用户名: 密码: 验证码:
液压集成块智能校验系统理论与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压集成块被广泛应用在液压系统当中,具有结构紧凑、安装维护方便、泄漏少、振动小、利于实现典型液压系统的集成化和标准化等优点。液压集成块设计的关键在于如何获得一个最优的外部布局和内部布孔的集成方案。然而,由于液压集成块的复杂性,目前的优化设计主要致力于布局布孔方案的全局性寻优搜索上,而面向工程实践需求的设计结果校验工作仍处在初步阶段,并具有较大局限性,更未就其中的相关理论与关键技术进行深入的研究。为满足加工、制造以及应用过程中对元件布局以及管网流场动态性能的实际需求,需要针对设计结果做全方位的校验,系统地检验实用功能、性能和品质。本文结合国家自然科学基金项目,紧密联系工程实际,以完成集成块设计结果的校验为目标,深入研究集成块校验理论与关键技术,开发出集成块智能校验系统。该系统能够较准确地完成对设计结果的校验及评价,并实现了液压集成块从设计到应用的一体化过程。
     全面总结液压集成块设计的复杂性以及实际生产应用中对集成式液压系统的各项要求,指出,针对液压集成块设计结果的几何结构约束与性能约束校验,是集成式液压系统设计过程中的一个关键环节及需要很好解决的研究课题。在此基础上,分析优化设计过程中约束条件的多语义性,以及对产品设计知识进行数学抽象的局限性,引入广义校验的概念,并将其涵盖于产品设计的全生命周期内的全部约束校验。基于此概念,深入研究其中的相关理论及关键技术,并探索开发集成块智能校验系统。
     根据液压集成块智能校验系统的功能需求,运用基于功能驱动的系统规划原理,全面进行液压集成块校验系统的总体规划,并确定该集成系统的体系结构和工作流程。明确提出该系统应具备虚拟现实设计功能、管网性能校验功能、虚拟装配功能以及设计结果输出及管理功能。采用科学、合理的手段对各组成部分进行衔接与协调。在此基础上,分别针对各子系统进行功能的详细设计,分析其中涉及到的主要问题及关键技术,为具体实现液压集成块校验系统奠定基础。
     为准确描述液压集成块内部管网的动态特性,首先明确管网性能校验目标,继而分析了功率键合图方法和计算流体动力学(CFD)方法的优势与各自特点,基于CFD方法能够从流动机理上对呈紊流状态的局部典型流道的阻力特性进行准确数值描述这一特点,提出以功率键合图方法为基础,结合CFD方法进行液压集成块管网的建模及仿真研究的实施策略。采用模块化自动建模技术,通过自动分析管网结构,建立并求解管网数学模型,从而获得管网的动态性能响应曲线及相关指标。研究实践表明,该方法可较准确地获取管网流场的动态性能指标,并对其相关进行分析,通过探讨管网中典型结构的改进对管网系统特性的影响,最终实现将集成块结构设计与孔道网络流场性能仿真融合为一体的完整设计过程。
     深入了解液压集成块在工程实际中的设计经验和准则,提出应用虚拟装配技术进行集成块几何结构校验这一技术路线。采用面向对象的特征模型建立方法为虚拟装配仿真提供具有完备信息的模型支持。在采用拆卸法拟定装配顺序的基础上,提出了一种面向虚拟装配的交互式产品装配顺序规划方法;并在对装配路径规划方法进行深入分析的基础上,采用空间规划与A*搜索算法相结合的方式,形成了液压集成块虚拟装配路径规划策略。在虚拟环境中应用基于空间约束关系的坐标驱动技术进行装配过程动态仿真,并在装配过程中实施碰撞干涉检验等工作。上述理论及方法的应用,实现了集成块设计结果的几何结构准确校验,并能够得到符合工程实际的装配工艺规划结果。
     分析液压集成块设计和校验流程中的信息流向,设计合理的信息结构,建立了设计的全生命周期内信息流模型。根据液压集成块设计、生产过程中对设计信息的需求,以元件数据、项目数据两类数据信息和三维工程图、二维工程图两类工程图相结合的形式,对设计结果信息予以完整的表达,并进行科学的协调与管理。文中对几种工程图的实现方法进行了相应介绍。上述研究内容及成果能够全方位地展示液压集成块设计结果,同时也为液压集成块自动优化设计和智能校验提供了数据支撑。
     在上述设计思路和方法的支持下,基于三维参数化造型软件MDT平台,以VisualC++程序设计语言作为编译工具,以ObjectARX为MDT的二次开发工具,开发出智能校验软件原型系统,成功实现了液压集成块设计结果的自动广义校验。该软件系统主要包括:虚拟装配子系统、管网性能校验子系统以及设计结果信息输出子系统三部分。最后针对设计结果实例进行了校验,全面展示了系统的总体工作流程与具体功能实现,亦充分验证了该系统的实用性及本文方法的可行性和有效性。
Hydraulic manifold block(HMB) is widely applied in hydraulic systems.It offers many advantages including compact structure,convenient installation and maintenance,less leakage and small vibration.It is also suitable for building typical integrated and standardized hydraulic systems.The key problem of HMB design is how to obtain an optimal integration outer spatial layout and inner connection scheme.However,due to the complexity of HMB, most works are devoted to the global searching of optimal layout and connection schemes. Works on the engineering verification of design results are still at the preliminary stage and have limits.In addition,thorough research on theory and key technologies in this field are needed.Verification is necessary to systematically check out the design results' practical function,performance and quality in order that they can meet not only the needs of machining and manufacturing,but also the actual demands of valves layout and dynamic characteristic in pipeline networks.The paper is supported by the National Natural Science Foundation of China.Combining with the practical engineering and taking the complete verification of HMB design results as the goal,further research on the theory and key technology of HMB verification has been made.A HMB intelligent verification system(HIVS) is developed.The system can verify and evaluate the design results.It also realizes the integrated process from design to application.
     The complexity of HMB design and various requirements of integrated hydraulic system in actual production are summarized.It is pointed out that the verification of geometric structure and performance constraints of HMB design results is one of the key links during the design process and needs to be well solved.The concept of generalized verification is introduced to solve the multi-semantics of constraint conditions in the optimum design process and the limitations of mathematical abstract on the product design knowledge. Generalized verification involves all the constraints during the whole life circle of product design.Based upon it,related theories and key technologies are researched deeply and HIVS is to be developed.
     According to the function requirements of HIVS,general planning is carried out based on functional driven system planning principle.The architecture and work flow of the system are determined.It clearly puts forward that the system should possess the functions of virtual reality design,performance verification of pipeline networks,virtual assembly design and results output and management.All parts are linked and harmonized by using reasonable and scientific methods.On this basis,the subsystems functions are designed in detail.The principal questions and key techniques are discussed,so that a foundation has been set up for the realization of the system.
     The following works aim at describing the dynamic characteristic of inner pipeline networks accurately.After expatiating on the verification target,the advantage and characteristics of Power Bond Graph(PBG) method and Computational Fluid Dynamic method(CFD) are discussed.CFD method can give accurate numerical depiction of the local typical structures in which the flows are always in turbulent state from the flow mechanism. This paper proposes the implementation strategy of combining PBG method with CFD method to study the modeling and simulation of HMB pipeline networks.An automatic modular modeling technology is used to automatically analyze the structure of pipeline networks,establish and solve the mathematical model.Accordingly,the dynamic response curves and related performance index can be attained.The research proves that this coupling method can obtain and analyze the dynamic performance of pipeline networks with fairly accuracy.The paper also explores the influence of typical structure improvements on the pipeline networks' dynamic characteristic.In this way,the complete design process is accomplished by blending together the HMB structure design and the flow field performance simulation of pipeline networks.
     On the basis of deep study on the engineering design experience and criteria of HMB,a technical route using virtual assembly to fulfill structure verification is established.An object-oriented feature based modeling method is used to provide complete model information for virtual assembly simulation.Moveover,an interactive assembly sequence planning method is presented based on disassembly method.Through the analysis of assembly path planning methods,spatial planning integrated with A~* search algorithm is used on HMB.The simulation of HMB assembly is realized by using the technology of axis driving under spatial constraint in virtual environment.At the same time,some analysis works such as collision and interference checking are carried during the course of assembly.Using the theory and method mentioned above,the geometric structures verification of HMB design results can be carried out accurately.Also,assembly process planning results which can meet engineering requirements can be attained.
     Based on analysis of the information flow in HMB design and verification,a rational information structure is devised.An information flow model of whole life circle is also established.To satisfy the demands of design information in the process of HMB design and production,the results should be expressed completely.This paper displays the optimization design results by combining the data information with engineering drawings.The data information includes components data and project data.The engineering drawings include 3D engineering drawings and 2D engineering drawings.All the information is coordinated and organized scientifically.In the paper,the engineering drawings implementation method is introduced briefly.Above research can show the HMB design results omnidirectionally and offer data support for the automatic HMB optimizing design as well as intelligent verification.
     Based on the design idea and methods mentioned above,a prototype software HIVS is developed using MDT as a platform,Visual C++6.0 as compile tool and ObjectARX as a development tool.The system can verify the HMB design results automatically and successfully.It includes virtual assembly subsystem,pipeline networks performance verification subsystem and design results information output subsystem.In the end,a typical integrated HMB design result is verified by the system to show the whole work flow and detailed functions.The satisfying results have testified the practicability and validity of this system.
引文
[1]曹玉平,阎祥安.液压传动与控制,天津:天津大学出版社,2003.6.
    [2]Jacobs,E.Look at Hydraulic Manifolds.Hydraulics & Pneumatics,1991,44(10):51
    [3]Foszcz Joseph L.,Caputo Don..Manifolds simplify fluid power systems.Plant Engineering,2002,56(6):40-44
    [4]王占奎,红伟等.基于遗传粒子群算法的集成块布局优化.机床与液压,2007,35(11):74-76
    [5]XiangW,Chuen CW,Wong CM,et al.Feature rep resentation and database schema of an object2oriented featurebased p roductmodel for hydraulic manifold blocks.International Journal of Advanced M anufacturing Technology,2000,16(3):182-188.
    [6]Rudolf Koller,Andrea Ludwig,Hans-Peter Mannweiler.Program for Automating Hydraulic Control Manifold Design.Maschinenmarkt,1982,88(37):745-748
    [7]Backe,W.Program Package HYKON For Planning And Design Of Hydraulic Control Blocks.Computer Aided Design in High Pressure Hydraulic Systems,1983:97-98
    [8]Woodwark,J.R.Solid Modelling Of Fluid Power Components.Computer Aided Design in High Pressure Hydraulic Systems,1983:99-101
    [9]Cooper,B.S.Application of the Euclid System in the Design and Manufacture of Hydraulic Manifolds-A Case Study.Computer-Aided Engineering Journal,1985,2(2):50-56
    [10]Rinkinen,J.A.,Vilenius,M.J.Cad in Hydraulic Cartridge Valve Block Design.Hydraulic Pneumatic Mechanical Power,1985,31(364):90-93
    [11]Friedrich.CAD/CAM System for Manifold Block Production.Tampere International Conference on Fluid Power,Finland,1987
    [12]J.A.Rinkinen.HYBLO-CAD/CAM:Interactive Program Package for Hydraulic Cartridge Valve Blocks.Tampere International Conference on Fluid Power,Finland,1987
    [13]Feldman D.G.Concept for CAD support for designers of fluid component—status and potential of realization.Hangzhou International Conference of Fluid Power,1989
    [14]Schechner Y.CAD shines in hydraulic manifold design,hydraulics & pneumatics,1990,43(3):16-17
    [15]Chambon,R.,Chevalier,P.M.,Descotte,Y.and Tollenaere,M.An Expert System for Object Placing in 3D Space.Proc.2nd AATE Boston,USA(Aug 1987)
    [16]Chambon,R.,Tollenaere,M.Automated Al-based mechanical design of hydraulic manifold blocks.Computer Aided Design,1991,23(3):213-222
    [17]Tollenaere,M.Benefits of an Object Based Approach for the Development of an Intelligent CAD System.Proceedings of AIENG'92 Applications of Artificial Intelligence in Engineering,1992,Waterloo,Ont.,Canada
    [18]FOK S C,XIANG W,YAP F F.Feature-based component models for virtual prototyping of hydraulic systems.International Journal of Advanced Manufacturing Technology,2001(18):665-672
    [19]B.Pott,D.G.Feldmann.吴根茂,陈鹰(译).液压控制集成块的产品模型化——提高工程设计效率的一条途径.工程设计,2001(1):37-42
    [20]MDTools 5_0.http://www.vestusa.com/MDTools700Audiovisual.asp
    [21]SICV Library.http://eatonhydraulics.com/sicv/sicv_body.html
    [22]张海平,钟廷修.插装阀体复杂孔系的CAD.机床与液压,1987(1):15-16
    [23]陈子侠.二通插装阀集成系统CV-CAD实用软件开发.机械设计与制造,1995(4):17-18
    [24]乔进友,金忠孝,李元勋等.液压集成块CAD软件的研究开发.液压气动与密封,1997(3):42-44
    [25]李元勋,钟廷修,乔进友等.基于图形界面的液压集成块CAD系统,机床与液压.1998(5):56-59
    [26]金忠孝,乔进友,钟廷修.基于约束的液压集成块智能CAD研究,机床与液压,1999(1):54-55
    [27]周惠友,钟廷修.液压集成块路径优化设计.上海交通大学学报,2001(12):1842-1845
    [28]李从心.液压系统原理图设计的专家系统:(博士学位论文).武汉:原华中理工大学,1988
    [29]熊壮,喻道远,段正澄.液压集成块CAD/CAM系统的设计与研究.原华中理工大学学报,1999,27(8):27-29
    [30]冯磊,易孟林,龚从容.液压集成阀块CAD的参数化方法研究.机床与液压,1998(6):53-54
    [31]阮春红,冯磊,曹树平.李氏迷宫算法在液压阀块CAD中的应用研究.机械科学与技术,2001(4):590-592
    [32]陈鹰.二通插装阀液压控制系统和控制阀块计算机智能辅助设计研究及软件开发.(博士学位论文).杭州:浙江大学,1989
    [33]汪诚波,王荣良.液压集成块孔系干涉计算机自动分析研究.机电工程,1999(1):5-8
    [34]Rongliang Wang,JunshengOu,Qihua Wang,Bing Ye,Ying Chen.CAD of Hydraulic Manifold with Object-Orient Feature-Based Solid Modeling.Proceedings of the 48th National Conference on Fluid Power,USA,2000:187-191
    [35]叶冰,陈鹰.液压集成块三维参数化设计研究.工程设计,2001(2):88-92
    [36]Wong,P.K.,Chuen,C.W.,Leung,T.P.CAD of hydraulic manifold blocks using an object-oriented approach.American Society of Mechanical Engineers,The Fluid Power and Systems Technology Division(Publication) FPST,1997(4):183-189
    [37]P.K.Wong,L.M.Tam,S.C.Tam.Research on Intelligence CAD for Hydraulic Manifold Blocks.Proceedings of the 3rd China Association for Science and Technology(CAST) Conference of Young Scientists(Beijing,China,August 20-22,1998:118-121
    [38]贺继钢,司徒忠等.液压集成块CAD/CAM的信息编码设计.机床与液压,1998(1):16-17
    [39]赵葛霄,贺继钢,司徒忠.液压集成块智能化设计系统应用研究.机床与液压,2000(1):13-14
    [40]赵葛霄,司徒忠,贺继钢等.液压集成块CAM系统开发研究.机床与液压,2000(6):25-26
    [41]高卫国,徐燕申,牛文铁.基于广义装配的液压集成块设计过程建模.天津大学学报,2006,39(4):443-448.
    [42]高卫国,徐燕申,牛文铁.液压集成块三维设计方法研究.液压与气动,2007(2):23-26.
    [43]高卫国.液压集成块设计过程建模理论、方法及应用研究:(博士学位论文).天津:天津大学.2006
    [44]刘惠敏,张亚平,郑玉明.液压集成阀块CAD/CAM方法研究.机械科学与技术,1998,17(1):135-137
    [45]胡萍,丁子佳,冯晓梅.交互式设计液压系统集成块.机械设计与制造,1997(6):30-31
    [46]贾竹青.液压集成块设计法分析.液压与气动,1998(1):7-8
    [47]董华.液压系统智能CAD技术开发及软件实现方法研究:(博士学位论文).大连:大连理工大学,1990
    [48]王琦.液压系统插装阀块CAD:(硕士学位论文).大连:大连理工大学,1991
    [49]Dong Hua.CAD/CAM for Hydraulic systems.Proceedings of the 46th National Conference of Fluid Power,USA,1994
    [50]牛治刚,谢琳,董华等.实用液压集成块CAD的开发和研究.组合机床与自动化加工技术,1995(4):18-20
    [51]苏萌.液压阀块的三维交互设计及装配图CAD软件的开发:(硕士学位论文).大连:大连理工大学,1995
    [52]薄占滨.基于特征的液压阀块CAD研究与开发:(硕士学位论文).大连:大连理工大学,1997
    [53]邢志伟.液压集成块CAD的研究与开发:(硕士学位论文).大连:大连理工大学,2000
    [54]谢琳.基于特征的插装阀块类零件CAD/CAM集成系统的开发与研究:(博士学位论文).大连:大连理工大学,1995
    [55]Lin Xie,Hua Dong,Xinan Feng,Wei Xiang.Research on feature-based CAD/CAM for hydraulic valve blocks.Proceedings of the 47th National Conference on Fluid Power,USA,1996:359-367
    [56]Lin Xie,George E.Torten.Feature-Based Optimization Design of Hydraulic Valve Blocks.Proceedings of the 48th National Conference of Fluid Power,USA,2000:397-406
    [57]冯毅,李利,田树军.液压集成块虚拟设计建模技术研究.机床与液压,2002(5):111-112,103
    [58]田树军.液压系统动态建模与仿真方法研究及通用仿真软件包开发:(博士学位论文).大连:大连理工大学,1991
    [59]田树军,冯毅,高艳明,张宏.液压集成系统智能化虚拟设计中的核心算法研究.系统仿真学报,2006(3):607-612
    [60]高殿荣,王益群.液压集成块内弯曲流道流场数值计算与分析.机床与液压,2001(6):34-35
    [61]戴国洪,数字化预装配建模与序列规划技术的研究:(博士学位论文).南京:南京理工大学,2007.1
    [62]王士刚.液压系统可视化动态建模技术及其软件实现方法研究:(博士学位论文).大连:大连理工大学,2001.9
    [63]J.D.Anderson.Basic philosophy of CFD,in:J.F.Wendt(Ed.),Computational Fluid Dynamics,2nd Edition,Springer,Berlin Heidelberg,1996.
    [64]汪应洛.系统工程.北京:机械工业出版社,2003年
    [65]高志亮,李忠良.系统工程方法论.西安:西北工业大学出版社,2004.8
    [66]蒋庆全.虚拟现实技术探析.国防技术基础,2002
    [67]刘能宏,田树军.液压系统动态特性数字仿真.大连:大连理工大学出版社,1993
    [68]潘亚东.键合图概论——一种系统动力学方法.重庆:重庆大学出版社,1990.1
    [69]Anthony Amsden A,"KIVA-3:A KIVA Program with Block-structured Mesh for Complex Geometries" Los Alamos National Laboratory,Los Alamos,New Mexico 87545,March 1993
    [70]Riffat,S.B.,Cheong,K.W.& Holmes,M.J.,Measurement of entrance length and friction factor of ducts using tracer-gas techniques.Proc.12th AIVC Conference,Vol.2.Air Infiltration and Ventilation Centre,Coventry,1991:321-34.
    [71]J.D.Anderson.Basic philosophy of CFD,in:J.F.Wendt(Ed.),Computational Fluid Dynamics,2nd Edition,Springer,Berlin Heidelberg,1996.
    [72]Chen Q,Stoffel B,Quan L.Coupling simulations of hydraulic systems with characteristic method and CFD,Proceedings of the Sixth International Conference on Fluid Power Transmission and Control.2005:543-547
    [73]雷天觉.液压工程手册.北京:机械工业出版社,1990.
    [74]苏沛兰,董志勇,姚科云,郭爱红.S型与U型管道阻力规律对比研究.山西农业大学学报,2004(04):1671-8151.
    [75]S.F.Moujaes,S.Deshmukh.Three-dimensional CFD Predications and Experimental Comparison of Pressure Drop of Some Common Pipe Fittings in Turbulent Flow,Journal of Energy Engineering.ASCE/hugust 2006:61-65
    [76]J.S.Anagnostopoulos,O.S.Mathioulakis.Unsteady flow field in a square tube T-junction.Physics of Fluids,2004,16(11):3900-3910.
    [77]张宏,基于管网液流特性仿真的液压集成块优化设计:(博士学位论文).大连:大连理工大学,2006.11
    [78]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [79]H.M.Payter.Analysis and Design of Engineering Systems.M.I.T.Press,Cambridge,MA,1961
    [80]D.C.Karnopp.Power-Conservating Transformations:Physical Interpretations and Applications Using Bond Graphs.Journal of the Franklin Institute,1969,288(3):175-201
    [81]R.C.Rosenberg,O.C.Karnopp.A Definition of the Bond Graph Language.Journal of Dynamic Systems,Measurement,and Control,1972,94(3):179-182
    [82]J.U.Thoma.Introduction to Bond Graphs and Their Application.Pergamon Press,1975
    [83]任锦堂.键图理论及应用-系统建模与仿真.上海:上海交通大学出版社,1992.
    [84]于涛.面向对象的多领域复杂机电系统键合图建模和仿真的研究:(博士学位论文).北京:北京机电研究所,2006.7
    [85]李步堂,雷步芳,高雨茁.液压系统建模与仿真.北京:冶金工业出版社,2003
    [86]Goodson,R.E.,and Leonard,R.G..A Survey of Modeling Techniques for Fluid Transmission Line Transients.ASME Journal of Basic Engineering,Vol.94,June 1972
    [87]D.L.Margolis,W.C.Yang.Bond Graph Models for Fluid Networks Using Model Approximation.Journal of Dynamic System,Measurement and Control,September 1985,107:169-175
    [88]倪重辉.液压管路动特性键图法仿真的频率精度问题研究.中国航空学会液压气动专业第六次学术讨论会论文集,1988:121-124
    [89]陈照弟,李洪人等.输入流输出流管道分布参数键图模型的建立与实验研究.哈尔滨工业大学学报,1998,30(5):124-128
    [90]陈照弟,李洪人等.包含动态摩擦的管路分段集中参数键合图模型研究.机床与液压,1999(1):14-15
    [91]李洪人,陈照弟.新的液压管路分段集中参数键图模型及其试验研究.机械工程学报,2000,36(3):61-64
    [92]田树军,张宏.液压管路动态特性的Simulinik仿真研究.系统仿真学报,2006,18(5):1136-1138
    [93]童时中.模块化原理设计方法及应用.北京:中国标准出版社,2000
    [94]李利.液压集成块智能优化设计理论与方法研究:(博士学位论文).大连:大连理工大学,2002.12
    [95]R.C.Rosenberg,D.C.Karnopp.A Definition of the Bond Graph Language.Journal of Dynamic Systems,Measurement,and Control,1972,94(3):179-182
    [96]T.kohda,T.Nakada.Introduction of Bond Graph Simulation Program(BGSP).Fluid Power(Proceedings of the Second JHPS International Symposium on Fluid Power),1993:173-182
    [97]高磊.液压系统动态特性通用仿真软件包的研究开发:(硕士学位论文).大连:人连理工大学,1998
    [98]张韵华等.数值计算方法与算法,北京:科学出版社,2006,5
    [99]郭津津,朱世和,董黎敏等.基于三维实体液压集成块设计系统.机械设计,2001,5(5):26-29
    [100]http://hydraulic-manifold.com/trail.htm,2003
    [101]张玉峰.特征造型技术在有限元分析建模中的应用研究:(博士学位论文).武汉:武汉大学,2002.
    [102]董林福,赵艳春.液压与气压传动,北京:化学工业出版社,2006.6.
    [103]卢小平.面向虚拟装配的装配顺序规划研究.系统仿真学报,2003.15(1):44-47
    [104]张林,童秉枢.并行工程中的装配仿真系统及其关键技术研究.计算机辅助设计与图形学学报,1999,11(2):163-167
    [105]何朝良.基于CATIA/CAA平台的虚拟装配路径规划的研究:(硕士学位论文).南京:南京航空航天大学,2005.
    [106]田立中,付宜利,马玉林等.装配路径规划中基于动态坐标的A*搜索算法.计算机集成制造系统—CIMS,2002,8(4):316-319
    [107]黄娟,顾寄南.装配仿真中碰撞干涉检查研究的综述.江苏大学学报(自然科学版), 2002,23(2):17-21
    [108]贾春强.插装式集成块智能优化设计理论与方法研究:(博士学位论文).大连:大连理工大学,2007.12
    [109]刘万辉.液压集成块CAD/CAM集成系统总体方案设计:(博士学位论文).大连:大连理工大学,2007.12
    [110]苏文涛.液压集成块二维工程图自动生成研究及其实现:(硕士学位论文).大连:大连理工大学,2006.12
    [111]机械制图(第6版)大连理工学工程画教研室.,北京:高等教育出版社,2007.7
    [112]肖丽雯.装配图参数化设计系统的实现及其关键技术的研究:(博士学位论文).上海:东华大学,2002.
    [113]国家技术监督局,国家标准.北京:国标准出版社,2004.10
    [114]David J.Kraglinski.Visual C++技术内幕.北京:清华大学出版社,2000.
    [115]李利,张永利,代宝江.MDT6.0参数化造型步步高.北京:中国铁道出版社,2003.4
    [116]高成慧,李燕.关于Auto CAD二次开发工具的探讨.现代计算机,2002(2):31-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700