用户名: 密码: 验证码:
新信号分子SH2D4A调节细胞增殖和凋亡的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     SH2D4A是本实验室利用外显子捕获技术在人染色体疾病基因富含区域8p22克隆得到的只具有单一SH2结构域的SH2信号蛋白家族的新成员。在前期研究中我们发现SH2D4A亚细胞定位于细胞质,并在许多组织中表达。由100个氨基酸组成的SH2结构域可以介导蛋白质之间相互作用,能特异性识别并结合磷酸化的酪氨酸残基,参与和酪氨酸激酶相关的信号转导过程。具有SH2结构域的蛋白质大部分是含有多种结构域的酶类信号蛋白或接头蛋白,在信号转导过程中除了介导蛋白质之间相互作用,还调节相关的催化亚单位。我们克隆的SH2D4A具有典型的SH2结构域,提示其可能与酪氨酸激酶型受体结合,在酪氨酸激酶的相关信号转导通路中发挥作用,但除SH2结构域外SH2D4A不具有其它结构域,提示它可能具有不同于其他SH2信号蛋白的生物学功能。迄今为止尚无有关SH2D4A生物学功能的详细报道。
     本研究中我们构建了野生型和缺陷型SH2D4A表达载体,通过MTT和流式细胞术检测SH2D4A对细胞增殖和凋亡的影响。由于胰岛素样生长因子Ⅱ(IGFⅡ)可以通过典型的酪氨酸激酶型受体—胰岛素样生长因子Ⅰ受体(IGFⅠR)促进细胞增殖抑制细胞凋亡,因此我们检测了IGFⅡ刺激下SH2D4A对细胞增殖和凋亡的影响;同时检测了与细胞增殖和凋亡都相关的信号激酶—蛋白激酶C(PKC)以及可以激活PKC的第二信使—Ca~(2+),分析SH2D4A影响细胞增殖和凋亡的可能机制。
     为发现与SH2D4A相互作用的上游受体蛋白,我们以SH2D4A为诱饵蛋白应用酵母双杂交技术筛选肾脏cDNA文库,筛选发现雌激素受体α亚型(ERα)能够与SH2D4A相互作用,并通过酵母双杂交验证实验、免疫共沉淀、GST pull-down三种不同方法验证了SH2D4A与ERα间的相互作用。
     由于有报道与SH2D4A结构极为相似的SH2信号家族成员—SH2结构域蛋白1A(SH2D1A)在淋巴细胞信号激活分子(SLAM)介导的信号转导中发挥抑制作用,调节T、B细胞间的协同作用,以及免疫细胞的增殖与凋亡;因此我们推测SH2D4A可能在信号转导通路中发挥相似的抑制作用,参与调节细胞的增殖与凋亡,并检测SH2D4A对ERα介导的信号通路的影响。我们发现磷脂酶Cγ亚型(PLC-γ)与ERα间存在相互作用,并通过对细胞增殖、凋亡和PKC活性的检测,揭示SH2D4A对雌激素(E2)/ERα介导的生物学效应的影响和产生此影响的分子机制。SH2D4A对E2/ERα诱导的细胞增殖的抑制作用提示SH2D4A可能应用于ERs相关肿瘤的治疗。以上研究结果为深入探讨SH2D4A的生物学特性和开发其应用价值奠定了坚实基础。
     材料与方法
     一、实验材料
     1、人胚肾细胞系HEK293
     2、构建表达载体相关试剂
     3、MTT检测相关试剂
     4、流式细胞术检测相关试剂
     5、PKC活性荧光检测试剂盒
     6、Fluo-3AM荧光染料
     7、Western印迹杂交相关试剂
     8、酵母双杂交实验相关试剂
     9、免疫共沉淀(IP)相关试剂
     10、GST pull-down相关试剂
     11、常用实验设备如荧光分光光度计、紫外分光光度计、酶标仪、流式细胞仪、自动凝胶成像分析仪、全温振荡培养箱等。
     12、常用数据库及分析软件如基因组数据库、蛋白质分析数据库、凝胶成像及扫描分析软件、引物设计软件(Primer3)、SPSS version 13.0等。
     二、实验方法
     1、应用DNA重组技术构建缺失SH2结构域的缺陷型SH2D4A表达载体pSH2D4A-Delet,检测SH2结构域在SH2D4A中的作用。
     2、通过MTT方法绘制生长曲线,检测SH2D4A对细胞增殖的影响。
     3、应用流式细胞术通过单染和双染技术检测SH2D4A对细胞周期、细胞增殖和凋亡的影响。
     4、应用PepTag荧光试剂盒检测SH2D4A对细胞内蛋白激酶C(PKC)活性的影响,及IGFⅡ和E2刺激下SH2D4A对胞内PKC活性的调节。
     5、应用Fluo-3AM荧光染料检测SH2D4A对细胞内Ca~(2+)浓度([Ca~(2+)]_i)的影响,及IGFⅡ和E2刺激下SH2D4A对胞内Ca~(2+)浓度的调节。
     6、构建pAD/ERα表达载体;应用酵母双杂交筛选和检测技术,发现和证明酵母细胞中SH2D4A与ERα的相互作用。
     7、通过酶切、连接和转化等技术构建含有HA标签的野生型SH2D4A表达载体pSH2D4A-HA;应用免疫共沉淀方法,分别利用HA、ERα或磷脂酶C-γ(PLC-γ)抗体进行免疫沉淀,并使用相应抗体为一抗进行Western印迹杂交,分别检测SH2D4A与ERα,PLC-γ与ERα的相互作用,及SH2D4A对PLC-γ与ERα相互作用的影响。
     8、构建pGST/SH2D4A及pGST/ERα表达载体;应用GST pull-down技术在体外双向鉴定SH2D4A与ERα间的相互作用。
     结果
     1、构建缺陷型SH2D4A表达载体、pAD/ERα表达载体、pSH2D4A-HA表达载体、pGST/SH2D4A和pGST/ERα表达载体,为深入研究SH2D4A的生物学特性奠定基础。
     2、通过MTT和流式细胞术单染和双染技术检测到SH2D4A抑制细胞增殖,促进细胞凋亡,并且SH2D4A对IGFⅡ的促增殖和抗凋亡作用都有抑制作用,但SH2D4A只能抑制E2的促增殖作用,而对E2的抗凋亡作用没有影响。
     3、应用PepTag试剂盒检测细胞内PKC活性发现SH2D4A能够抑制PKC的激活,并能够阻止IGFⅡ和E2激活胞内PKC。
     4、通过荧光染料检测细胞内ca~(2+)浓度,发现SH2D4A能够抑制IGFⅡ和E2上调Ca~(2+)浓度。
     5、酵母双杂交筛选发现ERα可能与SH2D4A相互作用,酵母双杂交检测实验证实了SH2D4A与ERα间的相互作用。
     6、转染细胞后提蛋白进行免疫共沉淀实验,实验结果证明SH2D4A与ERα间存在相互作用。
     7、诱导、纯化融合蛋白GST-SH2D4A和GST-ERα,GST pull-down实验结果证明SH2D4A与ERα的相互作用是直接的,不借助于真核细胞中的其他任何蛋白。
     8、通过免疫共沉淀实验发现PLC-γ能够与ERα结合,且SH2D4A能够与PLC-γ竞争结合于ERα。
     结论
     1、SH2D4A通过影响PKC信号转导通路抑制细胞增殖、促进细胞凋亡。
     2、SH2D4A与ERα及PLC-γ与ERα之间存在相互作用,而SH2D4A与PLC-γ竞争结合ERα,通过ERα/PLC-γ/PKC信号通路调节细胞增殖。
Introduction
     SH2 domain containing 4A(SH2D4A) is a novel protein of the SH2 signaling protein family that only contains a single SH2 domain.We cloned the SH2D4A gene from the human chromosome 8p22 region,and indicated SH2D4A protein is located in the cytoplasm and is expressed ubiquitously.The SH2 domain is the prototype for protein-protein interaction modules,binds to a phosphotyrosine,and mediates the formation of multiprotein complexes in protein tyrosine kinase pathways.SH2 domains are typically found in multidomain signaling enzymes or in adaptor proteins,where they mediate protein-protein interactions and regulate associated catalytic subunits.The lack of additional domains in SH2D4A suggests that it is unlikely to function in either of these roles.However,only a few reports of SH2D4A have been published so far,and its detailed biological function is still poorly understood.
     To investigate the biological function of SH2D4A,we constructed SH2D4A expression vector and its SH2 domain-deleted expression vector,and detected the effect of SH2D4A on cell proliferation and apoptosis using MTT assay and Flow-cytometric analyses and protein kinase C(PKC) activity assay.The data showed that SH2 domain is the functional domain of SH2D4A,and SH2D4A inhibited cell proliferation and promoted cell apoptosis.Furthermore,SH2D4A suppressed the insulin-like growth factorⅡ(IGFⅡ)-induced Ca~(2+)release and PKC activation.Therefore,these findings suggested that SH2D4A inhibited cell proliferation and promoted cell apoptosis by suppression of PKC signaling pathway.
     We further performed a yeast two-hybrid screen using SH2D4A as the bait and found SH2D4A directly bind to estrogen receptorα(ERα).Co-immunoprecipitation and GST pull-down assays further confirmed their interaction.
     We also demonstrated an inhibitory effect of SH2D4A on estrogen-induced cell proliferation.We showed that this effect was due to suppression of a non-genomic action of ERαvia an ERα/phospholipase C-γ(PLC-γ)/PKC signaling pathway.In addition,we confirmed a new relationship among SH2D4A,ERα,and PLC-γ.SH2D4A may be useful for the development of a new anti-cancer drug acting as an ER signaling modulator.Our findings provide insight into the biological function of SH2D4A.
     Materials and Methods
     Materials
     1、Human embryonic kidney cell line(HEK293)
     2、Reagents for construction expression vector
     3、Reagents for Microculture tetrazolium(MTT) assay.
     4、Reagents for Flow-cytometric analyses.
     5、Reagents for PKC activity assay.
     6、Fluorescent probe Fluo-3/AM
     7、Reagents for Western blot
     8、Reagents for Yeast two-hybrid screen and assay
     9、Reagents for Co-immunoprecipitation
     10、Reagents for GST pull-down assay
     11、Equipments for experiments:fluorospectrophotometer,UV spectrophotometer, microplate spectrophotometer,flowcytometry,gel-formatter,oscillatory incubator et al.
     12、Database and software:genome data base,protein analytic data base,analytic software of imaging and scanning,Primer3,SPSS version 13.0 et al.
     Methods
     1、To investigate the biological function of SH2 domain in SH2D4A,we constructed SH2 domain-deleted expression vector pSH2D4A-Delet by enzymatic digestion,ligation and transform technique.
     2、The MTT assay was performed to test the effect of SH2D4A in cell rpoliferation.
     3、Flow-cytometric analyses was used to observe the influence of in cell cycle,cell proliferation and cell apoptosis.
     4、The IGFⅡor estrogen-induced activation of PKC was measured by the PepTag Protein Kinase Assay.
     5、Changes in Ca~(2+) concentration were measured by the Ca~(2+)-sensitive fluorescent probe Fluo-3/AM.
     6、Through constructed pAD/ERα,yeast two-hybrid screen and assay were performed to investigate the interaction between SH2D4A and ERa.
     7、After constructed pSH2D4A-HA,co-immunoprecipitation was performed to investigate the relationship among SH2D4A,ERαand PLC-γ.
     8、After constructed pGST/SH2D4A and pGST/ERα,GST pull-down was performed to confirmed the directly interaction between SH2D4A and ERα.
     Results
     1、Constructions of expression vectors,such as pAD/ERα,pSH2D4A-HA, pGST/SH2D4A and pGST/ERα,provided the bases for investigating the biological function of SH2D4A.
     2、SH2D4A was found to inhibite cell proliferation and promote apoptosis. SH2D4A also suppressed IGFⅡ-induced cell proliferation and its anti-apoptosis effect. But SH2D4A only arrested estrogen-induced cell proliferation and didn't influence its anti-apoptosis effect.
     3、The activity of PKC was measured by PepTag Protein Kinase Assay.SH2D4A was observed to inhibit the activation of PKC,and suppressed the IGFⅡor estrogen-induced activation of PKC
     4、The concentration of intracellular Ca~(2+) was tested using a fluorescent probe. SH2D4A arrested the IGFⅡor estrogen-induced release of Ca~(2+).
     5、We found the interaction between ERαand SH2D4A in yeast two-hybrid screen, and verified this interaction via the yeast two-hybrid assay.SH2D4A interacted with ERαin yeast cell.
     6、We further investigated the interaction between SH2D4A and ERαin vivo using co-immunoprecipitation assay.The data confirmed the interaction of SH2D4A with ERαin eukaryotic cells.
     7、After expression-inducion and purification of fusion protein,GST pull-down assays were used to determine the interaction between SH2D4A and ERαin vitro.The interaction between SH2D4A and ERαwas direct and independent on additional proteins in the cells.
     8、In the co-immunoprecipitation assay,PLC-γinteracted with ERαin bidirectional reactions,and this interaction was suppressed by SH2D4A.
     Conclusion
     1、SH2D4A regulated cell proliferation and apoptosis by suppression of PKC signaling pathway.
     2、SH2D4A directly interacted with ERα;PLC-γ,interacted with ERα;SH2D4A competed with PLC-γfor binding to ERαand regulated cell proliferation via an ERα/PLC-γ/PKC signal pathway.
引文
1戴书萍 赵彦艳 丁茜.SH2信号蛋白家族新成员-SH2D4A基因的克隆及其特性分析.中华医学遗传学杂志,2002,19:458-462.
    2丁茜 赵彦艳 孙志军等.SH2D4A基因对细胞信号转导的影响及其亚细胞定位.中华医学遗传学杂志。2003;20:499-503.
    3Moran MF,Koch CA,Anderson D,et al.Src homology region 2 domains direct protein-protein interactions in signal transduction.Proc Natl Acad Sci U S A.1990;87:8622-8626.
    4M Tomizawa,H Saisho.Signaling pathway of insulin-like growth factor-Ⅱ as a target of molecular therapy for hepatoblastoma.World J Gastroenterol 2006;12:6531-6535.
    5Sayos J,Wu C,Morra M,et al.The X-linked lymphoproliferative-disease gene product SH2D1A regulates signals induced through the co-receptor SLAM.Nature.1998;395:462-469.
    6Qi H,Cannons JL,Klauschen F,et al.SH2D1A-controlled T-B cell interactions underlie germinal centre formation.Nature.2008;455:764-769.
    7Mosmann T.Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays.J Immunol Methods.1983;65:55-63.
    8Granerus M,Bierke P,Zumkeller W,et al.Insulin-like growth factor Ⅱ prevents apoptosis in a human teratoma derived cell line.Clin Mol Pathol.1995;48:M 153-M 157.
    9Romano G.The complex biology of the receptor for the insulin-like growth factor-1.Drug News Perspect.2003;16:525-531.
    10Ottenhoff-Kalff AE,Rijksen G,van Beurden EA,et al.Characterization of protein tyrosine kinases from human breast cancer:involvement of the c-src oncogene product.Cancer Res.1992;52:4773-4778.
    11Rozakis-Adcock M,Fernley R,Wade J,et al.The SH2 and SH3 domains of mammalian Grb2couple the EGF receptor to the Ras activator mSosl.Nature 1993;363:83-85.
    12Sayeski PP,Ali MS.The critical role of c-Src and the Shc/Grb2/ERK2 signaling pathway in angiotensin Ⅱ-dependent VSMC proliferation.Exp Cell Res.2003;287:339-349.
    13 Saxton TM,Cheng AM,Ong SH,et al.Gene dosage-dependent functions for phosphotyrosine-Grb2 signaling during mammalian tissue morphogenesis.Curr Biol.2001;11:662-670.
    14 Cheng AM,Saxton TM,Sakai R,et al.Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation.Cell.1998;95:793-803.
    15 Nishizuka Y.Studies and perspectives of protein kinase C.Science.1986;233:305-312.
    16 House C,Kemp BE.Protein kinase C contains a pseudosubstrate prototope in its regulatory domain.Science.1987;238:1726-1728.
    17 Eicholtz T,de Bont DB,Widt J,et al.A myristoylated pseudo substrate peptide,a novel protein kinase C inhibitor.J Biol Chem.1993;268:1982-1986.
    18 Tasinato A,Boscoboinik D,Bartoli GM,et al.d-alpha-tocopherol inhibition of vascular smooth muscle cell proliferation occurs at physiological concentrations,correlates with protein kinase C inhibition,and is independent of its antioxidant properties.Proc Natl Acad Sci U S A.1995;92:12190-12194.
    19 Salamanca DA,Khalil RA.Protein kinase C isoforms as specific targets for modulation of vascular smooth muscle function in hypertension.Biochemical Pharmacology.2005;70:1537-1547.
    20 Taylor SJ,Chae HZ,Rhee SG,et al.Activation of the beta 1 isozyme of phospholipase C by alpha subunits of the Gq class of G proteins.Nature.1991;350:516-518.
    21 Anderson D,Koch CA,Grey L,et al.Binding of SH2 domains of phospholipase C-gamma,GAP,and Src to activated growth factor receptors.Science.1990;250:979-982.
    22 Kim HK,Kim JW,Zilberstein A,et al.PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma phosphorylation on tyrosine residues 783 and 1254.Cell.1991;65:435-441.
    23 Reeve AE,Eccles MR,Wilkins RJ,et al.Expression of insulin-like growth factor-Ⅱ transcripts in Wilms' tumour.Nature.1985;317:258-262.
    24 Boulle N,Logie A,Gicquel C,et al.Increased levels of insulin-like growth factor Ⅱ(IGF-Ⅱ)and IGF-binding protein 2 are associated with malignancy in sporadic adrenocortical tumors.J Clin Endocrinol Metab.1998;83:1713-1720.
    25 Takada S,Kondo M,Kumada T,et al.Allelic-expression imbalance of the insulin-like growth factor 2 gene in hepatocellular carcinoma and underlying disease.Oncogene.1996;12:1589-1592.
    26 Resnik JL,Reichart DB,Huey K,et al.Elevated Insulin-like growth factor I receptor autophosphorylation and kinase activity in human breast cancer.Cancer Res 1998;58:1159-1164.
    27 Kaiser U,Schardt C,Brandscheidt D,et al.Expression of insulin-like growth factor receptors Ⅰ and Ⅱ in normal human lung and in lung cancer.J Cancer Res Clin Oncol.1993;119:665.
    28 Steller MA,Delgado CH,Bartels CJ,et al.Overexpression of the insulin-like growth factor 1 receptor and autocrine stimulation in human cervical cancer cells.Cancer Res.1996;15:1761-1765.
    29 Parker AS,Cheville JC,Janney CA,et al.High expression levels of insulin-like growth factor-I receptor predict poor survival among women with clear-cell renal cell carcinoma.Hum Pathol.2002;33:801-805.
    30 Werner H,Re GG,Drummond IA,et al.Increased expression of the insulin-like growth factor I receptor gene,IGF1R,in Wilms tumor is correlated with modulation of IGF1R promoter activity by the WT1 Wilms tumor gene product.Proc Natl Acad Sci U S A.1993;90:5828-5832.
    31 Rual JF,Venkatesan K,Hao T,et al.Towards a proteome-scale map of the human protein-protein interaction network.Nature.2005;437:1173-1178.
    32 Ewing RM,Chu P,Elisma F,et al.Large-scale mapping of human protein-protein interactions by mass spectrometry.Mol Syst Biol.2007;3:89.
    33 Migliaccio A,Castoria G,Di Domenico M,et al.Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation.EMBO J.2000;19:5406-5417.
    34 Song RX,McPherson RA,Adam L,et al.Linkage of rapid estrogen action to MAPK activation by ERalpha-Shc association and She pathway activation.Mol Endocrinol.2002;16: 116-127.
    35 Kuriyan J,Cowburn D.Modular peptide recognition domains in eukaryotic signaling.Annu Rev Biophys Biomol Struct.1997;26:259-288.
    36 Waksman G,Shoelson SE,Pant N,et al.Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain:crystal structures of the complexed and peptide-free forms.Cell.1993;72:779-790.
    37 Eck MJ,Shoelson SE,Harrison SC.Recognition of a highaffinity phosphotyrosyl peptide by the Src homology-2 domain of p561ck.Nature.1993;362:87-91.
    38 Songyang Z,Shoelson SE,Chaudhuri M,et al.SH2 domains recognize specific phosphopeptide sequences.Cell.1993;72:767-778.
    39 Pawson T.Protein modules and signaling networks.Nature.199.5;373:573-580
    40 Pawson T,Gish GD,Nash P.SH2 domains,interaction modules and cellular wiring.Trends Cell Biol.2001;11:504-511.
    41 Birge RB,Knudsen BS,Besser D,et al.SH2 and SH3-containing adaptor proteins:redundant or independent mediators of intracellular signal transduction.Genes Cells.1996;1:595-613.
    42 Pawson T.Specificity in signal transduction:from phosphotyrosine-SH2 domain interactions to complex cellular systems.Cell.2004;116:191-203.
    43 Schlessinger J,Lemmon MA.SH2 and PTB domains in tyrosine kinase signaling.Sci STKE.2003;2003:RE12.
    44 Yaffe MB.Phosphotyrosine-binding domains in signal transduction.Nat Rev Mol Cell Biol.2002;3:177-186.
    45 Li SC,Gish G,Yang D,et al.Novel mode of ligand binding by the SH2 domain of the human XLP disease gene product SH2D1A/SH2D1A.Curr Biol.1999;9:1355-1362.
    46 Morra M,Simarro-Grande M,Martin M,et al.Characterization of SH2D1A missense mutations identified in X-linked lymphoproliferative disease patients.J Biol Chem.2001;276:36809-36816.
    47 Poy F,Yaffe MB,Sayos J,et al.Crystal structures of the XLP protein SH2D1A reveal a class of SH2 domains with extended,phosphotyrosineindependent sequence recognition.Mol Cell. 1999;4:555-561.
    48 Kumar V,Green S,Stack G,et al.Functional domains of the human estrogen receptor.Cell.1987;51:941-951.
    49 Endoh H,Sasaki H,Maruyama K,et al.Rapid activation of MAP kinase by estrogen in the bone cell line.Biochem Biophys Res Commun.1997;235:99-102.
    50 Di Domenico M,Castoria G,Bilancio A,et al.Estradiol activation of human colon carcinoma-derived Caco-2 cell growth.Cancer Res.1996;56:4516-4521.
    51 Kahlert S,Nuedling S,van Eickels M,et al.Estrogen receptor alpha rapidly activates the IGF-1 receptor pathway.J Biol Chem.2000;275:18447-18453.
    52 Razandi M,Pedram A,Park ST,et al.Proximal events in signaling by plasma membrane estrogen receptors.J Biol Chem.2003;278:2701-2712.
    53 Fromont-Racine M,Rain JC,Legrain P.Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens.Nat Genet.1997;16:277-282.
    54 Harlow E,Whyte P,Franza BR Jr,et al.Association of adenovirus early-region 1A proteins with cellular polypeptides.Mol Cell Biol.1986;6:1579-1589.
    55 McMahon SB,Van Buskirk HA,Dugan KA,et al.The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins.Cell.1998;94:363-374.
    56 Lapinski PE,Oliver JA,Kamen LA,et al.Genetic analysis of SH2D4A,a novel adapter protein related to T cell-specific adapter and adapter protein in lymphocytes of unknown function,reveals a redundant function in T cells.J Immunol.2008;181:2019-2027.
    57 Marino M,Distefano E,Trentalance A,et al.Estradiol-induced IP(3)mediates the estrogen receptor activity expressed in human cells.Mol Cell Endocrinol.2001;182:19-26.
    58 Marino M,Pallottini V,Trentalance A.Estrogens Cause Rapid Activation of IP3-PKC-alpha Signal Transduction Pathway in HEPG2 Cells.Biochem Biophys Res Commun.1998;245:254-258.
    59 Marino M,Acconcia F,Bresciani F,et al.Distinct Nongenomic Signal Transduction Pathways Controlled by 17 beta-Estradiol Regulate DNA Synthesis and Cyclin Dl Gene Transcription in HepG2 Cells.Mol Biol Cell.2002;13:3720-3729.
    60 Castoria G,Barone MV,Di Domenico M,et al.Non-transcriptional action of oestradiol and progestin triggers DNA synthesis.EMBO J.1999;18:2500-2510.
    61 Migliaccio A,Di Domenico M,Castoria G,et al.Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells.EMBO J.1996;15:1292-1300.
    62 Marino M,Distefano E,Caporali S,et al.beta-estradiol stimulation of DNA synthesis requires different PKC isoforms in HepG2 and MCF7 cells.J Cell Physiol.2001;188:170-177.
    63 Vasconsuelo A,Milanesi L,Boland R.17Beta-estradiol abrogates apoptosis in murine skeletal muscle cells through estrogen receptors:role of the phosphatidylinositol 3-kinase/Akt pathway.J Endocrinol.2008;196:385-397.
    64 Shirai T,Tanaka K,Terada Y,et al.Specific detection of phosphatidylinositol 3,4,5-trisphosphate binding proteins by the PIP3 analogue beads:an application for rapid purification of the PIP3 binding proteins.Biochim Biophys Acta.1998;1402:292-302.
    65 Carnero A,Blanco-Aparicio C,Renner O,et al.The PTEN/PI3K/AKT signalling pathway in cancer,therapeutic implications.Curr Cancer Drug Targets.2008;8:187-198.
    66 Rhee SG,Suh PG,Ryu SH,et al.Studies of inositol phospholipid-specific phospholipase C.Science.1989;244:546-550.
    67 Alfonso B,Orsolina P,Andrea DL,et al.17-beta Estradiol Elicits an Autocrine Leiomyoma Cell Proliferation:Evidence for a Stimulation of Protein Kinase-Dependent Pathway.J Cell Physiol.2001;186:414-424.
    68 Song RX,Barnes CJ,Zhang Z,et al.The role of She and insulin-like growth factor 1 receptor in mediating the translocation of estrogen receptor alpha to the plasma membrane.Proc Natl Acad Sci U S A.2004;101:2076-2081.
    69 Schwartzberg PL,Xing L,Hoffmann O,et al.Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src-/-mutant mice.Genes Dev.1997;11:2835-2844.
    70 Paul M,James FW,Barbara CV,et al.A New,Nongenomic Estrogen Action:The Rapid Release of Intracellular Calcium.Endocrinology.1992;131:1305-1312.
    71 Gabriela P,Guillermo V,Ricardo B.17beta-Oestrogen increases intracellular Ca~(2+)concentration in rat enterocytes,Potential role of phospholipase C-dependent store-operated Ca~(2+)influx.Biochem J.1999;339:71-77.
    1 Salamanca DA,Khalil RA.Protein kinase C isoforms as specific targets for modulation of vascular smooth muscle function in hypertension.Biochemical Pharmacology.2005;70:1537-1547.
    2 Hofmann J.The potential for isoenzyme2selective modulation of protein kinase C.FASEB J.1997;11:649-669.
    3 Johannes FJ,Prestle J,Eis S,et al.PKC mu is a novel,atypical member of the protein kinase C family.J Bio Chem.1994;269:6140-6148.
    4 Nishizuka Y.Intracellular signaling by hydrolysis of phospholipids and activation of PKC.Science.1992;258:607-614.
    5 House C,Kemp BE.Protein kinase C contains a pseudosubstrate prototope in its regulatory domain.Science.1987;238:1726-1728.
    6 Newton AC.Protein kinase C:structure,function,and regulation.J Biol Chem.1995;270:28495-28498.
    7 Kanashiro CA,Khalil RA.Signal transduction by protein kinase C in mammalian cells.Clin Exp Pharmacol Physiol.1998;25:974-985.
    8 Khalil RA,Morgan KG.Imaging of protein kinase C distribution and translocation in living vascular smooth muscle cells.Circ Res.1991;69:1626-1631.
    9 Khalil RA,Lajoie C,Morgan KG.In situ determination of[Ca~(2+)]i threshold for translocation of the a-protein kinase C isoform.Am J Physiol.1994;266:C1544-C1551.
    10 Liou YM,Morgan KG.Redistribution of protein kinase C isoforms in association with vascular hypertrophy of rat aorta.Am J Physiol.1994;267:980-989.
    11 Horowitz A,Menice CB,Laporte R,et al.Mechanisms of smooth muscle contraction.Physiol Rev.1996;76:967-1003.
    12 Aviv A.Cytosolic Ca~(2+),Na+/H+ antiport,protein kinase C trio in essential hypertension.Am J Hypertens.1994;7:205-212.
    13 Cogolludo A,Moreno L,Lodi F,et al.Postnatal maturational shift from PKC zeta and voltage-gated K+ channels to RhoA/Rho kinase in pulmonary vasoconstriction.Cardiovasc Res.2005;66:84-93.
    14 Barman SA,Zhu S,White RE.Protein kinase C inhibits BKCa channel activity in pulmonary arterial smooth muscle.Am J Physiol Lung Cell Mol Physiol.2004;286:L149-L55.
    15 Bazzi MD,Nelseusten GL.Protein kinase C interaction with calcium:a phospholipid-dependent process.Biochemistry.1990;29:7624-7630.
    16 Nishizuka Y.Protein kinase C and lipid signaling for sustained cellular responses.FASEB J.1995;9:484-496.
    17 Edwards AS,Newton AC.Phosphorylation at conserved carboxylterminal hydrophobic motif regulates the catalytic and regulatory domains of protein kinase C.J Biol Chem.1997;272:18382-18390.
    18 Eicholtz T,de Bont DB,Widt J,et al.A myristoylated pseudo substrate peptide,a novel protein kinase C inhibitor.J Biol Chem.1993;268:1982-1986.
    19 Clement S,Tasinato A,Boscoboinik D,et al.The effect of atocoferol on the synthesis,phosphorylation and activity of protein kinase C in smooth muscle cells after phorbol 12-myristate 13-acetate.Eur J Biochem.1997;246:745-749.
    20 Cain AE,Khalil RA.Pathophysiology of essential hypertension:role of the pump,the vessel,and the kidney.Semin Nephrol.2002;22:3-16.
    21 Mulvany MJ,Aalkjaer C.Structure and function of small arteries.Physiol Rev.1990;70:921-961.
    22 Aalkjaer C,Heagerty AM,Petersen KK,et al.Evidence for increased media thickness,increased neuronal amine uptake,and depressed excitation-contraction coupling in isolated resistance vessels from essential hypertensives.Circ Res.1987;61:181-186.
    23 Greene EL,Lu G,Zhang D,et al.Signaling events mediating the additive effects of oleic acid and angiotensin Ⅱ on vascular smooth muscle cell migration.Hypertension.2001;37:308-312.
    24 Goerke A,Sakai N,Gutjahr E,et al.Induction of apoptosis by protein kinase C delta is independent of its kinase activity.J Biol Chem.2002;277:32054-32062.
    25 Naftilan AJ.The role of angiotensin Ⅱ in vascular smooth muscle cell growth.J Cardiovasc Pharmacol.1992;20(suppl 1):S37-S40.
    26 Liu G,Wang H,Ou D,et al.Endothelin-1,an important mitogen of smooth muscle cells of spontaneously hypertensive rats.Chin Med J(Engl).2002;115:750-752.
    27 Berk BC.Vascular smooth muscle growth:autocrine growth mechanisms.Physiol Rev.2001;81:999-1030.
    28 Li C,Xu Q.Mechanical stress-initiated signal transductions in vascular smooth muscle cells.Cell Signal.2000;12:435-445.
    29 Mulvany MJ.Small artery remodeling in hypertension.Curr Hypertens Rep.2002;4:49-55.
    30 Rosen B,Barg J,Zimlichman R.The effects of angiotensin Ⅱ,endothelin-1,and protein kinase C inhibitor on DNA synthesis and intracellular calcium mobilization in vascular smooth muscle cells from young normotensive and spontaneously hypertensive rats.Am J Hypertens.1999;12:1243-1251.
    31 Han O,Takei T,Basson M,et al.Translocation of PKC isoforms in bovine aortic smooth muscle cells exposed to strain.J Cell Biochem.2001;80:367-372
    32 Johnse DD,Kacimi R,Anderson BE,et al.Protein kinase C isozymes in hypertension and hypertrophy:insight from SHHF rat hearts.Mol Cell Biochem.2005;270:63-69.
    33 Wang S,Desai D,Wright G,et al.Effects of protein kinase C alpha overexpression on A7r5 smooth muscle cell proliferation and differentiation.Exp Cell Res.1997;236:117-126.
    34 Inagaki K,Iwanga Y,Sarai N,et al.Tissue angiotensin Ⅱ during progression or ventricular hypertrophy to heart failure in hypertensive rats;differential effects on PKC epsilon and PKC beta.J Mol Cell Cardiol.2002;34:1377-1385.
    35 Fukumoto S,Nishizawa Y,Hosoi M,et al.Protein kinase C delta inhibits the proliferation of vascular smooth muscle cells by suppressing Gl cyclin expression.J Biol Chem.1997;272:13816-13822.
    36 Okazaki J,Mawatari K,Liu B,et al.The effect of protein kinase C and its alpha subtype on human vascular smooth muscle cell proliferation,migration and fibronectin production.Surgery.2000;128:192-197.
    37 Yano K,Bauchat JR,Liimatta MB,et al.Down-regulation of protein kinase C inhibits insulin-like growth factor I-induced vascular smooth muscle cell proliferation,migration,and gene expression.Endocrinology.1999;140:4622-4632.
    38 Leng L,Du B,Consigli S,et al.Translocation of protein kinase C-delta by PDGF in cultured vascular smooth muscle cells:inhibition by TGF-beta 1.Artery.1996;22:140-154.
    39 Parmentier JH,Pavicevic Z,Malik KU.ANG Ⅱ stimulates phospholipase D through PKC zeta activation in VSMC:implications in adhesion,spreading and hypertrophy.Am J Physiol Heart Circ Physiol.2006;290;H46-54.
    40 Bell PD,Mashburn N,Unlap MT.Renal sodium/calcium exchange;a vasodilator that is defective in salt-sensitive hypertension.Acta Physiol Scand.2000;168:209-214.
    41 Shang T,Qiao C.Study on the activity of platelets protein kinase C in patients with pregnancy induced hypertension.Zhonghua Fu Chan Ke Za Zhi.1998;33:201-203.
    42 Plata C,Ribio V,Gamba G.Protein kinase C activation reduces the function of the Na(+):K(+):2C1(-) cotransporter in Xenopus laevis oocytes.Arch Med Res.2000;31:21-27.
    1 Sadowski I,Stone JC,Pawson T.A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps.Mol Cell Biol 1986;6:4396-4408.
    2 Koch CA,Anderson D,Moran MF,et al.SH2 and SH3 domains:elements that control interactions of cytoplasmic signaling proteins.Science.1991;252:668-674.
    3 Pawson T,Schlessinger J.SH2 and SH3 domains.Current Biology 1993;3:434-442.
    4 Kuriyan J,Cowburn D.Modular peptide recognition domains in eukaryotic signaling.Annu Rev Biophys Biomol Struct.1997;26:259-288.
    5 Waksman G,Shoelson SE,Pant N,et al.Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain:crystal structures of the complexed and peptide-free forms.Cell.1993;72:779-790.
    6 Eck MJ,Shoelson SE,Harrison SC.Recognition of a highaffinity phosphotyrosyl peptide by the Src homology-2 domain of p561ck.Nature.1993;362:87-91.
    7 Songyang Z,Shoelson SE,Chaudhuri M,et al.SH2 domains recognize specific phosphopeptide sequences.Cell.1993;72:767-778.
    8 Songyang Z,Shoelson SE,McGlade J,et al.Specific motifs recognized by the SH2 domains of Csk,3BP2,fps/fes,GRB-2,HCP,SHC,Syk,and Vav.Mol Cell Biol.1994;14:2777-2785.
    9 T Pawson.Protein modules and signaling networks.Nature.1995;373:573-580
    10 Pawson T,Gish GD,Nash P.SH2 domains,interaction modules and cellular wiring.Trends Cell Biol.2001;11:504-511.
    11 Birge RB,Knudsen BS,Besser D,et al.SH2 and SH3-containing adaptor proteins:redundant or independent mediators of intracellular signal transduction.Genes Cells.1996;1:595-613.
    12 Pawson T.Specificity in signal transduction:from phosphotyrosine-SH2 domain interactions to complex cellular systems.Cell.2004;116:191-203.
    13 Schlessinger J,Lemmon MA.SH2 and PTB domains in tyrosine kinase signaling.Sci STKE.2003;2003:RE12.
    14 Yaffe MB.Phosphotyrosine-binding domains in signal transduction.Nat Rev Mol Cell Biol. 2002;3:177-186.
    15 Pawson T,Scott JD.Signaling through scaffold,anchoring,and adaptor proteins.Science.1997;278:2075-2080.
    16 Jove R,Hanafusa H.Cell transformation by the viral src oncogene.Annu Rev Cell Biol.1987;3:31-56.
    17 Bolen JB,Rowley RB,Spana C,et al.The Src family of tyrosine protein kinases in hemopoietic signal transduction.FASEB J.1992;6:3403-3409.
    18 Young MA,Gonfloni S,Superti-Furga G,et al.Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation.Cell.2001;105:115-126
    19 Mayer BJ,Hanafusa H.Mutagenic analysis of the v-crk oncogene:requirement for SH2 and SH3 domains and correlation between increased cellular phosphotyrosine and transformation.J Virol.1990;64:3581-3589.
    20 Roussel RR,Brodeur SR,Shalloway D,et al.Selective binding of activated pp60c-src by an immobilized synthetic phosphopeptide modeled on the carboxyl terminus of pp60c-src.Proc Natl Acad Sci USA.1991;88:10696-10700.
    21 Superti-Furga G,Fumagalli S,Koegl M,et al.Csk inhibition of c-Src activity requires both the SH2 and SH3 domains of Src.EMBO.1993;12:2625-2634.
    22 Ottenhoff-Kalff AE,Rijksen G,van Beurden EA,et al.Characterization of protein tyrosine kinases from human breast cancer:involvement of the c-src oncogene product.Cancer Res.1992;52:4773-4778.
    23 Mazurenko NN,Kogan EA,Zborovskaya IB,et al.Expression of pp60c-src in human small cell and non-small cell lung carcinomas.Eur J Cancer.1992;28:372-377.
    24 Weber TK,Steele G,Summerhayes IC.Differential pp60c-src activity in well and poorly differentiated human colon carcinomas and cell lines.J Clin Invest.1992;90:815-821.
    25 Soriano P,Montgomery C,Geske R,et al.Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice.Cell.1991;64:693-702.
    26 Shokat KM.Tyrosine kinases:modular signaling enzymes with tunable specificities.Chem Biol.1995;2:509-514.
    27 Schwartzberg PL,Xing L,Hoffmann O,et al.Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src-/-mutant mice.Genes Dev.1997;11:2835-2844.
    28 Sawyer TK,Bohacek RS,Dalgarno DC,et al.SRC homology-2 inhibitors:peptidomimetic and nonpeptide,Mini Rev.Med.Chem.2002;2:475-488.
    29 Pacofsky GJ,Lackey K,Alligood KJ,et al.Potent dipeptide inhibitors of the pp60c-src SH2 domain.J Med Chem.1998;41:1894-1908.
    30 Lesuisse D,Lange G,Deprez P,et al.SAR and X-ray.A new approach combining fragmentbased screening and rational drug design:application to the discovery of nanomolar inhibitors of Src SH2.J Med Chem 2002;45:2379-2387.
    31 Mayer BJ,Hamaguchi M,Hanafusa H.A novel viral oncogene with structural similarity to phospholipase C.Nature.1988;332:272-275.
    32 Clark SG,Stern MJ,Horvitz HR.C.elegans cell signaling gene sem-5 encodes a protein with SH2 and SH3 domains.Nature.1992;356:340-344.
    33 Simon MA,Dodson GS,Rubin GM.An SH3-SH2-SH3 protein is required for p2Rasl activation and binds to sevenless and Sos proteins in vitro.Cell.1993;73:169-177.
    34 Garrity PA,Rao Y,Salecker I,et al.Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adaptor protein.Cell.1996;85:639-650.
    35 Tanaka M,Lu W,Gupta R,et al.Expression of mutated Nek SH2/SH3 adaptor respecifies mesodermal cell fate in Xenopus laevis development.Proc Natl Acad Sci USA.1997;94:4493-4498.
    36 Lowenstein EJ,Daly RJ,Batzer AG,et al.The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinase to ras signaling.Cell.1992;70:431-442.
    37 Koch CA,Anderson D,Moran MF,et al.SH2 and SH3 domains:Elements that control interactions of cytoplasmic signaling proteins.Science.1991;252:668-674.
    38 Rozakis-Adcock M,Fernley R,Wade J,et al.The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSosl.Nature 1993;363:83-85.
    39 Li N,Batzer A,Daly R,et al.Guanine-nucleotide-releasing factor hSosl binds to Grb2 and links receptor tyrosine kinases to Ras signaling.Nature 1993;363:85-88.
    40 Marshall CJ.MAP kinase kinase kinase,MAP kinase kinase,and MAP kinase.Curr Opin Genet Dev.1994;4:82-89.
    41 Buday L,Downward J.Epidermal growth factor regulates p21ras through the formation of a complex of receptor,Grb2 adapter protein,and Sos nucleotide exchange factor.Cell 1993;73:611-620.
    42 Egan SE,Giddings BW,Brooks MW,et al.Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation.Nature 1993;363:45-51.
    43 Sayeski PP,Ali MS.The critical role of c-Src and the Shc/Grb2/ERK2 signaling pathway in angiotensin Ⅱ-dependent VSMC proliferation.Exp Cell Res.2003;287:339-349.
    44 Olivier JP,Raabe T,Henkemeyer M,et al.A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange,Sos.Cell.1993;73:179-191.
    45 Simon MA,Dodson GS,Rubin GM,et al.An SH3-SH2-SH3 protein is required for p21Rasl activation and binds to sevenless and Sos proteins in vitro.Cell.1993;73:169-177.
    46 Saxton TM,Cheng AM,Ong SH,et al.Gene dosage-dependent functions for phosphotyrosine-Grb2 signaling during mammalian tissue morphogenesis.Curr Biol.2001;11:662-670.
    47 Cheng AM,Saxton TM,Sakai R,et al.Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation.Cell.1998;95:793-803.
    48 Takenawa T,Miki H,Matuoka K.Signaling through Grb2/Ashcontrol of the Ras pathway and cytoskeleton.Curr Top Microbiol Immunol.1998;228:325-342.
    49 Sayos J,Wu C,Morra M,et al.The X-linked lymphoproliferativedisease gene product SH2D1A regulates signals induced through the coreceptor SLAM.Nature.1998;395:462-469.
    50 Coffey AJ,Brooksbank RA,Brandau O,et al.Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene.Nat Genet.1998;20:129-135.
    51 Nichols KE,Harkin DP,Levitz S,et al.Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome.Proc Natl Acad Sci USA.1998;95:13765-13770.
    52 Morra M,Simarro-Grande M,Martin M,et al.Characterization of SH2D1A missense mutations identified in X-linked lymphoproliferative disease patients.J Biol Chem.2001;276:36809-36816.
    53 Poy F,Yaffe MB,Sayos J,et al.Crystal structures of the XLP protein SH2D1A reveal a class of SH2 domains with extended,phosphotyrosineindependent sequence recognition.Mol Cell.1999;4:555-561.
    54 Schuster V,Kreth HW.X-linked lymphoproliferative disease is caused by deficiency of a novel SH2 domain-containing signal transduction adaptor protein.Immunol Rev.2000;178:21-28.
    55 Castro AG,Hauser TM,Cocks BG,et al.Molecular and functional characterization of mouse signaling lymphocytic activation molecule (SLAM):differential expression and responsiveness in Thl and Th2 cells.J Immunol.1999;163:5860-5870.
    56 Sayos J,Nguyen KB,Wu C,et al.Potential pathways for regulation of NK and T cell responses:differential X-linked lymphoproliferative syndrome gene product SH2D1A interactions with SLAM and 2B4.Int Immunol.2000;12:1749-1757.
    57 Shlapatska LM,Mikhalap SV,Berdova AG,et al.CD 150 association with either the SH2-containing inositol phosphatase or the SH2-containing protein tyrosine phosphatase is regulated by the adaptor protein SH2D1A.J Immunol.2001;166:5480-5487.
    58 Hwang PM,Li C,Morra M,et al.A "three-pronged" binding mechanism for the SH2D1A/SH2D1A SH2 domain:structural basis and relevance to the XLP syndrome.EMBO J.2002;21:314-323.
    59 Li C,Iosef C,Jia CY,et al.Dual functional roles for the X-linked lymphoproliferative syndrome gene product SH2D1A/ SH2D1A in signaling through the signaling lymphocyte activation molecule (SLAM) family of immune receptors.J Biol Chem.2003;278:3852-3859.
    60 Shlapatska LM,Mikhalap SV,Berdova AG,et al.CD 150 association with either the SH2-containing inositol phosphatase or the SH2-containing protein tyrosine phosphatase is regulated by the adaptor protein SH2D1 A.J Immunol.2001;166:5480-5487.
    61 Latour S,Gish G,Helgason CD,et al.Regulation of SLAM-mediated signal transduction by SH2D1A,the X-linked lymphoproliferative gene product.Nat Immunol.2001;2:681-690.
    62 Veillette A.The SH2D1A family:a new class of adaptor-like molecules that regulates immune cell functions.Sci STKE.2002;2002:PE8.
    63 Tangye SG Phillips JH,Lanier LL,et al.Functional requirement for SH2D1A in 2B4-mediated activation of human natural killer cells as revealed by the X-linked lymphoproliferative syndrome.J Immunol.2000;165:2932-2936.
    64 Chan B,Lanyi A,Song HK,et al.SH2D1A couples Fyn to SLAM immune receptors.Nat Cell Biol.2003;5:155-160.
    65 Latour S,Roncagalli R,Chen R,et al.Binding of SH2D1A SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation.Nat Cell Biol.2003;5:149-154.
    66 Donaldson LW,Gish G,Pawson T,et al.Structure of a regulatory complex involving the Abl SH3 domain,the Crk SH2 domain,and a Crk-derived phosphopeptide.Proc Natl Acad Sci U S A.2002;99:14053-14058.
    67 Simarro M,Lanyi A,Howie D,et al.SH2D1A increases FynT kinase activity and is required for phosphorylation of SLAM and Ly9.Int Immunol.2004;16:727-736.
    68 Latour S,Veillette A.Molecular and immunological basis of Xlinked lymphoproliferative disease.Immunol Rev.2003;192:212-224.
    69 Sumegi J,Huang D,Lanyi A,et al.Correlation of mutations of the SH2D1A gene and Epstein-Barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease.Blood.2000;96:3118-3125.
    70 Sharifi R,Sinclair JC,Gilmour KC,et al.SH2D1A mediates specific cytotoxic T-cell functions in X-linked lymphoproliferative disease.Blood 2004;103:3821-3827.
    71 Veillette A,Latour S.The SLAM family of immune-cell receptors.Curr Opin Immunol.2003;15:277-285.
    72 Engel P,Eck MJ,Terhorst C.The SH2D1A and SLAM families in immune responses and X-linked lymphoproliferative disease.Nat Rev Immunol.2003;3:813-821.
    73 Chen R,Relouzat F,Roncagalli R,et al.Molecular dissection of 2B4 signaling:implications for signal transduction by SLAM-related receptors.Mol Cell Biol.2004;24:5144-5156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700