用户名: 密码: 验证码:
碳化硅薄膜的外延生长、结构表征及石墨烯的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC作为第三代宽带隙半导体材料,具有许多优异特性,在半导体器件中有着广泛的应用。石墨烯作为一种新型的二维碳元素新材料,具有一系列优良的电学特性,例如反常的量子霍尔效应和高载流子迁移率等。这些优异性质使其成为当今研究的热点。本论文利用固源分子束外延(SSMBE)技术,在Si、Al_2O_3和SiC单晶衬底上外延生长SiC薄膜及其同质异构量子阱结构。利用MBE设备,采用高温热退火并辅助Si束流的方法,在SiC表面外延生长石墨烯。利用同步辐射以及一些常规的分析测试方法对外延生长的SiC薄膜和石墨烯进行研究。主要的研究工作及结果如下:
     1 Si衬底上3C-SiC薄膜的外延生长
     在Si衬底表面异质外延生长出高质量的3C-SiC薄膜,系统研究了碳化、衬底温度、Si/C束流比和预沉积Ge对Si衬底外延SiC薄膜的影响,并得到了相应的优化参数。
     1)衬底Si表面的碳化调节了薄膜和衬底之间的晶格失配,缓冲了应力,从而提高了薄膜的质量。在Si表面碳化研究中,探索到了最佳的碳化温度。
     2)薄膜的结晶质量在衬底温度为1000℃时最好。对于高温生长的样品,SiC薄膜和Si衬底间大的热膨胀系数失配造成界面更多的位错,导致结晶质量降低;对于低温生长的样品,衬底温度不高,原子的活性比较低,原子不能扩散到薄膜生长的能量最佳位置,因而导致低温生长的样品结晶质量下降。
     3)在优化Si/C(1.5:1)比条件下生长的薄膜的质量较好。在低Si/C(1.1:1)和高的Si/C比(2.3:1)条件生长的薄膜的质量较差。可以通过控制Si/C来抑制或减少孔洞的形成,改善生长的SiC薄膜的质量
     4)预沉积Ge可以提高薄膜的质量,且存在一个最佳的预沉积厚度(0.2nm)及预沉积温度。由于预沉积Ge与Si和C形成了Si_(1-x-y)Ge_xC_y合金相,它能调节晶格失配,缓冲薄膜内的应力,从而提高薄膜的质量。
     2 Al_2O_3衬底上6H-SiC薄膜的外延生长
     1)利用SSMBE技术,在Al_2O_3(0001)衬底上外延生长出6H-SiC薄膜。X射线Φ扫描显示出薄膜的六次对称衍射峰,表明生长的SiC薄膜接近单晶水平。
     2)在优化的衬底温度下(1100℃)生长的薄膜质量较好,在较低温度(1000℃)和较高温度(1200℃)条件下生长的薄膜质量较差。
     3)同步辐射掠入射X射线衍射(GID)研究表明,SiC/Al_2O_3薄膜内受到压应变,它来源于界面处SiC薄膜和蓝宝石衬底热膨胀系数的失配。薄膜远离界面后,压应变减小,单晶质量变好。GID和XRD的研究表明,薄膜内存在倾斜(tilt)和扭转(twist)畸变,且扭转大于倾斜。
     3 6H-SiC表面的同质外延及量子阱结构的制备
     1)预沉积Si原子后,SiC(0001)表面结构随温度的改变而变化。随着温度的升高,SiC表面的Si原子反蒸发,表面的Si原子减少并先后出现3×3和3~(1/2)×3~(1/2)重构。
     2)利用不同重构表面的迁移系数的差异,调节Si束流,在衬底温度1080℃下,分别在6H-SiC(0001)的3~(1/2)×3~(1/2)和3×3重构面成功地上实现了3C-SiC和6H-SiC晶型薄膜的外延生长。
     3)固定衬底温度,调节束流实现了6H-SiC/3C-SiC/6H-SiC多量子阱薄膜的外延生长,并发现该量子阱结构的宽发光带。经计算,宽发光带可能来源于不同宽度的量子阱的发光。
     4 6H-SiC表面石墨烯的外延生长
     1)利用超高真空MBE系统,通过高温退火并辅助Si束流的方法,在6H-SiC(0001)表面成功制备出多层石墨烯。
     2)研究了不同退火时间对6H-SiC(0001)晶体外延石墨烯的影响。随着退火时间的增加,石墨烯厚度增加,样品表面孔洞减少。薄膜内存在压应力,它来源于石墨烯和SiC衬底的热膨胀系数的差异。石墨烯层数越多,应力也越小。
As a wide-band gap semiconductor material with excellent properties,SiC has many applications in the field of the semiconductor devices.Graphene,comprising of monolayer of carbon atoms packed into a two-dimensional honeycomb lattice,has a series of peculiar properties such as the anomalously quantized Hall effects,the large charge carrier mobility and so on.These peculiar properties have been promoted people to be interested in the graphene research.In this thesis,we report that the SiC films grown on different substrates of Si,SiC and Al_2O_3 and the quantum wells structure based on SiC polytype grown on 6H-SiC single crystal substrates have been produced with the method of solid source molecular beam epitaxy(SSMBE).Besides, the graphene films have also been grown on SiC surface by using the method of thermal annealing at high temperature and assisting with Si flux in the MBE chamber. Synchrotron radiation(SR) experimental technics and some normal analysis methods have been employed to investigate the grown SiC and Graphene films.The main results are listed as following.
     1:The epitaxial growth of 3C-SiC films on Si substrate
     The 3C-SiC films with high quality have been hetero epitaxially grown on Si substrate by the method of SSMBE.The effects of the growth factors,such as carbonization,growth temperature,Si/C flux ratio,and Ge predeposition,on the quality of SiC film have been investigated systematically and the optimized parameters have been obtained.
     1) The carbonization of Si surface can accommodate the lattice mismatch,reduce the stress and improve the quality of the films.The optimized carbonized temperature is obtained on the basis of the studies above.
     2) The quality of the film grown at the substrate temperature of 1000℃is the best. With higher substrate temperature,the misfit of thermal expand coefficient between SiC film and Si substrate can cause the dislocations at the interface, which affects the quality of the film.However,with lower substrate temperature, the activity of atoms is lower,thus the atoms have not enough energy to move and can not arrive the favorite positions for the growth of films,which causes the quality of the film worse.
     3) The quality of the sample with the optimized Si/C flux ratio(1.5:1) is the best and the qualities of the samples with higher Si/C flux ratio(2.3:1) or lower Si/C flux ratio(1.1:1) are worse.Controlling the Si/C flux ratio can suppress the voids and improve the quality of the SiC film.
     4) Ge predeposition can improve the quality of SiC film grown on Si substrate.We have optimized parameters of the amount and the temperature of Ge predeposition. The Ge predeposition induces the formation of the Si_(1-x-y)Ge_xC_y solid solution at the interface,which acts as the intermediate buffer layer to accommodate the lattice mismatch,reduce the accumulated strain of the interface and improve the quality of the SiC film.
     2:The growth of 6H-SiC films on Al_2O_3 substrate
     1) The 6H-SiC films have been hetero epitaxially grown on Al_2O_3(0001) substrate by the method of SSMBE.X-rayΦscan shows the six-fold symmetry of SiC(100) planes,which indicates that the grown SiC thin film is almost the single crystal film.
     2) The quality of the film grown at substrate temperature of 1100℃is the best and that of the films grown at substrate temperature of 1000℃and 1200℃are worse.
     3) The results of GID show that the films are under compressive stress caused by the misfit of the thermal expand coefficient between SiC film and Al_2O_3 substrate. When the internal part of the film is further away from the interface of SiC film and Al_2O_3 substrate,the strain of the SiC film decreases and the crystalline quality of the SiC film becomes better.The results of XRD and GID show that the film has different tilt mosaic and twist mosaic and the angle distribution of former is smaller than that of the latter.
     3:Homoepitaxy growth of SiC film and the fabrication of SiC polytype quantum wells on 6H-SiC(0001) substrate
     1) After Si predeposition,the surface structure of 6H-SiC(0001) changes with the variation of substrate temperature.When the temperature increases,the evaporation of Si atom from the surface causes the Si atoms on the surface gradually decreases.Thus 3×3 and 3~(1/2)×3~(1/2) reconstruction can be obtained.
     (2) Due to the difference of diffusion coefficient of Si atoms on the different reconstruction surfaces,the 3C-SiC and 6H-SiC films have been successfully grown on 3×3 and 3~(1/2)×3~(1/2) reconstruction surfaces of 6H-SiC(0001) substrate respectively by controlling the Si flux at substrate temperature of 1080℃.
     (3) The 6H-SiC/3C-SiC/6H-SiC film with quantum wells structure has been fabricated on the 6H-SiC substrate by controlling the flux at the substrate temperature of 1080℃.The intense emissions are found in a wide range of spectrum,which is attributed to the luminescence of the 6H-SiC/3C-SiC/6H-SiC quantum wells.The calculated results show that the wide range of luminescence is probably caused by the quantum wells with different width.
     4:The growth of graphene on SiC surface
     1) The epitaxial graphene(EG) layer has been successfully grown on Si-terminated 6H-SiC(0001) substrate by the method of thermal annealing at high temperature and assisting with Si flux in ultrahigh vacuum(UHV) molecular beam epitaxy(MBE) chamber.
     2) The effect of annealing time on the growth of graphene on 6H-SiC(0001) surface is investigated.With the increase of annealing time,the thickness of graphene layer increases and the voids on the grown graphene surface decreases.There is compressive strain in the film,which is induced by the large difference between the coefficients of thermal expansion of graphene and SiC.The strain of the film becomes smaller with the increase of the layer thickness.
引文
1 S.M.Sze,Semiconductor Device:Physics and Technology,John Wiley &Sons,1985,30
    2 Sellin P.J.,Vaitkus J,Nucl.Instr.and Metha 2006,557:479-489
    3 M.L.Lee,AppI.Phys.Lett.,2006,88:032103
    4 J.Park,M.W.Shin,C,C.Lee,IEEE Trans.Elec.Dev,2004,51:1753
    5 J.W.Wan,S.H.Parl,J.Electron.Mater,2005,34:1342
    6 郝跃,彭军,杨银堂 编著 碳化硅宽带隙半导体技术.北京:科学出版社,2000.
    7 Bechstedt E,K(a|¨)ckell P.,Phy.Rev.Lett.,1995,75(11):2180.
    8 Ke S.h.,Zi J.,Zhang K.-m.,et al.Phys.Rev.B 1996,54:8789.
    9 Fissel A.,Phy.Rep.2003,379:149-255.
    10 Ebedev A A.,Semicond.Sci.Technol.2006,21:R17-R34.
    11 Lely J.A.,der Deutschen Berichte.Keramichan Gesellschaft 1955,32:229.
    12 Tairov Y M,Tsvetkov V F.J.Cryst.Growth 1978,43(2):209.
    13 Augustine G.,Hobgood H.McD.,Balakrishna V.,et al.Phys.Stat.Sol.(b),1997,202:137.
    14 Tairov Y M,Tsvetkov V F.,J.Cryst.Growth 1978,43(2):209.
    15 Tairov Y M,Tsvetkov V F.,J.Cryst.Growth 1981,52(1):146.
    16 Ziegler G.,Lanig P.,Theis D.,et al.IEEE Trans.Electron Devices,1983,30:277
    17 Nishino S,Hazuki Y,Matsunami H,et al.J.Electrochem.Soc.1980,127:2674
    18 Matsunami H,Nishino S,Ono H.IEEE Trans.Electron Devices,1981,ED-28(10):1235.
    19 Nishino S,Powell J A,Will H A.Appl.Phys.Lett,1983,42(5):460.
    20 Nakamura Daisuke,Gunjishima Itaru,Yamaguchi Satoshi,et al.Nature 2004,430:1009
    21 A.K.Geim,K.S.Novoselov.Nat.Mater.2007,6:183
    22 K.S.Novoselov,A.K.Geim,S.V.Morozov,et al.Science,2004,306:666
    23 K.S.Novoselov,A.K.Geim,S.V.Morozov,et al.Nature,2005,438:197
    24 J.R.Williams,L.C.DiCarlo,C.M.Marcus,Science,2007,317:638
    25 Davis Robert F.,Kelner Galina,Shur Michael,et al.Proc.IEEE 1991,79(5):677
    26 Levinshtein Michael E.,Rumyantsev Sergey L.,Shur Michael S.,编 杨树人 殷静志 译先进半导体材料数据手册 北京:化学工业出版社 2003
    27 Ruff Martin,Hitlehner Heins,Helbig Reinhard,IEEE Trans.Electron Devices 1994,41(6):1040
    28 Wang Jue,Williams Barry W,IEEE Tran.Electron Devices,1999,46(3):589.
    29 Wang J.,Williams B.W.,Semicond.Sci.Technol.1999,14:1088-1097
    30 Sriram S.,Siergiej R.R.,Clarke R.C.,Phys.Stat.Sol.1997,162:441.
    31 Powell Adrian R.,Rowland Larry B.,Proc.IEEE,2002,90(6):942.
    32 Johnson C.M.,Wright N.G..,Uren M.J.,et al.IEE Proc.-Circuits Devices Syst.2001,148(2):101.
    33 Sung Y.M.,Casady J.B.,Dufrene J.B.,et al.Solid-St.Electron.2002,46:605-613.
    34 Masri Pierre,Surf.Sci.Rep.2002,48:1-51
    35 Spetz Anita Lloyd,Tobias Peter,Baranzahi Amir,et al.IEEE Tran.Electron Devices 1999,46(3):561
    36 陈长青;毛旭;周祯来;陈刚;杨宇.红外技术,2005
    37 C.Bittencourt,M.De Seta,and F.Evangelisti Journal of Vacuum Science & Technology B:1998,16(3),1599-1603
    38 Shin-ichi Motoyama,Shigeo Kaneda.Applied Physics Letters.1989,54(3),242-243
    39 Fissel A,Schroter B,Krausslich J,Richter W.Thin Solid Films.1995,258(1):64-66,1995
    40 Luo MC,Li JM,Wang QM,Sun GS,Wang L,Li GR,Zeng YP,Lin LY.Joumal of crystal growth.2003,249(1-2):1-8.
    41 孙国胜,罗木昌,王雷,赵万顺,孙艳玲,曾一平,李晋闽,林兰英.发光学报,2003,24(4):421-425
    42 Sun GS,Li JM,Luo MC,Zhu SR,Wang L,Zhang FF,Lin LY.Journal of crystal growth.2001,227:811-815.
    43 Kong H.S.,Glsss J.T.,Davis R.F.,Appl.Phys.Lett.1986,49:1074
    44 Kong H.S.,Glass J.T.,Davis R.F.,J.Appl.Phys.1988,64:2672.
    45 Kimoto T,Matsunami H.J.Appl.Phys.1994,75:850.
    46 S.Nakamaura,T.Kimoto,J.Cryst.Grotwth 2003,256:341
    47 K.Kojima,H.Okumura,S.Kuroda,K.Arai,J.Cryst.Growth,2004,269:367
    48 Fissel A,Kaiser U,Schr(o|¨)ter B,et al.Appl.Surf.Sci.2001,184:37.
    49 Bechstedt F,Fissei A,Furthm(u|¨)ller J,et al.Appl.Surf.Sci.2003,212-213:820
    50 杨成岗,陈成猛.新型炭材料.2008,23(3):9.
    51 李旭,赵卫峰,陈国华.材料导报 2008,22(8):8.
    52 杨全红,吕伟.新型炭材料.2008,23(2):6.
    53 Novoselov et al,Science.2004,306:666.
    54 Novoselov K.S.et al,Science,20,37,315:1379-1379.
    55 Heersche HB,et al,Nature,2007,446:56-59
    56 Editorial.Natural Material,2007,6:169
    57 Schedin F.et al Natural Material.2007,6:652-655.
    58 Novolesov.K.S.Two—dimensional atomic crystal,2005,102:10451-10453
    59 刘首鹏 周锋 金爱子等 物理学报 2005,54(9):34251
    60 Srivastava S.K,et al.Thin Solid Film,2005,492(1-2):124
    61 Zhu M.Y.et al.Diam.Relt.Mater.2007,16{2}:196
    62 W.J.J.Zhu M.Y.et al.Carbon 2004,42(14):2867
    63 Walt A.de Heer.Solid State Communications,2007,143:92-100
    64 Berger C.et al.Science 2006,312:1191
    65 Berger et al.J.Phys Chem.2004,108:19912
    66 Heer.W et al Solid State Commun 2007,143(1-2):92
    1 权田俊一,分子束外延入门 国防工业出版社 1981
    2 Beenakker C W J,van Houten H,Solid State Physics 1991 44-1
    3 Chen Yefan,Bagnall Darren,Yao Takafumi,Mater.Sci.Eng.B 2000 75:190-198
    4 S.M.Rezende,F.M.de Aguiar,M.A.Lucena,Phys.Rev.Lett.,2000,84(18):4212.
    5 Fissel A,Phys.Rep.2003 379149-255.
    6 Brunner Karl,Rep.Prog.Phys.2002 65:27-72.
    7 Finley J J,Skalitz M,Arzberger M,et al.Appl.Phys.Lett.1998 73:2618-20.
    8 Baibich M N,Broto J M,Fert A,et al.Phys.Rev.Lett.1988 61:2472.
    9 S(?)nchez-Garc(?)a M A,Pau JL,Naranjo F,et al.Mater.Sci.Eng.B 93(2002):189-196.
    10 盛篪 蒋最敏 陆昉 黄大鸣 著 硅锗超晶格及低维量子结构 上海科学技术出版社,2004P50
    11 刘洪图 半导体材料物理 2003年
    12 Zhongliang Liu,Jinfeng Liu,Peng Ren Applied Surface Science 2008 254:3207-3210
    13 Fissel A,Phys.Rep.2003 379:149-255
    14 M.A Herman,H.Sitter,Molecular Beam Epitaxy,Springer-Verlag Berlin Heidelberg 2nd Edition,1996
    15 郑海务 博士论文 中国科学技术大学 2006
    16 吴自勤,王兵 薄膜生长 北京科学出版社 2001
    17 杜经宁,J.W.迈耶,L.C.费尔德曼,电子薄膜科学,科学出版社,1997
    18 薛增泉 吴全德 李洁,薄膜物理 电子工业出版社 1991
    19 王力衡,黄云添,郑海涛,薄膜技术 清华大学出版社 1991
    20 N.Motta,J.Phys.:Condens.Matter,14,8353(2002)
    21 苑进社等 物理学报 2007 56:7
    22 王科范,盛斌,刘金锋,徐彭寿,潘海滨,真空科学与技术学报 2005 25:5
    23 Fissel A,Kaiser U,Schr(o|¨)ter B,et al.Appl.Surf.Sci.2001,184:37.
    24 王科范,刘金锋,邹崇文,等真空科学与技术学报 2005 25:75-78
    25 Maissel L I,Glang R.Handbock of Thin Film Technology(McGraw-Hill,New York,1970),p.50
    1 Spitzer W.G.,Kleinman D.,Frosch C.J.,Phys.Rev.1959,113(1):133.
    2 Khan K.H.,Summergrad R.N.,Appl.Phys.Lett.1967,11(1):12.
    3 Nishino S,Hazuki Y,Matsunami H,et al.J.Electrochem.Soc.,1980,127:2674
    4 Matsunami H,Nishino S,Ono H.IEEE Trans.Electron Devices,1981,ED-28(10):1235
    5 Nishino S,Powell J A,Will H A.Appl.Phys.Lett,1983,42(5):460
    6 Motoyama Shin-ichi,Kaneda Shigeo.Appl.Phys.Lett,1989,54(3):242
    7 Kitabatake Makoto,Deguchi Masahiro,Hirao Takashi.J.Appl.Phys,1993,74(7):4438
    8 Zekentes K,Papaioannou V,Pecz B,et al.J.Cryst.Growth,1995,157:392
    9 Fissel A,Schr(o|¨)ter B,W.Richter.Appl.Phys.Lett,1995,66(23):3182
    10 Cimalla V,Stauden Th,Ecke G,et al.Appl.Phys.Lett,1998,73(24):3542
    11 刘金锋 博士论文 中国科学技术大学 2007
    12 Chen J,Steckl A J,Loboda M J.J.Vac.Sci.Technol.B,1998,16(3):1305
    13 Zekentes K,B(?)court N,Androulidaki M,et al.App.Surf.Sci,1996,102:22
    14 Fatemi M,Nordquist P.E.R,J.Appl.Phys.,1987,61(5):1883-1890.
    15 Masao Uchida,Makoto Kitabatake.Thin Solid Films,1998,335:32-36
    16 Fujiwara H.Danno K.,J.Cryst.Growth,2005,2810:370-376
    17 Yun J.,Takahashi T.,J.Cryst.Growth,2006,2910:148-153
    18 Hernandez M.J.,Ferro G.,J.Cryst.Growth,2003,2530:95-101
    19 Ramaimah Kodigala Subba,Bhat I.,Mat.Sci.Eng.B,2006,1290:22-30
    20 王科范,刘金锋,邹崇文等,真空科学技术学报 2005,25:75-78
    21 Hu C.-W.A.Kasuya Appl.Phys.Lett,February 1996 68(9):26
    22 Fissel A.Physics Report,2003,379:151-155,161
    23 Chen J,Steckl A.J,Loboda M.J,J.Vac.Sci.Technol.B,1998,16(3):1305-1308
    24 Zgheib Ch.et al.Thin Solid Films,2004,455-456:183-186
    25 Hofmann M.Zywietz.A.PHYSICAL REVIEW B,1994-Ⅱ VOLUME 50,NUMBER 18 1
    26 Cimalla,V.,Zekentes K.Materials Science Forum 2001,353-365:187-190
    27 Pezoldt,J.,Forster,Ch.et al..Applied Surface Science 2001,184:79-83
    28 王科范,刘金锋,邹崇文,等 真空科学技术学报 2005,25:75-78
    29 Ch.Zgheib,L.E.McNeil Applied Physics Letters 2005,87:041905
    30 Materials Science and Engineering 1999,61-62:559-562
    31 刘金锋,刘忠良,武煜宇,等 无机材料学报 2007,22:4
    32 Attenberger W.,Lindner J.,Cimalla V.,et al.Mat.Sci.Eng.B,1999,61-62:544
    33 Zgheib Ch,McNeil LE,Masri P,et al.,Appl.Phys.Lett.2006,88:211909
    34 Masri P,Physical Review B 1995,52:16 627
    35 Pezoldt J,Masri P,Laridjani MR,et al.,Materials Science Forum 2000,338-342:289-292
    36 Brunner K,Rep.Prog.Phys.,2002,65:27-72
    1 Choyke W J,Devaty R P.Diamond Relat Mater,1997,6:1243
    2 Casady J B,Johnson R W.Solid State Electron,1996,39:1409
    3 王崇鲁.白宝石单晶,天津科技出版社,1983,16.
    4 L.Cheng,A.J.Steckl,J.D.Scofield,J.Microelectromecha.Syst,2003,12:797
    5 王剑屏,郝跃,彭军,朱作云,张永华.物理学报,2002,51(8):1793
    6 孙澜,陈平等.功能材料,2004,35:192
    7 M.C.Luo,J.M.Li,et al.J.Cryst.Growth.2003,249:1
    8 Fissel A.Physics Report,2003,379:149-255
    9 Cimalla V,Stauden Th,Ecke G,et al.Appl.Phys.Lett.,1998,73(24):3542-3544
    10 Zekentes K,Papaioannou V,Pecz B,et al.J.Cryst.Growth,1995,157:392-399
    11 郝跃,彭军,杨银堂.碳化硅宽带隙半导体技术.北京:科学出版社,2000
    12 许小亮,施朝淑.纳米微晶结构氧化锌及其紫外发光.2000,20:356-369.
    13 郑海务,博士论文,中国科学技术大学,2006,72-83.
    14 曲喜新,电子元件材料手册,北京:电子工业出版社,1989
    15 王科范 刘金锋,邹崇文等.真空科学与技术学报.2005,25:75
    16 郑海务,苏剑锋,顾玉宗,张杨,傅竹西.材料研究学报,2008,22:1
    17 C.Brizard,G.Rolland,F.Laugier.Journal of Applied Crystallography,1993,26:570
    18 J.T.Cheung,I.Gergis,M.James,et al.Applied Physics Letters,1992,60:3180
    19 B.P.Zhang,Wakatsuki,T.Binh,et al,Thin Solid Films,2004,449:12
    20 Y.F.Chen,M.Bagnall,J.Koh,et al.Journal of Applied Physics,1998,84:3912
    21 J.P.Mirth,G.M.Pound,Condensation and Evaporation,London,1963,18.
    22 郝跃,彭军,杨银堂,碳化硅宽带隙半导体技术,科学出版社,2000,118-119.
    23 H.W.Zheng,J.J.Zhu,Z,X.Fu,B.X.Lin,X.G.Li,J.Mater.Sci.Techno.2005,21:536
    24 马礼敦,杨福家,同步辐射应用概论,2001
    25 Fujimura N.,Nishihara T.,Goto S.J.Cryst.Growth.1993,130(1-2):269-279
    26 姜晓明,贾全杰,郑文莉,等.高能物理与核物理,2000,24:1185
    27 Dosch H.Phys.Rev.B.1987.35:2137
    28 李睿,王庆东.物理学报,2008,57:4497.
    29 王庆学.物理学报,2005,54:8
    30 刘忠良,刘金锋,任鹏,无机材料学报 2008,23:928-932
    31 X.H.Zheng,H.Chen,Z.B.Yan,Y.J.Han,H.B.Yu,D.S.Li,Q.Huang and J.M.Journal of cystal Growth 2003 July,Volume 255,Issues 1-2,Pages 63-67
    1 Powell J.A.,Will H.A.,J.Appl.Phys.1973,44:5177.
    2 Kern R.S.,J(a|¨)rrendah K.,Tanaka S.,et al.Phys.Stat.Sol.(b) 1997,202:379.
    3 Nakayama,Y.Yoshinobu,et al.J.Cryst.Growth.1989,95:461
    4 T.Fuyuki,T.Yoshinobu,H.Matsunami,Thin Solid Films 1993,22:25
    5 T.Yoshinobu,M.Nakayama,H.Shiomi,et al.J.Cryst.Growth,1990,99:520.
    6 T.Yoshinobu,H.Mitsui,I.Izumikawa,et al.Appl.Phys.Lett.1992,60:824.
    7 Kern R.S.,Davis R.F.Mater.Sci.Eng.B.1997,46:240-247
    8 A.Fissel,B.Schr(o|¨)ter,W.Richter,Appl.Phys.Lett.1995,66(23):3182
    9 D.J.Eaglesham,F.C.Unterwald,H.Luftman,et al.J.Appl.Phys.1993,75,6615.
    10 S.Kaneda,Y.Sakamoto,T.Mihara,T.Tanaka,J.Cryst.Growth,1987,81:536
    11 A.Fissel,U.Kaiser,J.Kra(u|¨)βlich,et al.Mater.Sci.Eng.,B.1999,139:61-62
    12 Bechstedt E,K(a|¨)ckell P.,Phy.Rev.Lett.,1995,75(11):2180.
    13 Ke S.-h.,Zi J.,Zhang K.-m.,et al.Phys.Rev.B.1996,54:8789.
    14 Fissel A.,Phy.Rep.2003,379:149-255.
    15 Lebedev A.A.,Semicond.Sci.Technol.2006,21:R17-R34.
    16 Fissel A,Kaiser U,Schr(o|¨)ter B,et al.Appl.Surf.Sci.2001,184:37.
    17 F.Bechstedt,A.Fissel,J.Furthm(u|¨)ller,et al.Appl.Surf.Sci.2003,212:820-825
    18 Ulrich Starke,Atomic Structure of SiC Surfaces,Springer Publisher,2003,Berlin
    19 Fissel A.,Phy.Rep.2003,379:149-255.
    20 刘金锋 博士论文 中国科学技术大学 2007
    21 赵朝阳 硕士论文 中国科学技术大学 2008
    22 Fisset A,Kaiser U,Schr(o|¨)ter B,et al.Appl.Surf.Sci.2001,184:37
    1 A.K.Geim,K.S.Novoselov.Nac Mater,2007,6:183.
    2 A.H.Castro Neto,F.Guinea,N.M.R.Peres,K.S.Novoselov,A.K.Geim.Reviews of Modem Physics,2009,81(1):109
    3 S.V.Morzov,K.S.Novoselov,et al.Physical Review Letters,2008,100(01):6602
    4 K.S.Novoselov,E.Mccann,S.V.Morozov,et al.Nature,2006,10:1038
    5 Nikolaos Tombros,Csaba Jozsa,Mihaita Popinciuc,Harry T.Jonkman.Bart J.van Wees.Nature,2007,448:571
    6 K.S.Novoselov,A.K.Geim,S.V.Morozov,et al.Science,2004,306:666
    7 Walt A.de Heer,Claire Berger,Xiaosong Wu,et al.Solid State Communications,2007,143
    8 Wang K F,Liu J F,et al.J.Vac.Sci.Tech.,2005,25:75
    9 Xu X G,Hu X B,Wang J Y,et al.Journal of Synthetic Crystals,2003,32:540
    10 A.Fisse.l Physics Reports 2003,379:149-255
    11 Ni,Z.H.,W.Chen,X.F.Fan,ef al.2008 Physical Review B 77 115416
    12 Ki-jeong Kim,Hangil Lee,J-HChoi,et al.Journal of Physics:Condensed Matter.2008,20:225017
    13 Ferrari,A.C,J.C.Meyer,V.Scardaci,et al.Physical Review Letters,2006,97(18):187401
    14 R.P.Vidano et al.Solid State Communications,1981,39:341.
    15 C.Thomsen,S.Reich.Physical Review Letters,2000,85:5214
    16 C.Faugeras,A.Nerriere,M.Potemski,et al.Applied Physics Letters,2008,92(1):011914(3)
    17 J.Rohrl.M.Hundhausen,K.V.Emtsev,et al.Applied Physics Letters,2008,92(20):01918(3)
    18 Gong Gu;Shu Nie;R.M.Feenstra;R.P.Devaty;W.J.Choyke;Winston K.Chan;Michael G.Kane Appl.Phys.Lett,2007,90:253507
    19 Ekaterina A.Obraztsova;Alexander V.Osadchy;Elena D.Obraztsova;Serge Lefrant;Igor V.Yaminsky Phys.Stat.Sol.(B) 2008,245(10):2055
    20 F.Cerdeira;C.J.Buchenauer;Fred H.Pollak;Manuel Cardona Physical Review B 1972,5:2
    21 Nicola Ferralis;Roya Maboudian;Carlo Carraro.Physical Review Letters 2008,101:156801
    22 A.K.Sood;Rajeev Gupta;S.A.Asher Journal of Applied Physics,2001,90(9):4494
    23 R.A.Rosenberg,P.J.Love;Victor Rehn.Physical Review B,1986,33(6):4034
    24 K.V.Emtsev;F.Speck;Th.Seyller;L.Ley Physical Review B 2008,77:155303
    25 V.A.Coleman;R.Kunt;O.Karis;H.Grennberg;U.Jansson;R.Quinlan;B.C.Holloway;B.Sanyal.Applied Physics Letter.2008,41:062001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700