用户名: 密码: 验证码:
热带太平洋次表层海温变化及其与ENSO循环的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球变暖和各种极端天气事件发生频率的增加,气候变化已成为全世界关注的焦点问题,ENSO事件是年际尺度上气候变化的最强信号,它的影响波及到世界各地,所以,对ENSO事件进行深入研究,弄清其发生机制,具有重要的科学意义。虽然,目前对ENSO事件的研究已经取得了巨大成果,但仍不能对其发生发展的全过程进行准确的预测,因此,仍需要对其进行深入研究,本文正是从热带太平洋次表层温度场和流场的变化着手,对ENSO循环过程中的相关机理进行研究。
     通过对TOGA/TAO、SODA和NCEP等海洋大气实测和再分析资料的分析,研究了热带太平洋次表层海温和流场的变化特征,分析了它们的变化机理,进而深入探讨了它们与ENSO事件的相互关系,并利用全球海洋数值模式的敏感性试验,探讨了大气风场的变化对海洋次表层要素的影响,主要得到以下结论:
     1.上世纪70年代末的气候突变之后,用28℃定义西太平洋暖池(WPWP),已不能合理的描述WPWP的基本特征。我们通过对比分析提出,用28.5℃来定义WPWP更合理,这一定义即可以充分反映WPWP突变前的特征,又能够合理的反映WPWP突变后的特征;对新定义的WPWP区域不同深度的海温距平的分析表明,次表层(148m)海温距平的变化趋势和变化幅度与表层和深层的变化差异较大,次表层海温的变化幅度最大并且年代际变化趋势与上下层正好相反;进一步的研究表明,WPWP次表层海温的年代际变化与PDO的变化有一定关系。
     2.利用热带太平洋次表层海温的变化特征,定义了表征ENSO事件的新指数——赤道太平洋温跃层海温振荡指数(EPOI),与其它ENSO指数相比,EPOI将东、西太平洋次表层海温的变化信息都包括在内,能够较全面的反映出ENSO事件的变化特征,特别是EPOI可以较好的反映出ENSO循环的年代际变化特征。另外,EPOI的变化比ONI的变化超前2个月,更有利于对ENSO事件的提前预报。由于EPOI主要反映海洋次表层的变化特征,因此能够更好的满足对ENSO机理研究的需要。
     3.赤道潜流距平场的EOF分析表明,其前两个模态的方差贡献较大,第一模态方差贡献为30.75%,主要反映东太平洋赤道潜流的变化特征;第二模态方差贡献为16.18%,主要反映中太平洋赤道潜流的变化特征。赤道潜流前两个模态与ENSO指数的变化有很好的相关关系,其中东太平洋潜流在滞后ENSO指数1个月时,二者达到最大负相关(r=-0.74)。中太平洋赤道潜流的变化对“东部型”和“中部型”El Ni?o事件的形成有一定影响。“东部型”El Ni?o事件发生前,中太平洋赤道潜流异常增强,次表层异常海温信号随着潜流中心迅速向东移动到达东太平洋,使得“东部型”El Ni?o事件爆发;而“中部型”El Ni?o事件发生前,中太平洋赤道潜流则异常减弱,西太平洋异常海温信号不能迅速向东传播,而是在中西太平洋堆积并向上扩展,使得异常海温首先在中太平洋出现,“中部型”El Ni?o事件爆发。
     4. ENSO循环过程中,异常冷(暖)信号之所以在8oN-10oN附近向西传播的原因较多,其中温跃层深度在8oN-10oN的特殊分布特征对其有一定贡献,具体表现为在北半球8oN-10oN正好是温跃层深度较浅的区域,该区域的温跃层相当于从东到西的一个海下“山脊”,使得来自南北两侧的异常信号都很难穿过这一区域,而只能沿该纬度向西传播;而南半球的温跃层对来自赤道地区的异常信号没有阻挡作用,使其可以直接传播到高纬度地区。ENSO信号的强度在传播过程中发生了明显的变化,主要是ENSO事件爆发后,4-5年的周期信号并没有传到东太平洋10oN附近,在从东到西的传播过程中,4-5年的周期信号有所增加,但增加的幅度较小。在西太平洋有来自南、北半球中高纬度异常信号的补充,从而使得ENSO循环得以维持。
     5.数值模拟表明,不同区域风应力的变化对海洋的影响各不相同。赤道地区风应力对海洋的影响主要通过纬向分量的变化来产生作用,它的变化主要对赤道次表层海温的变化产生影响,并且东西太平洋呈现反位相变化趋势;而对流场的影响则是上下层反位相变化。北太平洋副热带地区风应力的变化对海洋的影响与赤道有明显不同,对温度场的影响表现为东西太平洋次表层海温的变化一致,而对流速的影响则是东西太平洋反位相变化。
Due to the global warming and the increase of extreme weather phenomena, the climate variability has already become a central issue which was attended by the people all over the world. ENSO cycle was the strongest signal of climate variability in the interannual time scale and it could affect the weather around the world. Therefore, the study about ENSO cycle has important significance. Although the ENSO event’s research had already made great progress, the process of ENSO event still couldn’t be accurately forecasted. Therefore, our study was to analyses the variability of subsurface temperature and current in tropical Pacific Ocean and then deep research the mechanism of ENSO cycle.
     Based on the TOGA/TAO, SODA and NCEP datasets, the variability of ocean temperature and current was studied on the subsurface in tropical Pacific Ocean. The relationship between these factors and ENSO events was researched. Using the ocean model, the wind stress impacting on ocean subsurface factors was analyzed. The mainly results are as following:
     1. After the climate shift which occurred at the end of 1970s, the definition of western Pacific warm pool (WPWP) by SST≥28℃couldn’t describe its basic character exactly. According to the analyses, we propounded that using the SST≥28.5℃defined the WPWP. The new definition could well reflect the character of WPWP not only before the climate shift but after that. The study about temperature in different depth of WPWP indicated that the anomalous temperature variability on subsurface (148m) was different from that on its upper and under layer. The ocean temperature on subsurface had the largest variation and the reverse trend of interdecadal variability to upper and under layers temperature. The interdecadal variability of subsurface ocean temperature in WPWP had relationship to the variability of PDO.
     2. An index to the equatorial Pacific sea temperature oscillation (EPOI) was defined to describe the ENSO phenomenon according to the ocean temperature on thermocline surface in Pacific Ocean. Comparing with the older ENSO indexes, the EPOI contained the information of ocean temperature on thermocline in eastern and western Pacific Ocean. Therefore, it could reflect the character of ENSO events in full especially in the interdecadal variability. Furthermore, the EPOI varied earlier than the ONI about two months. We could ahead forecast the ENSO event occurring using the EPOI. The EPOI could satisfy the research on ENSO cycle.
     3. We analyzed the anomalous equatorial undercurrent in Pacific Ocean by the method of Empirical orthogonal function (EOF). The results indicated that the previous two modes of equatorial undercurrent had the bigger variance contribution. The first mode’s variance contribution was 30.75% and it mainly reflected the variability of eastern Pacific equatorial undercurrent. The second mode’s variance contribution was 16.18% and it mainly reflected the variability of central Pacific equatorial undercurrent. These two main modes have obvious correlations with ENSO events. There had the biggest negative correlation between the first mode of undercurrent and ENSO when the first mode of undercurrent lagged the ENSO (r=-0.74). This indicated that eastern Pacific equatorial undercurrent weakened (strengthened) after the onset of warm (cold) ENSO events. The variation of central Pacific equatorial undercurrent had influence on the different pattern El Ni?o events. Before the onset of eastern pattern El Ni?o events, the central Pacific equatorial undercurrent singularly increased and then the signal of anomalous temperature quickly propagated to the eastern Pacific. Therefore the El Ni?o event was eastern pattern. Before the onset of central pattern El Ni?o events, the central Pacific equatorial undercurrent singularly decreased and then the signal of anomalous temperature accumulated on the central Pacific. Therefore the El Ni?o event was central pattern.
     4. In ENSO cycle, the depth of thermocline in 8oN-10oN Pacific was one of reasons that anomalous temperature signal transport to western Pacific along 8oN-10oN. Because the thermocline was very shallow in this area, the thermocline was like a hill across the eastern and western Pacific under the sea surface. Then the anomalous signal couldn’t across this area from south (or north) to north (or south), so the signal in eastern Pacific could only transport to western Pacific along this area. On the contrary, the thermocline in the southern hemisphere couldn’t block the signal’s transportation from equator to the high latitude. There had been a marked change of signal intensity in the ENSO cycle. After the onset of ENSO events, the signal of 4-5 years hadn’t reached 10oN. When the ENSO signal transported from eastern to western Pacific along 8oN-10oN, the signal intensity of 4-5 years increased. But the increased signal too weak to maintain the ENSO cycle. The ENSO cycle could maintained because there had other signal supplement from the middle and high latitude.
     5. Modeling test indicated that the variability of wind stress in different area had different effect on the ocean factors. The wind stress in equatorial Pacific affected the ocean mainly through its zonal component. Its effect on the variation of subsurface ocean temperature was different in the eastern Pacific and western Pacific. But for the currents the difference was between the surface and subsurface. The variability of wind stress affecting the ocean in the northern hemisphere subtropical area was obviously different from in the equatorial area. The effect of subtropical wind stress on the subsurface ocean temperature was identical from eastern to western Pacific. But for the currents there had the contrary effects between eastern and western Pacific.
引文
1. Bacher A., Oberhuber J. M., Roeckner E., ENSO dynamics and seasonal cycle in the tropical Pacific as simulated by the ECHAM4/OPYC3 coupled general circulation model, Climate Dynamics, 1998, 14: 431-450.
    2. Bjerkness J., A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature, Tellus, 1966, 18(4): 820-829.
    3. Bjerkness J., Atmospheric teleconnections from the equatorial Pacific, Monthly Weather Review,1969, 97(3): 163-172.
    4. Cane M. A., Modeling sea level during El Ni?o, Journal of Physical Oceanography, 1984, 14: 1864-1874.
    5. Carton J. A., Chepurin G. A., Cao X., et al., A Simple Ocean Data Assimilation analysis of the global upper ocean 1950-1995, Part 1: methodology, Journal of Physical Oceanography, 2000a, 30: 294-309.
    6. Carton, J. A., Chepurin G. A., and Cao X., A Simple Ocean Data Assimilation analysis of the global upper ocean 1950-1995, Part 2: results, Journal of Physical Oceanography, 2000b, 30: 311-326.
    7. Carton, J. A., Giese B. S., and Grodsky S. A., Sea level rise and the warming of the oceans in the SODA ocean reanalysis, Journal of Geophysical Research, 2005, 110, C09006, 1-8.
    8. Carton, J. A., and Giese B. S., A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA), Monthly Weather Review, 2007, 136: 2999-3017.
    9. Cromwell T., Montgomery R.B., Stroup E.D., Equatorial undercurrent in Pacific Ocean revealed by new methods, Science, 1954, 119: 648-649.
    10. Chen J. N.(陈锦年), Chu J. T. and Xu L. Y., Impact of the El Ni?o on the Variability of the Antarctic sea ice extent, Chinese Journal of Polar Science, 2004, 15(1): 28-38.
    11. Delcroix T., M. McPhaden, Interannual sea surface salinity and temperature changes in the western Pacific warm pool during 1992–2000, Journal of Geophysical Research, 2002, 107(c12): 1-17.
    12. Firing E., Lukas R., Sadler J. et al., Equatorial undercurrent disappears during 1982-1983 El Ni?o, Science, 1983, 222: 1121-1123.
    13. Fu zongbin(符淙斌)and J. Fletcher, Two patterns of Equatorial warming associated with El Ni?o, Kexue Tongbao, 1985, 30(10): 1360-1364.
    14. Glantz M. H., Katz R. W. and Nicholls N., Teleconnection slinking worldwide climate anomalies: scientific basis and societalimpact, Cambridge, UK: Cambridge University Press, 1991, 535.
    15. Gill A. E., A estimation of sea-level and surface-current anomalies durlng the 1972 El Ni?o and consequence thermal effects, Journal of Physical Oceanography, 1983, 13: 686-606.
    16. Gill A.E. and Rasmusson E.M., The 1982-83 climate anomaly in the equatorial Pacific, Nature, 1983, 306: 229-234.
    17. Graham N. E., Barnett T. P., Sea surface temperature, surface wind divergence, and convection over tropical oceans, Science, 1987, 238: 657-659.
    18. Graham N. E., Barnett T. P., Wilde R., et al., On the roles of tropical and mid-latitude SSTs in forcing interannual to interdecadal variability in the winter northern hemisphere circulation, Journal of climate, 1994, 7(9): 1416-1441.
    19. Guan B. X.(管秉贤), Current structure and its variation in the Equatorial area of the Western North Pacific Ocean, Chinese Journal of Oceanology and Limnology, 1986, 4(3): 239-255.
    20. Huang R. H.(黄荣辉), Zhang R., zhang Q., The 1997/ 98 ENSO cycle and its impact on summer climate anomalies in East Asia, Advances in atmospheric sciences, 2000, 17(3): 348-362.
    21. Jin F. F., An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual Model, Journal of the Atmosphere Science, 1997, 54: 811-829.
    22. Kurihara K., M. Kawahara, Extremes of East Asian weather during the post ENSO years of 1983/84 severe cold winter and hot summer, Journal of the Meteorological Society of Japan, 1986, 64: 494-503.
    23. Kurihara K., A climatological study on the relationship between the Japanese summer weather and the subtropical high in the western Northern Pacific, Geography magazine, 1989, 43: 45-104.
    24. Li Chongyin(李崇银), Liao Qinghai, The exciting mechanism of tropical intraseasonal oscillation to E1 Ni?o event, Journal of Tropical Meteorology, 1998, 4: 113-121.
    25. Li Chongyin(李崇银), Mu Mingquan and Zhou Guangqing, The variation of warm pool in the equatorial western Pacific and its impacts on climate, Advances in Atmospheric Sciences, 1999, 16(3): 378-394.
    26. Mantua N. J., S. R. Hare, Y. Zhang, et al., A Pacific interdecadal climate oscillation with impacts on salmon production, Bulletin of the American Meteorological Society, 1997, 78:1069-1079.
    27. McCreary, J. P. and Andenson D. L. T., A simple model of El Ni?o and the Southern Oscillation, Monthly Weather Review, 1984, 112: 934-946.
    28. McCreary, J. P., P. Lu, Interaction between the subtropical and the equatorial ocean circulations: The subtropical cell, Journal of Physical Oceanography., 1994, 24: 466–497.
    29. McPhaden M. J., D. Zhang, Slowdown of the meridional overturning circulation in the upper Pacific Ocean, Nature, 2002, 415: 603-608.
    30. McPhaden M. J., S. E. Zebiak and M. H. Glantz, ENSO as an integrating concept in Earth science, Science, 2006, 314: 1740-1745.
    31. Miller A. J., Barnett T. P., and Graham N. E., A comparison of some tropical ocean models: hindcast skill and El Ni?o evolution, Notes and Correspondence, 1993, 23: 1567-1591.
    32. Neelin J. D., The slow sea surface temperature mode and the fast-wave limit: Analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model, Journal of the Atmosphere Science, 1991, 48: 584-606.
    33. Nitta T., S. Yamada, Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation, Journal of the Meteorological Society of Japan, 1989, 67(3): 375-383.
    34. Nonka M., Xie S. P., Mccreary J. P., Decadal variations in the subtropical cells and equatorial Pacific SST, Geophysical Research letters, 2002, 29: 2001GL013676.
    35. North G. R., Bell T. H., Cahalan R. F., et al., Sampling errors in the estimation of empirical orthogonal function, Monthly Weather Review, 1982, 110(7): 699-706.
    36. Oberhuber J. M., The OPYC ocean general circulation model, 1993, Max-Planck-Institute for Meteorology / Hamburg, Report 07, 148pp.
    37. Picaut J., Ioualalen M., Menkes C., et al., Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO, Science, 1996, 274(5292): 1486-1489.
    38. Picaut J., Masia F., Y. du Penhoat, An advective-reflective conceptual model for the oscillatory nature of the ENSO, Science, 1997, 277: 663-666.
    39. Philander S. G. H., El Ni?o Southern Oscillation phenomena, Nature, 1983, 302: 295-301.
    40. Philander S. G. H., Yamagata T. and Pacanowski R. C., Unstable air-sea interactions in the tropics, Journal of Atmosphere Science, 1984, 41(4): 604-613.
    41. Qu T., Lindstrom E. J., Northward Intrusion of Antarctic Intermediate Water in the Western Pacific, Journal of Physical Oceanography, 2004, 34: 2104-2118.
    42. Rasmusson E., Arkin P. A., Krueger A.F. et al., 1982-1983 equatorial Pacific warm event, Tropical Ocean-Atmosphere Newsletter, 1983, 21(2): 2-3.
    43. Ridout, J. A., C. Reynolds, Western Pacific Warm Pool Region Sensitivity to Convective Triggering by Boundary Layer Thermals in the NOGAPS Atmospheric GCM, Journal of climate, 1998, 11: 1553-1573.
    44. Stanton B. R., Antarctic intermediate water variability in the northern New Zealand region, New Zealand Journal of Marine and Freshwater Research, 2002, 36: 645-654.
    45. Suarez M. J., P. S. Schopf, A delayed action oscillator for ENSO, Journal of the Atmosphere Science, 1988, 45: 3283-3287.
    46. Tanimoto Y., N. Iwasaka, K. Hanawa et al., Characteristic variations of sea surface temperature with multiple time scales in the North Pacific, Journal of climate, 1992, 6: 1153-1160.
    47. Timmermann A., Jin F. F., Collins M., Intensification of the annual cycle in the tropical Pacific due to greenhouse warming, Geophysical Research letters, 2004, 31(L12208): 1-4.
    48. Trenberth K. E., T. J. Hoar, The 1990-1995 El Ni?o-Southern Oscillation event: Longest on record, Geophysical Research letters, 1996, 23: 57-60.
    49. Torrence C., G. P. Comopo, A practical guide to wavelet analysis, Bulletin of the American Meteorological Society, 1998, 79: 61-78.
    50. Tsuchiya M., Flow path of the Antarctic intermediate water in the western equatorial South Pacific Ocean, Deep-sea Research Part A, 1991, 38: 273-279.
    51. Walker G. T., Correlation in Seasonal Variations of Weather, VIII: A Preliminary Study of World Weather, Memoirs of the Indian Meteorological Department, 1923, 24(4): 75-131.
    52. Walker G. T., Correlation in Seasonal Variations of Weather, IX: A further study of world weather, Memoirs of the Indian Meteorological Department, 1924, 24(9): 275-333.
    53. Walker G. T., World weather III, Memoirs of the Royal Meteorological Society, 1928, 2: 97-106.
    54. Walker G. T., E. W. Bliss, World Weather V, Memoirs of the Royal Meteorological Society, 1932, 4(36): 53-84.
    55. Walker G. T., E. W. Bliss, World Weather VI, Memoirs of the Royal Meteorological Society, 1937, 4(39): 119-139.
    56. Wang B., Interdecadal changes in El Ni?o onset in the last four decades, Journal of climate, 1995, 8: 267-285.
    57. Wang C., D. B. Enfield, The tropical Western Hemisphere warm pool, Geophysical Research letters, 2001, 28: 1635-1638.
    58. Wang B., An S. I., A mechanism for decadal changes of ENSO behavior: roles of background wind changes, Climate Dynamics, 2002, 18(6): 475-486.
    59. Wang C., D. B. Enfield, A further study of the tropical Western Hemisphere warm pool, Journal of climate, 2003, 16: 1476-1493.
    60. Weisbegr R. H., C. wang, A western Pacific oscillator paradigm for the El Ni?o-Southern Oscillation, Geophysical research letters, 1997, 24(7): 779-782.
    61. Weisbegr R. H., C. wang, Slow Variability in the Equatorial West-Central Pacific in Relation to ENSO, Journal of Climate, 1997, 10(8): 1998-2017.
    62. Wyrtki K., El Ni?o-the dynamic response of the equatorial Pacific Ocean to atmospheric forcing, Journal of Physical Oceanography, 1975, 5: 572-584.
    63. Wyrtki, K., B. Kilonsky, Mean water and current structure during the Hawaii-to-Tahiti Shuttle Experiment, Journal of Physical Oceanography, 1984,14 : 242-254.
    64. Wyrtki K., Some thoughts about the West Pacific Warm Pool, Proceedings of the Western Pacific International Meeting and Workshop on TOGA-COARE, Noumea, New Caledonia, ORSTOM, 1989: 99-109.
    65. Yamamoto T., SANGA N K., An analysis of climatic jump, Journal of the Meteorological Society of Japan, 1986, 11: 273-281.
    66. Yeh S. W., Kirtman B. P., On the relationship between the interannual and decadal SST variability in the North Pacific and tropical Pacific Ocean, Journal of Geophysical Research, 2003, 108: 4344.
    67. Yu J. Y. and Hsun-Ying Kao, Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958-2001, Journal of Geophysical Research, 2007, 112(D13106): 1-10.
    68. Zebiak S. E., A simple atmosphere model of relevance to El Ni?o, Journal of the Atmosphere Science, 1982, 39: 2017-2027.
    69. Zebiak S. E. and Cane M. A., A model El Ni?o/Southern Oscillation, Monthly Weather Review, 1987, 115: 2262-2278.
    70. Zenk W., Siedler G., Ishida A. et al., Pathways and variability of the Antarctic Intermediate Water in the western equatorial Pacific Ocean, Progress in Oceanography, 2005, 67: 245-281.
    71. Zhang R. H., Levitus S., Structure and evolution of interannual variability of the tropical Pacific upper ocean temperature, Journal of Geophysical Research, 1996, 101(C9): 20501-20524.
    72. Zhang R. H, Levitus S., Structrue and cycle of decadal variability of upper ocean temperature in the North Pacific, Journal of climate, 1997, 10(4): 7l0-727.
    73.蔡亲炳,张庆荣,林锡贵,1986年El Ni?o发生初期的西太平洋近赤道海域海面水文气象某些变化特征,海洋通报,1993,12(4):36-44.
    74.巢纪平,对“厄尔尼诺”、“拉尼娜”发展的新认识,中国科学院院刊,2001,6:412-417.
    75.巢纪平,ENSO-热带海洋和大气中和谐的海气相互作用现象,海洋科学进展,2002,20(3):1-8.
    76.巢纪平,袁绍宇,巢清尘,田纪伟,热带西太平洋暖池次表层暖水的起源—对1997/1998年ENSO事件的分析,大气科学,2003,27(2):145-151.
    77.巢纪平,蔡怡,ENSO事件中次表层海温距平在10oN附近向西传播的机理,气象学报,2005,63(4):385-390.
    78.巢纪平,厄尔尼诺和南方涛动动力学,1,北京:气象出版社,1993:1-309.
    79.陈锦年,何宜军,许兰英等,赤道太平洋次表层海温异常的信号通道,2002年第5届海峡两岸海洋科学研究讨会论文集,基隆:台湾海洋大学,2002,211.
    80.陈锦年,宋贵霆,褚健婷等,北赤道流区海温异常与ENSO循环,热带海洋学报, 2003,22(4):10-17.
    81.陈锦年,宋贵霆,褚健婷等,赤道太平洋次表层海水温度异常的信号通道,水科学进展,2003,14(2):152-157.
    82.陈锦年,吕心艳,胡敦欣,赤道太平洋潜流变化特征及其与异常海温东传,水科学进展,2005,16(6):792-798.
    83.符淙斌,H. Diaz,J. Fletcher,赤道太平洋暖水区的东西振荡与“埃尔尼诺”(El Ni?o)发展的关系,科学通报,1986,2:126-128.
    84.符淙斌,气候突变的定义和检测方法,大气科学,1992,16(4):482-493.
    85.何魁荣,中太平洋西部赤道潜流的水温分析,东海海洋,1991,9(1):19-25.
    86.何溪澄,丁一汇,何金海,东亚冬季风对ENSO事件的响应特征,大气科学,2008,32(2):335-344.
    87.胡基福,气象统计原理与方法,1,青岛:青岛海洋大学出版社,1996,141-155.
    88.黄荣辉,孙凤英,热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常的影响,大气科学,1994,18(2):141-151.
    89.黄荣辉,孙凤英,热带西太平洋暖池上空对流活动对东亚夏季风季节内变化的影响,大气科学,1994,18(4):456-465.
    90.黄荣辉,徐予红,王鹏飞等,1998年夏长江流域特大洪涝特征及其成因探讨,气候与环境研究,1998,3(4):300-313.
    91.黄荣辉,周连童,关于我国重大气候灾害特征、形成机理和预测研究,灾害学报,2002,11:1-9.
    92.黄荣辉,陈光华,西北太平洋热带气旋移动路径的年际变化及其机理研究,气象学报,2007,65(5):683-694.
    93.姜景忠,El Ni?o期间太平洋赤道潜流逆转事件,东海海洋,1993,11(1):1-9.
    94.金祖辉,陈隽,西太平洋暖池区海表水温异常对东亚夏季风影响的研究,大气科学,2002,26 (1):57-681.
    95.李崇银,周亚萍,热带大气季节内振荡和ENSO的相互关系,地球物理学报,1994,37:17-26.
    96.李崇银,穆明权,厄尔尼诺的发生与赤道西太平洋次表层海温异常,大气科学,1999, 23(5):513-521.
    97.李崇银,穆明权,东亚冬季风-暖池状况-ENSO循环的关系,科学通报,2000,45(7):678-685.
    98.李崇银,关于ENSO本质的进一步研究,气候与环境研究,2002,7(2):160-173.
    99.李崇银,穆穆,周广庆等,ENSO机理及其预测研究,大气科学,2008,32(4):761-781.
    100.李崇银,气候动力学引论,2,北京:气象出版社,2000,1-515.
    101.李春晖,王东晓,梁建茵,热带太平洋海气系统的一种年代际局地正反馈,科学通报,2006,51(5):596-600.
    102.李晓燕,翟盘茂,ENSO事件指数与指标研究,气象学报,2000,58(1):102—109.
    103.林传兰,徐炳荣,1985-1986年冬季热带西太平洋次表层热状况的分布特征,热带海洋,1989,8(2):30-38.
    104.刘琳,于卫东,ENSO循环之中的海气相互响应—对次表层海温和大气旋度的资料分析,地球物理学报,2006,49(1):45-51.
    105.吕俊梅,琚建华,张庆云等,太平洋年代际振荡冷、暖背景下ENSO循环的特征,气候与环境研究,2005,10(2):238-249.
    106.孟祥凤,吴德星,林霄沛,ENSO循环相关的海洋异常信号传播特征及其机制,热带海洋学报,2004,23(6):22-29.
    107.穆明权,李崇银,西太平洋暖池次表层海温异常与ENSO循环的相互作用,大气科学,2000,24(4):447-460.
    108.蒲书箴,徐洪达,热带西太平洋水温对埃尔尼诺的响应,海洋学报,1987,9(2):262-266.
    109.蒲书箴,1987年秋季厄尔尼诺实况诊断,海洋通报,1989,8(2):112-114.
    110.蒲书箴,于非,赵新等,1997/1998厄尔尼诺的发生发展,海洋学报,1998,20(6):124-131.
    111.乔方利,于卫东,袁业立,厄尔尼诺/拉尼娜信号循环回路及其传播特性研究,海洋学报,2004,26(4):1-8.
    112.邱东晓,黄菲,杨宇星,东印度洋-西太平洋暖池的年代际变化特征研究,中国海洋大学学报,2007,37(4):525-532.
    113.石强,蒲书箴,苏洁等,两次非典型EL Ni?o期间热带太平洋主要流系和赤道行星波动力研究,海洋预报,1998,15(3):94-99.
    114.石强,蒲书箴,苏洁等,两次非典型厄尔尼诺期间热带太平洋主流系和赤道行星波研究,海洋学报,1999,21(4):27-34.
    115.石强,蒲书箴,苏洁等,气候平均风场作用下热带太平洋主流系和赤道行星波研究,海洋学报,1999,21(3):40-50.
    116.孙林海,赵振国,我国暖冬气候及其成因分析,气象,2004,30(12):75-96.
    117.唐佑民,刘书华,两类EL Ni?o事件太平洋海温异常时空结构的分析,热带气象学报,1994,10(2):130-139.
    118.王盘兴,何金海,张苏平,热带西太平洋海表温度长期变化的特殊性,南京气象学院学报,1999,22(2):189-195.
    119.王宗山,邹娥梅,John M. Toole等,1986-1987年埃尔尼诺期间赤道太平洋的物理海洋学事件,海洋学报,1990,12(2):159-166.
    120.魏凤英,现代气候统计诊断预测技术,1,北京:气象出版社,1999,69-72.
    121.吴洪宝,吴蕾,气候变率诊断和预测方法,1,北京:气象出版社,2005,15-27.
    122.肖栋,李建平,全球海表温度场中主要的年代际突变及其模态,大气科学,2007,31(5):839-854.
    123.徐炳荣,林传兰,厉善华,热带西太平洋表面风场的变化及其对海洋上部热结构的影响,海洋学报,1995,17(3):32-40.
    124.杨修群,朱益民,谢倩等,太平洋年代际振荡的研究进展,大气科学,2004,28(6):979-992.
    125.杨宇星,黄菲,王东晓,印度洋-太平洋暖池的变异研究,海洋与湖沼,2007,38(4):296-303.
    126.于惠苓,蒲书箴,1986/1987厄尔尼诺期间的西风强化和海气相互作用过程分析,大气科学,1992,16(4):427-435.
    127.于卫东,乔方利,ENSO事件中热带太平洋上层海洋热含量变化分析,海洋科学进展,2003,21(4):446-453.
    128.赵宗慈,丁一汇,李晓东等,海气耦合模式在东亚地区的可靠性评估,应用气象学报,1995,8(增刊):9-18.
    129.赵永平,吴爱明,陈永利等,西太平洋暖池的跃变及其气候效应,热带气象学报,2002,18(4):317-326.
    130.赵永平,陈永利,王凡等,热带太平洋海洋混合层水体振荡与ENSO循环,中国科学D辑:地球科学,2007,37(8):1120-1133.
    131.赵珊珊,杨修群,朱益民等,热带外太平洋通过海洋过程对热带太平洋的影响,海洋学报,2006,28(3):29-40.
    132.张庆云,常蕊,EL Ni?o事件大气-洋流异常与暖海温传播机理研究,大气科学,2007,31(6):1160-1170.
    133.周春平,大洋暖池及其影响,1,北京:气象出版社,2001,1-141.
    134.钟姗姗,何金海,刘宣飞,太平洋次表层海温年代际变率及其突变特征,南京气象学院学报,2002,25(5):595-602.
    135.曾刚,孙照勃,倪东鸿等,赤道太平洋次表层要素变化特征及其与表面风应力关系,南京气象学院学报,2006,29(2):145-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700