), 1999. 185: 273-283.
    [29] Cary, L. and D.E.H. Mrozowski. The evolution of the Parece Vela Basin, eastern Philippine Sea. Earth and Planetary Science Letters, 1979. 46(1): 49-67.
    [30] Ciesielski, P.F. Proceedings of the Ocean Drilling Program Initial Report, vol. 114, Ocean Drill. Program, College Station, Tex. 1998.
    [31] Coale, K., et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 1996.383(6600): 495-501.
    [32] Cooper, S. Estuarine paleoenvironmental reconstructions using diatoms. The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, London, 1999: 352–373.
    [33] Cordes, D. Sedimentology and palaeomagnetism of sediments from Maud Rise (Northeast Weddell Sea). Rep. Polar Res., 1990. 71: 158.
    [34] Cortese, G., et al. Opal sedimentation shifts in the World Ocean over the last 15 Myr. Earth and Planetary Science Letters, 2004. 224(3-4): 509-527.
    [35] Crosta, X., et al. Nutrient cycling in the Indian sector of the Southern Ocean over the last 50,000 years. Global Biogeochem. Cycles, 2005. 19.
    [36] Cupp, E. Marine plankton diatoms of the west coast of North America. 1943: 237.
    [37] de Baar, H.J.W., et al. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J. Geophys. Res, 2005. 110: C09S16.
    [38] De Deckker, P. and F.X. Gingele. On the occurrence of the giant diatom Ethmodiscus rex in an 80-ka record from a deep-sea core, southeast of Sumatra, Indonesia: implications for tropical palaeoceanography. Marine Geology, 2002. 183(1-4): 31-43.
    [39] De La Rocha, C. Opal-based isotopic proxies of paleoenvironmental conditions. Global Biogeochemical Cycles, 2006. 20(4): GB4S09, doi:10.1029/2005GB002664.
    [40] Denys, L. and H. De Wolf. Diatoms as indicators of coastal paleoenvironments and relative sea-level change. The Diatoms: applications for the environmental and earth sciences, 1999: 277-297.
    [41] Dickens, G.R. and J.A. Barron. A rapidly deposited pennate diatom ooze in Upper Miocene-Lower Pliocene sediment beneath the North Pacific polar front. Marine Micropaleontology, 1997. 31(3-4): 177-182.
    [42] Dugdale, R.C., F.P. Wilkerson and H.J. Minas. The role of a silicate pump in driving new production. Deep Sea Research Part I: Oceanographic Research Papers, 1995. 42(5): 697-719.
    [43] Dunne, J.P., et al. Export flux in the western and central equatorial Pacific: zonal and temporal variability. Deep Sea Research Part I: Oceanographic Research Papers, 2000. 47(5): 901-936.
    [44] Falkowski, P., et al. The evolution of modern eukaryotic phytoplankton. Science, 2004. 305(5682): 354-360.
    [45] Farrell, J.W., et al. Glacial-interglacial changes in nutrient utilization in the equatorial Pacific Ocean. Nature, 1995. 377(6549): 514-517.
    [46] Flynn, K. and C. Hipkin. Interactions between iron, light, ammonium, and nitrate: insights from the construction of a dynamic model of algal physiology. Journal of Phycology, 1999. 35(6): 1171-1190.
    [47] Friedrichs, M.A.M. and E.E. Hofmann. Physical control of biological processes in the central equatorial Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 2001. 48(4): 1023-1069.
    [48] Gardner, J.V. and L.H. Burckle. Upper Pleistocene Ethmodiscus rex oozes from the eastern equatorial Atlantic. Micropaleontology, 1975b. 21: 236-242.
    [49] Geider, R. Biological oceanography Complex lessons of iron uptake. Nature a-z index, 1999. 400(6747): 815-816.
    [50] Gersonde, R., et al. Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—a circum-Antarctic view based on siliceous microfossil records. Quaternary science reviews, 2005. 24(7-9): 869-896.
    [51] Gingele, F.X. and F. Schmieder. Anomalous South Atlantic lithologies confirm global scale of unusual mid-Pleistocene climate excursion. Earth and Planetary Science Letters, 2001. 186(1): 93-101.
    [52] Gingele, F.X., et al. History of the South Java Current over the past 80 ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002. 183(3-4): 247-260.
    [53] Goldman, J.C. Spatial and temporal discontinuities of biological processes in pelagic surface waters. Toward a theory on biological-physical interactions in the world ocean. Kluwer, 1988: 273–296.
    [54] Goldman, J.C. Potential role of large oceanic diatoms in new primaryproduction. Deep-Sea Research I, 1993. 40(1): 159-168.
    [55] Goldman, J.C. and J. Dennis J. McGillicuddy. Effect of large marine diatoms growing at low light on episodic new production. Limnology and Oceanography, 2003. 48(3): 1176-1182.
    [56] Gombos Jr, A. Late Neogene diatoms and diatom oozes in the central South Atlantic. Initial Repts. DSDP, 1984. 73: 487-494.
    [57] Greaves, M.J., H. Elderfield and E.R. Sholkovitz. Aeolian source of rare earth elements to the Western Pacific Ocean. Marine Chemistry, 1999. 68: 31-38.
    [58] Grigorov, I., R.B. Pearce and A.E.S. Kemp. Southern Ocean laminated diatom ooze: mat deposits and potential for palaeo-flux studies, ODP leg 177, Site 1093. Deep-Sea Research II, 2002. 49: 3391-3407.
    [59] Guillard, R. and P. Kilham. The ecology of marine planktonic diatoms. The biology of diatoms, 1977: 372-469.
    [60] H?kansson, H. The recent diatom succession of Lake Havg?rdssj?n, south Sweden. In: Proceeding of the Seventh International Diatom Symposium. D G Mann. Philadelphia: Otto Koeltz. 1984: 411-429.
    [61] Hallegraef, G.M. Taxonomy and morphology of the marine planktonic diatoms Thalassionema and Thalassiothrix. Diatom Research, 1986. 1: 57-80.
    [62] Hamm, C., et al. Architecture and material properties of diatom shells provide effective mechanical protection. Nature, 2003. 421(6925): 841-843.
    [63] Harrison, S.P., et al. The role of dust in climate changes today, at the last glacial maximum and in the future. Earth-Science Reviews, 2001. 54(1-3): 43-80.
    [64] Harwood, D.M. and Gersonde R. Diatoms as indicators of lake eutrophication. In: Stoermer E.F., Smol J.P. (ed.), The diatoms: applications for the environmenstal and earth sciences. Cambridge:Cambridge University Press. 128-168. 1990.
    [65] Hasle, G. Phytoplankton and ciliate species from the tropical Pacific: I kommisjon hos H. Aschehoug & co.(W. Nygaard), 1960.
    [66] Hasle, G. The biogeography of some marine planktonic diatoms. Deep-Sea Res, 1976. 23(31): 319-338.
    [67] Hasle, G. The marine, planktonic diatom Family Thalassionemataceae: morphology, taxonomy and distribution. Diatom Research, 2001. 16(1): 1-82.
    [68] Hasle, G.R. and E.E. Syvertsen. Marine diatoms. In: Identifying Marine Phytoplankton. C. R. Tomas. California: Academic Press, 1997.
    [69] Haug, G., et al. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature, 2005. 433: 821-825.
    [70] Hendey, N. An introductory account of the smaller algae of British coastal waters: V. Bacillariophyceae (diatoms). 1964a.
    [71] Hendey, N.I. An Introductory Account of the Smaller Algae of British Coastal Waters . Part V. Bacillariophyceae. London: Her Majesty's Stationery Office, 1964b.
    [72] Honjo, S., et al. Export production of particles to the interior of the equatorial Pacific Ocean during the 1992 EqPac experiment. Deep Sea Research Part II: Topical Studies in Oceanography, 1995. 42(2-3): 831-870.
    [73] Hustedt, F. Die Kieselalgen Deutschlands, ?sterreichs und der Schweiz unter Berücksichtigung derübrigen L?nder Europas sowie angrenzender Meeresgebiete. 2. Teil. Koenigstein, Otto Koeltz Science Publishers, 1959.
    [74] Hutchins, D., et al. An iron limitation mosaic in the California upwelling regime. Limnology and Oceanography, 1998. 43(6): 1037-1054.
    [75] Hutchins, D.A. and K.W. Bruland. Iron-limited diatom growth and Si: N uptake ratios ina coastal upwelling regime. Nature, 1998. 393: 561-564.
    [76] Ignatiades, L., D. Georgopoulos and M. Karydis. Description of the phytoplanktonic community of the oligotrophic waters of the SE Aegean Sea (Mediterranean). Marine Ecology, 1995. 16(1): 13-26.
    [77] Imbrie, J. and N. Kipp. A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core. The late Cenozoic glacial ages, 1971: 71-181.
    [78] Iriarte, J.L. and G.A. Fryxell. Micro-phytoplankton at the equatorial Pacific (140o) during the JGOFS EqPac Time Series studies: March to April and October 1992. Deep Sea Research Part II: Topical Studies in Oceanography,1995. 42(2-3): 559-583.
    [79] Jasper, J.P., et al. Photosynthetic Fractionation of 13C and Concentrations of Dissolved CO2 in the Central Equatorial Pacific during the Last 255,000 Years. Paleoceanography, 1994. 9(6): 781-798.
    [80] Jensen, K., et al. Diatom evidence of hydrographic changes and ice conditions in Igaliku Fjord, South Greenland, during the past 1500 years. The Holocene, 2004. 14(2): 152.
    [81] Jiang, H., et al. Late-Holocene summer sea-surface temperatures based on a diatom record from the north Icelandic shelf. The Holocene, 2002. 12(2): 137-147.
    [82] Jiang, H., et al. Diatoms from the surface sediments of the South China Sea and their relationships to modern hydrography. Marine Micropaleontology, 2004. 53(3-4): 279-292.
    [83] Jiang, H., et al. Evidence for solar forcing of sea-surface temperature on the North Icelandic Shelf during the late Holocene. Geology, 2005. 33(1): 73-76.
    [84] Jiang, H., et al. Impact of the Kuroshio Current on the South China Sea based on a 115 000 year diatom record. Journal of Quaternary Science, 2006. 21(4): 377-385.
    [85] Jousé, A., O. Kozlova and V. Muhina. Distribution of diatoms in the surface layer of sediment from the Pacific Ocean. Micropaleontology of Oceans. Cambridge University Press, Cambridge, 1971: 263-269.
    [86] Jousé, A.P., V.V. Mukhina and O.G. Kozlova. Diatoms and silicoflagellates in the surface layer of sediments of the Pacific Ocean. In: Kort, V.G., Bezrukov, P.L. (Eds.), The Pacific Ocean: Microflora and Microfauna in the Recent Sediments of Pacific Ocean. Nauka, Moscow. 1969: 7-47.
    [87] Juggins, S. C2 User Guide, Software for Ecological and Palaeoecological Data Analysis and Visualization: Newcastle upon Tyne, UK, University of Newcastle, 2003.
    [88] Kanaya, T. and I. Koizumi. Interpretation of diatom thanatocoenoses from the North Pacific applied to a study of core V20-130 (Studies of a deep-sea coreV20-130. Part IV). The science reports of the Tohoku University. Second series, Geology, 1966. 37(2): 89-130.
    [89] Karig, D.E. Basin Genesis In The Philippine Sea. Initial reports of the deep sea drilling projects[POD]. 1981. Leg 31: 857-878.
    [90] Karpuz, N. and E. Jansen. A high-resolution diatom record of the last deglaciation from the SE Norwegian Sea: documentation of rapid climatic changes. Paleoceanography, 1992. 7(4): 499-520.
    [91] Kemp, A. Laminated Sediments from Coastal and Open Ocean Upwelling Zones: What Variability Do They Record? Environmental Sciences Research Report ES, 1995a. 18: 239-258.
    [92] Kemp, A.E.S. and J.G. Baldauf. Vast neogene laminated diatom mat deposits from the eastern equatorial Pacific Ocean. Nature, 1993. 362: 141-144.
    [93] Kemp, A.E.S., J.G. Baldauf and R.B. Pearce. Origins and paleoceanographic significance of laminated diatom ooze from the eastern equatorial Pacific Ocean. Proceedings of the Ocean Drilling Program. Scientific results, 1995b. 138: 641-645.
    [94] Kemp, A.E.S., et al. The role of mat-forming diatoms in the formation of Mediterranean sapropels. Nature, 1999. 398: 57-61.
    [95] Kemp, A.E.S., et al. The "Fall dump"——a new perspective on the role of a "shade flora" in the annual cycle of diatom production and export flux. Deep-Sea Research II, 2000. 47: 2129-2154.
    [96] Kemp, A.E.S., et al. Production of giant marine diatoms and their export at oceanic frontal zones: Implications for Si and C flux from stratified oceans. Global Biogeochemical Cycles, 2006. 20: GB4S04, doi:10.1029/2006GB002698.
    [97] Klaas, C., et al. Phytoplankton and heterotrophic protist counts. Reports on Polar Research: The Expedition Antarktis, 1997. 13: 1–2.
    [98] Ko? Karpuz, N. and H. Schrader. Surface sediment diatom distribution and Holocene paleotemperature variations in the Greenland, Iceland and Norwegian Sea. Paleoceanography, 1990. 5(4): 557–580.
    [99] Kobayashi, F. and K. Takahashi. Distribution of diatoms along the equatorial transect in the western and central Pacific during the 1999 La Nino conditions. Deep Sea Research Part II: Topical Studies in Oceanography, 2002. 49(13-14): 2801-2821.
    [100] Koizumi, I. Holocene pulses of diatom growths in the warm Tsushima Current in the Japan Sea. Diatom Research, 1989. 4(1): 55–68.
    [101] Koizumi, I., T. Irino and T. Oba. Paleoceanography during the last 150 kyr off central Japan based on diatom floras. Marine Micropaleontology, 2004. 53(3-4): 293-365.
    [102] Koizumi, I. Diatom-derived SSTs (Td' ratio) indicate warm seas off Japan during the middle Holocene (8.2-3.3 kyr BP). Marine Micropaleontology, 2008. 69(3-4): 263-281.
    [103] Koutavas, A., et al. El Ni?o-Like Pattern in Ice Age Tropical Pacific Sea Surface Temperature. Science, 2002. 297(5579): 226-230.
    [104] Kroenke, L., R.B. Scott and S. Brassell. Part I: Introduction, site reports. In: Kroenke, L., Scott, R. B., Brassell, S., et al., eds. Initial Reports of the Deep-Sea Drilling Project, Vol. 59. Washington: U S Government Printing Office,Brassell, S., et al., eds. Initial Reports of the Deep-Sea Drilling Project, Vol. 59. Washington: U S Government Printing Office,. 1981: 321-328.
    [105] Labeyrie, L., et al. Melting history of Antarctica during the past 60, 000 years. Nature, 1986. 322(6081): 701-706.
    [106] Lange, C.B. and W.H. Berger. Diatom Productivity and Preservation in the Western Equatorial Pacific: the Quaternary Record. Proceedings of the Ocean Drilling Program, Scientific Results, 1993. 130: 509-523.
    [107] Lange, C.B., U.F. Treppke and G. Fischer. Seasonal diatom fluxes in the Guinea Basin and their relationships to trade winds, hydrography and upwelling events. Deep Sea Research(Part I, Oceanographic Research Papers), 1994. 41(5): 859-878.
    [108] Lange, C.B., et al. Shipboard Scientific Party Leg 175, 1999. The early Matuyama Diatom Maximum off SW Africa, Benguela Current System (ODPLeg 175). Marine Geology, 1999. 161: 93–114.
    [109] Lea, D.W., D.K. Pak and H.J. Spero. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science, 2000. 289(5485): 1719-1724.
    [110] Lindstrom, E., et al. The western equatorial Pacific Ocean circulation study. Nature, 1987. 330(6148): 533-537.
    [111] Lopes, C., A.C. Mix and F. Abrantes. Diatoms in northeast Pacific surface sediments as paleoceanographic proxies. Marine Micropaleontology, 2006. 60(1): 45-65.
    [112] Lyle, M.W., F.G. Prahl and M.A. Sparrow. Upwelling and productivity changes inferred from a temperature record in the central equatorial Pacific. Nature, 1992. 355(6363): 812-815.
    [113] Manabe, S. and R. Stouffer. Century-scale effects of increased atmospheric CO2 on the ocean-atmosphere system. Nature, 1993. 364(6434): 215-218.
    [114] Marchetti, A. Coupled changes in the cell morphology and elemental(C, N, and Si) composition of the pennate diatom Pseudo-nitzschia due to iron deficiency. Limnology and Oceanography, 2007. 52(5): 2270-2284.
    [115] Margalef, R. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta, 1978. 1(4): 493-509.
    [116] Martin, J.H., R.M. Gordon and S.E. Fitzwater. The case for iron. Limnology and Oceanography, 1991. 36(8): 1793-1802.
    [117] Maslin, M. and G. Swann. Isotopes in marine sediments. In Isotopes in Palaeoenvironmental Research (M. J. Leng, Ed.), pp. 227-290. Springer Dordrecht. 2005.
    [118] Matsumoto, K., J. Lynch-Stieglitz and R.F. Anderson. Similar glacial and Holocene Southern Ocean hydrography. Paleoceanography, 2001. 16(5): 445–454.
    [119] Menkes, C.E., et al. A whirling ecosystem in the equatorial Atlantic. Geophysical research letters, 2002. 29(11): 1553.
    [120] Mikkelsen, N. On the origin of Ethmodiscus ooze. Marine Micropaleontology,1977. 2: 35-46.
    [121] Moore, J. and T. Villareal. Buoyancy and growth characteristics of three positively buoyant marine diatoms. Marine ecology progress series. Oldendorf, 1996. 132(1): 203-213.
    [122] Mrozowski.C.L and Hayes.D.E. The evolution of the Parece Vela Basin, eastern Philippine Sea. Earth and Planetary Science Letters, 1979. 46(1): 49-67.
    [123] Murray, J.W., E. Johnson and C. Garside. A U.S. JGOFS process study in the equatorial Pacific (EqPac): Introduction. Deep Sea Research Part II: Topical Studies in Oceanography, 1995. 42(2-3): 275-293.
    [124] Nakai, S., A.N. Halliday and D.K. Rea. Provenance of dust in the Pacific Ocean. Earth and planetary science letters, 1993. 119(1-2): 143-157.
    [125] Naveira Garabato, A.C., et al. Mesoscale subduction at the Antarctic Polar Front driven by baroclinic instability. Journal of Physical Oceanography, 2001. 31(8): 2087-2107.
    [126] Naveira Garabato, A.C., V.H. Strass and G. Kattner. Fluxes of nutrients in a three-dimensional meander structure of the Antarctic Polar Front. Deep Sea Research Part II: Topical Studies in Oceanography, 2002. 49(18): 3771-3792.
    [127] Nelson, D.M., et al. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 1995. 9(3): 359-372.
    [128] Parslow, J.S., et al. A persistent subsurface chlorophyll maximum in the Interpolar Frontal Zone south of Australia: Seasonal progression and implications for phytoplankton–light–nutrient interactions. Journal of Geophysical Research-Oceans, 2001. 106(C12): 31,543-31,557.
    [129] Pearce, R.B., et al. High-resolution sedimentology and micropaleontology of laminated diatomaceous sediments from the eastern equatorial Pacific Ocean. 1995: Ocean Drilling Program.
    [130] Pelejero, C., et al. High-Resolution UK37 Temperature Reconstructions in the South China Sea Over the Past 220 kyr. Paleoceanography, 1999. 14: 224-231.
    [131] Petit, J.R., et al. Climate and atmospheric history of the past 420,000 years fromthe Vostok ice core, Antarctica. Nature, 1999. 399(6735): 429-436.
    [132] Pike, J. Data report: Backscattered electron imagery analysis of early Pliocene laminated Ethmodiscus ooze, Site 1010. 2000.
    [133] Pilskaln, C.H., et al. High concentrations of marine snow and diatom algal mats in the North Pacific Subtropical Gyre: Implications for carbon and nitrogen cycles in the oligotrophic ocean. Deep-Sea Research I, 2005. 52: 2315-2332.
    [134] Pokras, E.M. Oceanographic control of diatom abundances and species distributions in surface of the tropical and southeast atlantic. Marine Micropaleontology, 1986. 10: 165-188.
    [135] Pollard, R.T., M.I. Lucas and J.F. Read. Physical controls on biogeochemical zonation in the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 2002. 49(16): 3289-3305.
    [136] Pondaven, P., et al. Resolving the" opal paradox" in the Southern Ocean. Nature, 2000. 405(6783): 168-172.
    [137] Prahl, F., B. Popp and J. Valdez-Holguin. Nitrogen Fixation in Summertime Surface Waters of the Guaymas Basin, Gulf of California. 2005.
    [138] Quéguiner, B., et al. Biogeochemical dynamics and the silicon cycle in the Atlantic sector of the Southern Ocean during austral spring 1992. Deep Sea Research Part II: Topical Studies in Oceanography, 1997. 44(1-2): 69-89.
    [139] Quéguiner, B. Biogenic silica production in the Australian sector of the Subantarctic Zone of the Southern Ocean in late summer 1998. Journal of Geophysical Research-Oceans, 2001. 106(C12): 31,627-31,636.
    [140] Qu, T., H. Mitsudera and T. Yamagata. A Climatology of the Circulation and Water Mass Distribution near the Philippine Coast. Journal of Physical Oceanography, 1999. 29(7): 1488-1505.
    [141] Quilty, P., K. Kerry and H. Marchant. A seasonally recurrent patch of Antarctic planktonic diatoms. Search(Sydney), 1985. 16(1-2): 48-51.
    [142] Rivera, P.S., S. Avaria and H.L. Barrales. Ethmodiscus rex collected by net sampling off the coast of northern Chile. Diatom Research, 1989. 4(1): 131-142.
    [143] Romero, O. and F. Schmieder. Occurrence of thick Ethmodiscus oozes associated with a terminal Mid-Pleistocene Transition event in the oligotrophic subtropical South Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006. 235(4): 321-329.
    [144] Romero, O.E., et al. The biogeography of major diatom taxa in Southern Ocean surface sediments: 3. Tropical/Subtropical species. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005. 223(1-2): 49-65.
    [145] Round, F., R. Crawford and D. Mann. Diatoms: biology and morphology of the genera: Cambridge University Press, 1990.
    [146] Sancetta, C. Distribution of diatom species in surface sediments of the Bering and Okhotsk seas. Micropaleontology, 1982. 28(3): 221-257.
    [147] Sancetta, C. and S. Silvestri. Pliocene-Pleistocene evolution of the North Pacific ocean-atmosphere system, interpreted from fossil diatoms. Paleoceanography, 1986. 1(2): 163-180.
    [148] Sancetta, C., T. Villareal and P. Falkowski. Massive fluxes of Rhizosolenid diatoms: a common occurence? Limnology and Oceanography, 1991. 36: 1452-1457.
    [149] Sancetta, C. The mystery of the sapropels. Nature(London), 1999. 398(6722): 27-28.
    [150] Santoso, A and M. H. England.Antarctic Intermediate Water Circulation and Variability in a Coupled Climate Model.Journal of Physical Oceanography, 2004. 34: 2160-2179.
    [151] Sarmiento, J., et al. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 1998. 393: 245-249.
    [152] Sarmiento, J.L., et al. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 2004. 427: 56-60.
    [153] Sarthou, G., et al. Growth physiology and fate of diatoms in the ocean: a review. Journal of Sea Research, 2005. 53(1-2): 25-42.
    [154] Scharek, R., L.M. Tupas and D.M. Karl. Diatom fluxes to the deep sea in the oligotrophic North Pacific gyre at Station ALOHA. MARINE ECOLOGYPROGRESS SERIES, 1999. 182: 55-67.
    [155] Schlitzer, R. Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates. Deep Sea Research Part II: Topical Studies in Oceanography, 2002. 49(9-10): 1623-1644.
    [156] Schneider-Mor, A., et al. Diatom stable isotopes, sea ice presence and sea surface temperature records of the past 640 ka in the Atlantic sector of the Southern Ocean. Geophysical research letters, 2005. 32(10): L10704.
    [157] Scott, M.R. and G.W. Bolger. Metallogenesis in the Parece Vela marginal basin complex of the Philippine Sea, Deep Sea Drilling Project Leg 59. In: Kroenke, L., Scott, R. B.,Balshaw, K., et al., eds. Initial Reports of the Deep Sea Drilling Project, 59. Washington: U.S. Govt. Printing Office. 1981: 649-651.
    [158] Shemesh, A., C. Charles and R. Fairbanks. Oxygen isotopes in biogenic silica: global changes in ocean temperature and isotopic composition. Science, 1992. 256(5062): 1434-1436.
    [159] Shiga, K. and I. Koizumi. Latest Quaternary oceanographic changes in the Okhotsk Sea based on diatom records. Marine Micropaleontology, 1999. 38(2): 91-117.
    [160] Shipboard Scientific Party. Leg 177 summary: Southern Ocean Paleoceanography, Proc. Ocean Drill. Program Initial Rep., 177, 1 - 67., 1999.
    [161] Shipboard Scientific Party. North Atlantic climate: Ice sheet- ocean atmosphere interactions on millennial timescales during the late Neogene-Quaternary using a paleointensity-assisted chronology for the North Atlantic, Integrated Ocean Drill. Program Prelim. Rep. 303, 51pp., Ocean. Drill. Program, College Station, Tex., 2005.
    [162] Sigmon, D.E., D.M. Nelson and M.A. Brzezinski. The Si cycle in the Pacific sector of the Southern Ocean: seasonal diatom production in the surface layer and export to the deep sea. Deep Sea Research Part II: Topical Studies in Oceanography, 2002. 49(9-10): 1747-1763.
    [163] Simonsen, R. Ideas for a more natural system of the centric diatoms. 1972: J. Cramer.
    [164] Simonsen, R. The diatom plankton of the Indian Ocean expedition of RV" Meteor" 1964-1965. 1974.
    [165] Singler, H. and T. Villareal. Nitrogen inputs into the euphotic zone by vertically migrating Rhizosolenia mats. Journal of Plankton Research, 2005. 27(6): 545-556.
    [166] Smetacek, V. The giant diatom dump. Nature, 2000. 406: 574-575.
    [167] Smetacek, V., et al. Mesoscale distribution of dominant diatom species relative to the hydrographical field along the Antarctic Polar Front. Deep Sea Research Part II: Topical Studies in Oceanography, 2002. 49(18): 3835-3848.
    [168] Smetacek, V., P. Assmy and J. Henjes. The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarctic science, 2004. 16(04): 541-558.
    [169] Smith, C.R., et al. Phytodetritus at the abyssal seafloor across 10o of latitude in the central equatorial Pacific. Deep Sea Research Part II: Topical Studies in Oceanography, 1996. 43(4-6): 1309-1338.
    [170] Snoeijs, P. Diatoms and environmental change in brackish waters. The diatoms: applications for the enviromental and earth sciences. Cambridge, University Press., 1999: 298-333.
    [171] Sournia, A. Is there a shade flora in the marine plankton? Journal of Plankton Research, 1982. 4(2): 391-399.
    [172] Sprintall, J. and M. Tomczak. Evidence of the barrier layer in the surface layer of the tropics. Journal of Geophysical Research, 1992. 97(C5): 7305-7316.
    [173] Stabell, B. Variations of diatom flux in the eastern Equatorial Atlantic during the last 400, 000 years(Meteor cores 13519 and 13521). Marine Geology, 1986. 72(3): 305-323.
    [174] Stoermer, E. and J. Smol. Applications and uses of diatoms: prologue. The diatoms: applications for the environmental and earth sciences. Edited by EF Stoermer and JP Smol, Cambridge University Press, Cambridge, 1999: 3–8.
    [175] Strass, V., et al. Mesoscale frontal dynamics: shaping the environment of primary production in the Antarctic Circumpolar Current. Deep-Sea ResearchPart II, 2002. 49(18): 3735-3769.
    [176] Sullivan, M. Applied diatom studies in estuaries and shallow coastal environments. The diatoms: applications for the environmental and earth sciences. Cambridge: University Press Cambridge, 2000: 334-351.
    [177] Sun, X., et al. Deep-sea pollen from the South China Sea: Pleistocene indicators of East Asian monsoon. Marine Geology, 2003. 201(1-3): 97-118.
    [178] Sundstr?m, B. The marine diatom genus Rhizosolenia: a new approach to the taxonomy. Sweden: Lund University, 1986.
    [179] Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature(London), 1998. 393(6687): 774-777.
    [180] Talley, L.D. Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. Geophysical Monograph, 1999. 112: 1-22.
    [181] Tanimura, Y. Varieties of a single cosmopolitan diatom species associated with surface water masses in the North Pacific. Marine Micropaleontology, 1999. 37(2): 199-218.
    [182] ter Braak, C. and S. Juggins. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia, 1993. 269(1): 485-502.
    [183] Tremblay, J., et al. Significance of the Polar Frontal Zone for large-sized diatoms and new production during summer in the Atlantic sector of the Southern Ocean. Deep-Sea Research Part II, 2002. 49(18): 3793-3811.
    [184] Tsuchiya, M. Flow path of the Antarctic Intermediate Water in the western equatorial South Pacific Ocean. Deep-sea research. Part A. Oceanographic research papers, 1991. 38(1): 273-279.
    [185] V.P.Nechaev and金康辰译.据碎屑沉积物记录的菲律宾海和日本海的演化. Marine Geology, 1991. 97: 167-190.
    [186] Villareal, T.A. Abundance of the giant diatom Ethmodiscus in the Southwest Atlantic Ocean and Central Pacific Gyre. Diatom Research, 1993. 8: 171-177.
    [187] Villareal, T.A., M.A. Altabet and K. Culver-Rymsza. Nitrogen transport by vertically migrating diatom mats in the North Pacific Ocean. Nature, 1993. 363:709-712.
    [188] Villareal, T.A. and E. Carpenter. Chemical composition and photosynthetic characteristics of Ethmodiscus Rex (Bacillariophyceae): evidence for vertical migration. Journal of Phycology, 1994. 30: 1-8.
    [189] Villareal, T.A., et al. Upward transport of oceanic nitrate by migrating diatom mats. Nature, 1999a. 397: 423-425.
    [190] Villareal, T.A., et al. Biological and chemical characteristics of the giant diatom Ethmodiscus (Bacillariophyceae) in the central North Pacific gyre. Journal of Phycology, 1999b. 35(5): 896-902.
    [191] Weston, K., et al. Primary production in the deep chlorophyll maximum of the central North Sea. Journal of Plankton Research, 2005. 27(9): 909-922.
    [192] Whitehead, J. and A. McMinn. Paleodepth determination from Antarctic benthic diatom assemblages. Marine Micropaleontology, 1997. 29(3): 301-318.
    [193] Wilson, C., et al. Biological and physical forcings of late summer chlorophyll blooms at 30[degree sign]N in the oligotrophic Pacific. Journal of Marine Systems, 2008. 69(3-4): 164-176.
    [194] Wiseman, J.D.H. and N.L. Hendey. The significance and diatom content of a deep-sea floor sample from the neighbourhood of the greatest oceanic depth. Deep-Sea Research, 1953. 1: 47-59.
    [195] Yoder, J.A., et al. A line in the sea. Nature, 1994. 371: 689-692.
    [196] Yokoyama, Y., et al. Timing of the Last Glacial Maximum from observed sea-level minima. Nature, 2000. 406(6797): 713-716.
    [197] Zielinski, U. and R. Gersonde. Diatom distribution in Southern Ocean surface sediments (Atlantic sector): Implications for paleoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997. 129(3): 213-250.
    [198] Zong, Y. and B. Horton. Diatom-based tidal-level transfer functions as an aid in reconstructing Quaternary history of sea-level movements in the UK. Journal of Quaternary Science, 1999. 14: 153-167.
    [199]安芷生,符涂斌.全球变化科学的进展.地球科学进展, 2001. 16(5): 671-681.
    [200]曹勇,李道季,张经.海洋浮游植物铁限制的研究进展.海洋通报, 2002. 21(6): 83-90.
    [201]程兆第.硅藻彩色图集.北京:海洋出版社, 1996.
    [202]郭玉洁,钱树本.中国海藻志第五卷硅藻门第一册中心纲.北京:科学出版社, 2003.
    [203]黄元辉.末次冰消期以来南海北部深海硅藻及其对东亚季风演变的沉积响应. 2008,华东师范大学,博士学位论文: 1-113.
    [204]吉冈典哉,远藤昌宏,石崎广.西马里亚纳海盆深层海流的观测.南海研究与开发, 1990. 4: 41-46.
    [205]蒋辉.我国某些常见化石硅藻的环境分析.植物学报, 1987. 29(4): 440-448.
    [206]金德祥.中国海洋底栖硅藻类(上卷).北京::海洋出版社, 1982.
    [207]金德祥.中国海洋浮游硅藻类.上海:上海科学技术出版社, 1965.
    [208]金性春.大洋钻探与西太平洋构造.地球科学进展, 1995. 10(3): 234-239.
    [209]靳宁.帕里希维拉海盆西北部海域粘土矿物分布特征研究. 2006,中国科学院海洋研究所,硕士学位论文.
    [210]蓝东兆.南海晚第四纪沉积硅藻.北京:海洋出版社, 1995.
    [211]李常珍,李乃胜,林美华.菲律宾海地势特征.海洋科学, 2000. 24(6): 47-51.
    [212]李丽娟,刘秦玉,刘伟.太平洋北赤道流表层流速及分叉点位置.中国海洋大学学报, 2005. 35(3): 370-374.
    [213]刘昭蜀,于珏译.菲律宾海地质.北京:海洋出版社, 1989.
    [214]闾国年.距今三万年来西北太平洋洋流系统变化的初步研究.海洋科学, 1989. 3: 13-20.
    [215]任建业,李思田.西太平洋边缘海盆地的扩张过程和动力学背景.地学前缘, 2000. 7(3): 203-213.
    [216]孙守勋,滕军.菲律宾海的气候特征.海洋预报, 2003. 20(3): 31-39.
    [217]孙湘平.西北太平洋副热带逆流、北赤道流、北赤道逆流几个特征的比较.黄渤海海洋, 2000. 18(1): 1-12.
    [218]王凡等.热带西太平洋环流及其季节变化.科学通报, 2001. 46(23): 1998-2002.
    [219]王伟.硅藻.生物学杂志, 1997(1): 14.
    [220]辛春.菲律宾海海底的构造单元(沿北纬18°地学断面).太平洋地质学, 1989. 6: 1-10.
    [221]徐建华.现代地理学中的数学方法.北京:高等教育出版社, 2002.
    [222]徐兆凯等.东菲律宾海沉积物的地球化学特征与物质来源.科学通报, 2008. 53(6): 695-702.
    [223]徐兆凯.东菲律宾海铁锰结壳(核)成因与古海洋环境响应. 2007,中国科学院海洋研究所,博士学位论文.
    [224]杨清良,陈兴群.西太平洋水域浮游生物论文集:海洋出版社, 1984.
    [225]杨世民,董树刚.中国海域常见浮游硅藻图谱.青岛:中国海洋大学出版社, 2006.
    [226]于秀林,任雪松.多元统计分析.北京:中国统计出版社, 1999
    [227]张富元等.深海沉积物分类与命名.海洋与湖沼, 2006. 37(6): 517-523.
    [228]张弦等.菲律宾海及其邻近海区的水文特征.海洋通报, 2004. 23(1): 8-14.
    [229]周廷儒.中国第二纪第四纪以来地带性与非地带性的分化.北京师范大学学报(自然科学版), 1960. 2: 63-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700