用户名: 密码: 验证码:
肌动蛋白降解规律与死亡时间推断的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     肌动蛋白是构成细胞骨架的主要蛋白质之一,几乎可表达于所有的真核细胞。现已证实心肌和肝脏内肌动蛋白的死后降解规律具有时间相关性,可用于死亡时间推断。但是机体死后各脏器之间肌动蛋白的降解规律是否具有差异性?环境因素(如温度、湿度)、人为因素(如致死方式)是否会对肌动蛋白的死后降解造成的影响?肌动蛋白的死后形态学改变是否也与死亡时间具有相关关系?以及在人体组织内,肌动蛋白的死后降解规律是否也具有时间相关性?目前有关这些问题还未见有研究报道。因此,本次实验将对上述这些问题进行探讨。
     实验目的:
     (1)观察大鼠死后不同时间心、肝、脾、肺、肾、脑和骨骼肌等组织内肌动蛋白的含量变化,为晚期死亡时间推断寻找参考指标。
     (2)探讨大鼠骨骼肌肌动蛋白纤维的形态学变化与死亡时间的相关性。
     (3)研究不同温度条件下大鼠骨骼肌肌动蛋白死后降解规律的差异性。
     (4)探讨环境湿度对大鼠骨骼肌肌动蛋白死后降解规律的影响。
     (5)比较不同死亡原因对大鼠骨骼肌肌动蛋白死后降解规律的影响。
     (6)探讨大鼠骨骼肌肌动蛋白的降解规律与离体时间的关系。
     (7)探讨人体胸大肌肌动蛋白含量变化与离体时间的关系。
     实验方法:
     (1)大鼠经机械性窒息法致死后随机分为7组,分别于死后0、24、48、72、96、120和168h剖取心、肝、脾、肺、肾、脑和骨骼肌等组织,采用免疫印迹及图像分析技术检测上述组织内肌动蛋白的含量,应用SPSS11.5软件对所得数据进行统计学分析。
     (2)分别采用光学显微镜、激光扫描共聚焦显微镜和透射电镜对大鼠死后不同时间骨骼肌(右后肢的内收大肌)肌动蛋白纤维的形态学变化进行观察。
     (3)应用免疫印迹及计算机图像分析技术,测量并分析在不同温度条件下(10℃、20℃和30℃)大鼠死后168h内骨骼肌肌动蛋白的含量变化差异。
     (4)对不同湿度条件下(30%、50%和70%)大鼠死后0、24、48、72、96、120和168 h骨骼肌肌动蛋白的含量进行检测。
     (5)将大鼠分别采用机械性窒息、失血性休克和电击法致死,采用免疫印迹及计算机图像分析技术检测并分析不同致死方式组大鼠死后168h内骨骼肌肌动蛋白的含量变化差异。
     (6)采用免疫印迹及计算机图像分析技术检测大鼠骨骼肌离体0、24、48、72、96、120和168h时肌动蛋白的含量,观察其含量变化与离体时间的关系。
     (7)收集外科手术中切除的人体胸大肌组织,置于人工气候箱内保存(恒温20℃,湿度恒定50%),采用免疫印迹及计算机图像分析技术检测其离体0、24、48、72、96、120和168h后肌动蛋白的含量。
     实验结果:
     (1)大鼠死后,其心肌、肝、脾、肺、肾、脑和骨骼肌等组织内肌动蛋白含量均随死亡时间的延长而逐渐下降,与死亡时间具有相关性。但肌动蛋白在上述各器官内的死后降解速度有差异(P<0.05),在脑组织的降解速度最快,其余依次为肺、脾、肝、肾、心肌和骨骼肌。
     (2)随着死亡时间的延长,大鼠骨骼肌纤维的横纹逐渐模糊、消失,细胞核固缩、溶解(光学显微镜观察);由肌动蛋白构成的细肌丝逐渐崩解、紊乱,直至肌小节和细肌丝结构消失(透射电镜观察);骨骼肌肌动蛋白纤维在死后24h即可发生不同程度的抗肌动蛋白抗体的缺染,缺染面积的变化趋势与死亡时间相关,至死后168h,几乎观察不到抗肌动蛋白抗体的阳性产物(激光扫描共聚焦显微镜观察)。
     (3)不同温度组大鼠骨骼肌肌动蛋白的降解速度进行组间比较时,组间差异具有统计学意义(P<0.05);环境温度与死亡时间之间具有交互作用(F=8.894,P=0.001)。肌动蛋白相对含量与环境温度、PMI的多元回归方程为:Y=136689.8-465.5X1-1377.7X2,R2 =0.823(Y为肌动蛋白的IOD值,X1为PMI,下同;X2为环境温度)。
     (4)不同湿度组大鼠骨骼肌肌动蛋白的降解速度进行组间比较时,组间差异具有统计学意义(P<0.05),环境湿度的升高,肌动蛋白的降解速度加快。肌动蛋白相对含量与环境湿度、PMI的多元回归方程为:Y=136689.8-465.5X1-1377.7X2,R2 =0.823(X2为环境湿度)。
     (5)不同死亡原因组大鼠骨骼肌肌动蛋白降解速度进行组间比较时,失血性休克组大鼠骨骼肌肌动蛋白的死后降解速度慢于其它两组(P<0.05)。肌动蛋白相对含量与死亡原因、PMI的多元回归方程为:Y=118112.8-438.6X1-4972.5X2,R2 =0.793(X2为死亡原因:1=机械性窒息、2=失血性休克、3=电击致死)。
     (6)大鼠骨骼肌肌动蛋白含量变化与离体时间呈负相关关系,肌动蛋白含量变化趋势与在体组比较,差异具有统计学意义(P<0.05)。肌动蛋白相对含量与标本保存方式、PMI(或离体时间)的多元回归方程为:Y=82422.6-420.5X1+15884.3X2,R2 =0.865(X2为标本保存方式:1=在体、2=离体保存)。
     (7)人体胸大肌肌动蛋白的含量变化与离体时间呈负相关关系,其降解规律与大鼠骨骼肌肌动蛋白死后降解规律有差异(P<0.05),但在大多数离体时间点,人体胸大肌与大鼠骨骼肌肌动蛋白的含量差值不具有统计学意义(P=0.334)。人体胸大肌肌动蛋白相对含量与PMI的回归方程及R2值为:Y=108288.8-342.28X,R2=0.89( X为离体时间)。
     结论:
     (1)大鼠死后心、肝、脾、肺、肾、脑和骨骼肌肌动蛋白的降解规律具有组织差异性,有助于较晚期死亡时间的推断。但是肌动蛋白在上述组织中的含量变化均与死亡时间具有相关性。
     (2)大鼠骨骼肌肌动蛋白纤维的形态学改变与死亡时间具有相关性,有助于早期死亡时间推断。
     (3)骨骼肌肌动蛋白的死后降解速度会受环境温度影响,在一定范围内有随温度升高而加快的趋势。
     (4)环境湿度会影响骨骼肌肌动蛋白的死后降解速度,二者在一定范围内呈正相关关系。
     (5)死亡原因会影响大鼠骨骼肌肌动蛋白的死后降解速度,骨骼肌肌动蛋白的死后降解规律可能会有助于某些死亡原因的判断。
     (6)大鼠离体骨骼肌肌动蛋白的含量变化与离体时间呈负相关,在离体保存状态下,肌动蛋白的降解速度被延缓。
     (7)人体胸大肌离体后肌动蛋白的降解趋势与离体时间同样具有相关关系,证实骨骼肌肌动蛋白死后降解规律可以作为法医学死亡时间推断的生物学指标。
Backgroud
     Actin is structural subunit of microfilaments and is the most abundant intracellular protein in a eukaryotic cell, which often constitutes as much as 50% of total cellular protein. Experiments had shown that actin in the liver tissue of rats could be detected at 8 days postmortem, but could not be examined after 10 days postmortem and within a certain postmortem interval ( <54h postmortem), the extent of anti-actin monoclonal antibody staining depletion in cardiac and skeletal muscle cells increases with the extension of postmortem interval. These observations indicate that the degradation pattern of the actin may be used as a parameter for PMI estimation. However, whether there are variability of actin postmortem degradation in different tissues? Whether the environmental factors( temperature and humidity), anthropic factors(modes of death) could affact the postmortem degradation of actin ? Whether there are correlationship between the morphologic changes of actin and the time since death? Whether the actin content in human tissues also decreases with the extension of the post-isolation time ? At present, we can’t find reports in these filds. So, in this study, we try to find the answer for the above problems.
     Objective
     (1)To observe the postmortem degradation of actin in cardiac muscle, liver, spleen, lung, kidney, brain and skeletal muscle of rats,for the purpose of finding a new method of estimating the time since death.
     (2)To investigate the correlation between morphologic changes of actin in skeletal muscle of rats and the time since death.
     (3)To study the effects of ambient temperature on the actin postmortem degradation of rats.
     (4)To investigate the variability of actin postmortem degradation in skeletal muscle of rats at different ambient humidity.
     (5)The content changes of actin in the skeletal muscle of rats killed by different manners were investigated to elucidate evidence that can be used to determine the modes of death.
     (6)To study the relationship between the actin content in ex vivo skeletal muscle of rats and the time since isolation.
     (7)To observe the degradation of actin in ex vivo human pectoralis major within 168h after being excised.
     Methods
     (1) Twenty eight clear Sprague Dawley rats were killed by suffocating and put into an artificial climate incubator(set at 20℃)for 0, 24, 48, 72, 96, 120 and 168h, respectively. The actin contents in the above tissues were quantitated by western-blot assay and collected by Image Pro Plus 5.0 image analysis system, and the datas were then statistically analyzed with the SPSS 11.5 software.
     (2) The morphologic changes of actin filament in the skeletal muscle (adductor magnus of right hind leg) of twenty eight rats were observed by optical microscope, laser scanning confocal microscope (LSCM) and transmission electron microscope (TEM) at different postmortem intervals (0, 24, 48, 72, 96, 120 and 168h).
     (3) The differences of the content of actin in the adductor magnus of rats at different ambient temperature (10℃, 20℃and 30℃) and different postmortem intervals (0, 24, 48, 72, 96, 120 and 168h) were measured and analyzed with western-blot assay and image analysis technology.
     (4) The content changes of actin in the adductor magnus of rats at different ambient humidity (30%, 50% and 70%) were determined by using western-blot assay and image analysis technology, in the course of 168h after death.
     (5)Twelve SD rats were randomly allocated into 3 groups and killed by bleeding,suffocating,and electrocution,respectively.The contents of actin in the adductor magnus of rats killed by different manners at different postmortem intervals (0, 24, 48, 72, 96, 120 and 168h) were measured by western-blot.
     (6)The adductor magnus of four SD rats killed by suffocating were dissected and put into the artificial climate incubator set at 20℃. The actin content in the ex vitro specimens were quantitated with western blot assay and image analysis techniques at differernt time after being excised (0, 24, 48, 72, 96, 120 and 168h).
     (7) The actin content in the ex vitro human pectoralis major (n = 4) were quantitated with western-blot assay, in the course of 168h after being excised.
     Results
     (1)Actin content in all these tissues decreased gradually with the prolonged postmortem intervals(PMI). The degradation differences between the groups was statistically significant(P<0.05), with the degradation in the brain fastest,then the lung, the spleen,the liver, the kidney, the cardiac muscle and the skeletal muscle in order. There was a strong correlation between actin degradation and PMI, and the coefficient of determination (R2) exceeded 0.75 in all these tissues.
     (2)After death, the disappearance of the transverse striation and karyopycnosis, hypochromatosis of the skeletal muscle of rats can be observed by the optical microscope, and all that became more and more notable with the extension of PMI; the results of the TEM revealed that actin filament began to disintegrate with the lapse of PMI, and at last, the structure of sarcomere and actin filament disappeared; the results of LSCM showed that skeletal muscles revealed depletion of anti-actin antibody staining and the extent of staining depletion increased with extension of PMI, and nearly no actin positive product can be detected until 168h after death.
     (3)Within 168h postmortem, actin content in the adductor magnus of rats in different ambinet temperature groups all reduced gradually with the extension of the PMI, and significant differences can be observed between the different temperature groups at all the intervals (P<0.05). The interaction effect on the postmortem dagradation of actin between the ambinet temperature and PMI can be found via the statistical analysis. The multiple regression equation between actin content and ambient temperature, PMI were: Y=136689.8-465.5X1-1377.7X2,R2 =0.823(Y was the IOD value of the actin content, X1 was the PMI,which was the same as the below in the whole thesis; X2 was the ambient temperature).
     (4)The postmortem degradation rate of actin in the different humidity groups were differernt, and there were significant differences in actin content can be observed between the rats in different humidity groups at most of intervals. The multiple regression equation between actin content and ambient humidity, PMI and the R2 were: Y=136689.8-465.5X1-1377.7X2,R2 =0.823 (X2 was the ambient humidity).
     (5)There were significant differences in contents of actin in the adductor magnus between the hemorrhage shock group and suffocation group,electrocution group at most of the intervals (P<0.05). The multiple regression equation between actin content and modes of death, PMI were: Y=118112.8-438.6X1-4972.5X2,R2 =0.793 (X2 was the modes of death: 1- by bleeding,2-by suffocating,3-by electrocution).
     (6)Actin content in the ex vivo adductor magnus of rats reduced gradually with the extension of the PMI, and there was a proximate linear relationship between actin content and post-isolation time, and significant differences can be observed between ex vivo and in vitro groups(P<0.05). The multiple regression equation were:Y=82422.6-420.5X1+15884.3X2,R2 =0.865(X2 :the modes of preservation of the specimen: 1- in vitro, 2- ex vivo).
     (7)There were significant differences in actin content in human pectoralis major (P<0.05) after being excised, but no differences can be found in the reminers of the actin content in human pectoralis major and adductor magnus of rats at most of the intervals(F=1.22,P=0.334). The multiple regression equation between actin content and PMI and the R2 were: Y=108288.8-342.28X,R2=0.89(X was the time after isolation).
     Conclusion
     (1) Although with tissue disparity in degradation, the actin contents in cardiac muscle, liver, spleen, lung, kindey, brain and skeletal muscle of rats decreased gradually with prolonged PMI, which may potentially be a useful parameter for the late PMI estimation.
     (2)To observe the morphologic changes of the actin filament of skeletal muscle may be expected to be a useful method for the early PMI estimation.
     (3)The influence of temperature on the postmortem degradation of actin in skeletal muscle was evident, and the degradation rate tended to to be raised by higher temperature.
     (4)The postmortem degradation rate of actin in skeletal muscle were different between different humidity groups, and the rise of the ambient humidity tended to speed up the degradation rate.
     (5)The manners of death could influence the postmortem degradation rate of actin in the skeletal muscle of rats, the content changes of actin may provide a basis for determination of the manner of death.
     (6)There was a negative correlativity between actin content in the skeletal muscle of rats and the post-isolation time, and the postmortem degradation rate of actin was higher in vitro group than in ex vivo group.
     (7)The actin content in human pectoralis major decreased with the extension of the post-isolation time, which seems to be a useful biological indicator for the late PMI estimation.
引文
[1]Schroeder H, Klotzbach H, Elias S, et al. Use of PCR-RFLP for differentiation of calliphorid larvae (Diptera, Calliphoridae) on human corpses. Forensic Sci Int. 2003, 132(1):76-81.
    [2]Arnaldos MI, Garcia MD, Romera E, et al. Estimation of postmortem interval in real cases based on experimentally obtained entomological evidence. Forensic Sci Int, 2005, 149(1):57-65.
    [3]Ying BW, Liu TT, Fan H, et al. The application of mitochondrial DNA cytochrome oxidase II gene for the identification of forensically important blowflies in Western China. Am J Forensic Med Pathol, 2007, 28(4):308-313.
    [4]Mall G, Eisenmenger W. Estimation of time since death by heat-flow Finite-Element model. Part I: method, model, calibration and validation. Leg Med, 2005, 7(1): 1-14.
    [5]Mall G, Eisenmenger W. Estimation of time since death by heat-flow Finite-Element model part II: application to non-standard cooling conditions and preliminary results in practical casework. Leg Med, 2005, 7(1): 69-80.
    [6]Megyesi MS, Nawrocki SP, Haskell NH. Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. J Forensic Sci, 2005, 50(3):1-9.
    [7]李梅,廖志钢等.大鼠尸僵发展过程中肌节长度的变化及其长度测定.中国法医学杂志,2002,17(1):7-9.
    [8]Elmas I, Baslo B, Ertas M, et al. Analysis of gastrocnemius compound muscle action potential in rat after death: significance for the estimation of early postmortem interval. Forensic Sci Int, 2001, 116(2-3):125-132.
    [9]李宗会,秦光明等.春季尸体腹腔腐败气压在法医学死亡时间推断中的应用研究.法医学杂志,2003, 19(2):72-75.
    [10]刘茜,武盛国,汪岚,等.双眼交替微量取样检测兔眼玻璃体液钾镁离子浓度推测死亡时间.中国法医学杂志,2007, 22(1):32-38.
    [11]Mulla A, Massey KL, Kalra J. Vitreous humor biochemical constituents evaluation of between-eye differences. Am J Forensic Med Pathol, 2005, 26(2):146-149.
    [12] Madea B, Kreuser C, Banaschak S. Postmortem biochemical examination of synovial fluid--a preliminary study. Forensic Sci Int, 2001, 118(1):29-35.
    [13]Boy SC, Bernitz H, Van Heerden WF. Flow cytometric evaluation of postmortem pulp DNA degradation. Am J Forensic Med Pathol, 2003, 24 (2):123-127.
    [14]Bauer M, Gramlich I, Polzin S, et al. Quantification of mRNA degradation as possible indicator of postmortem interval-a pilot study. Leg Med, 2003, 5 (4):220-227.
    [15]Sabucedo AJ, Furton KG. Estimation of postmortem interval using the protein marker cardiac Troponin I. Forensic Sci Int, 2003, 134 (1):11-16.
    [16]Kovacs Z, Kekesi KA, Bobest M, et al. Post mortem degradation of nucleosides in the brain:Comparison of human and rat brains for estimation of in vivo concentration of nucleosides. J Neurosci Methods, 2005,148 (1):88-93.
    [17]刘良,彭东兵,刘艳,等.大鼠肾细胞核DNA含量与死亡时间关系的研究.法医学杂志,2001,17(2):65-68.
    [18]高翠莲,陈玉川,韦拔雄,等.大鼠死后骨骼肌细胞核DNA降解的彗星电泳检测.中国法医学杂志,2005,20(3):129-.131
    [19]龙仁,王伟平,熊平,等.肋软骨及牙髓细胞DNA含量与PMI的相关性.法医学杂志,2005,21(3):174-176.
    [20]陈新,沈忆文,顾云菊,等.组织细胞DNA含量变化与死亡时间的相关性研究.法医学杂志,2005,21(2):115~117
    [21] Di Nunno NR, Costantinides F, Bernasconi P, et al. Is flow cytometric evaluation of DNA degradation a reliable method to investigate the early postmortem period? Am J Forensic Med Pathol, 1998, 19 (1):50-53.
    [22] Johnson LA, Ferris J A. Analysis of postmortem DNA degradation by single-cell gel electrophoresis. Forensic Sci Int, 2002, 126(1):43-47.
    [23]Yasojima K, McGeer EG, McGeer PL. High stability of mRNAs postmortem and protocols for their assessment by RT-PCR. Brain Res Brain Res Protoc,2001,8(3):212-218.
    [24] Kuliwaba JS, Fazzalari NL, Findlay DM. Stability of RNA isolated from human trabecular bone at post-mortem and surgery. Biochim Biophys Acta,2005,1740(1):1-11.
    [25] Inoue H, Kimura A, Tuji T. Degradation profile of mRNA in a dead rat body : basic semi-quantification study. Forensic Sci Int,2002,130(2-3):127-132.
    [26] Bauer M, Gramlich I, Polzin S, et al. Quantification of mRNA degradation as possible indicator of postmortem interval-a pilot study. Leg Med, 2003, 5(4):220-227.
    [27]竞花兰,陈玉川,程海鹰,等.肝细胞核仁组成区嗜银蛋白死后不同时间形态改变的图像分析.中山医科大学学报,1995,16(增刊):87-89.
    [28]Wehner F, Wehner HD, Schieffer MC, et al. Delimitation of the time of death by immunohisochemical detection of thyroglobulin. Forensic Sci Int, 2000,110(3):199-206.
    [29]卞杰,沈忆文,赵子琴.肌红蛋白降解与人体死亡时间的相关性.法医学杂志,2007,23(2):90-91.
    [30]刘力,成俊英,王繁泷,等.尸体甲状腺球蛋白降解及其与死亡时间的关系.中国法医学杂志,2005,20(5):265-267.
    [31]Kang S, Kassam N, Gauthier ML, et al. Post-mortem changes in calmodulin binding proteins in muscle and lung. Forensic Sci Int, 2003, 131(2-3):140-147.
    [32]郑旭东,张益鹄,支献民,等.免疫印迹检测人胸大肌肌钙蛋白I推断较晚期死后经过时间.中国法医学杂志, 2006, 21(3):146-148.
    [33]Holmes KC. A molecular model for muscle contraction. Acta Crystallogr A, 1998, 54:789-797.
    [34]Le Clainche C, Pantaloni D, Carlier MF. ATP hydrolysis on actin-related protein 2/3 complex canses debranching of dendritic actin arrays. Proc Natl Acad Sci U S A, 2003, 100: 6337-6342.
    [35]Xiao X, Yang WX. Actin-based dynamics during spermatogenesis and its significance. J Zhejiang Univ Sci B, 2007, 8(7):498-506.
    [36]肖俊辉,陈玉川.蛋白质降解与死亡时间推断的初步研究.法医学杂志,2005,21(2):110-112.
    [37]吕江明,余家树,陈民敬,等.大鼠死后心肌骨骼肌细胞肌动蛋白变化及与死亡时间的关系.中国法医学杂志, 2004, 19(4):213-215.
    [38]冯强,陈浩,张更谦,等.缢死大鼠肝细胞内HIF-1α免疫组化染色观察[J].中国法医学杂志,2007,22(1):19-21.
    [39]蒯锦霞,刘杨,张彦伟,等.大鼠死后心肌和肺脏微管蛋白降解规律的初步研究.中国法医学杂志,2008,23(2):96-99.
    [40]刘杨,蒯锦霞,张彦伟,等.大鼠死后肌动蛋白降解与死亡时间的相关性.法医学杂志,2008,24(3):165-167.
    [41]张彦伟,刘杨,蒯锦霞,等.大鼠骨骼肌肌钙蛋白与死亡及离体时间的相关性探讨.中西医结合心脑血管病杂志,2008,6(4):438-440.
    [42]汪家政,范明.蛋白质技术手册.北京:科学出版社,2005,38-49.
    [43]Pierce J, Suelter CH. An evaluation of the Coomassie brillant blue G-250 dye-binding method for quantitative protein determination. Anal Biochem, 1977, 81(2):478-480.
    [44]Read SM, Northcote DH. Minimization of variation in the response of different proteins of coomassie blue G dye-binding assay for protein. Anal Biochem,1981,116(1):53-64.
    [45]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976, 72:248-254.
    [46]Smith PK, Krohn RI, Hermanson GT, et al. Measurement of protein using bicinchoninic acid. Anal Biochem, 1985, 150: 76-85.
    [47] Vandekerckhove J, Weber K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol, 1978, 126(4):783-802.
    [48]杨亚龙.肌动蛋白的聚合.生物学杂志,1985,3:13-14.
    [49]Hunter T, Garrels JI. Characterization of the mRNAs for alpha-, beta- and gamma-actin. Cell 1977,12:767–781.
    [50]Fujiwara I, Takahashi S, Tadakuma H, et a1. Microscopic analysis of polymerization dynamics with individual actin filaments. Nat Cell Biol, 2002,4(9): 666-673.
    [51]Shi D, Somlyo AV, Somlyo AP, et a1.Visualizing filamentous actin on lipid bilayers by atomic force microscopy in solution. J Microsc, 2001, 201(3):377-382.
    [52]王金发.细胞生物学.北京:科学出版社,2005, 432-437.
    [53]Stark GR,沈大棱,吴超群. Cell Biology.上海:复旦大学出版社,2006,142-152.
    [54]Sturzenbaum SR, Kille P. Control genes in quantitative molecular biological techniques: the variability of invariance. Comp Biochem Physiol Part B Biochem Mol Biol, 2001, 130:281-289
    [55]Anderson S, Howard B, Hobbs GR. A method for determining the age of a bloodstain. Forensic Sci Int, 2005,148:37-45.
    [56]王镜岩,朱圣康,徐长法,等.生物化学.北京:高等教育出版社,2002,299-302.
    [57]党永辉,王振原,张联合,等.测量大鼠死后骨骼肌pH值推断早期死亡时间实验研究.中国法医学杂志, 2005, 20(4):202-205.
    [58]郭景元.现代法医学.北京:科学出版社,2000,90-93.
    [59]迟路湘,杨宗城,黎鳌,等.严重烧伤早期心肌细胞骨架损伤的力学研究.中华创伤杂志,1998,14(1):8-9.
    [60]王太一,韩子玉.实验动物解剖图谱.沈阳:辽宁科学技术出版社,2000,350-352.
    [61]陈宗云,汪静宇,李永宏.大鼠弥漫性轴索损伤后NGF表达.法医学杂志, 2008, 24(3):172-175.
    [62]Kiss R, Salmon I, Camby I, et a1. Characterization of factors in routine laboratory roctolols that significantly influence the Feulgen reaction. J Histolchem Cytochem, 1993, 41(6): 935-945.
    [63]欧桂生,竞花兰,姜富学,等.电击死心肌组织中纤维连接蛋白的实验观察.中国法医学杂志,2002,17(5):277-278.
    [64]罗斌,宋一璇,田野,等.青壮年猝死综合症心传导系统及心肌HHF35免疫组化研究.法医学杂志,1997, 13(3): 135-137.
    [65]余家树,吕江明,向吉夫,等.骨骼肌Actin验证死亡时间.中国公共安全, 2003,83 (5) : 97.
    [66]杨犁兰,罗深秋.星形胶质细胞和星形胶质瘤细胞骨架的光镜和电镜观察.第一军医大学学报, 2001,21(5):336-337.
    [67]Matsubayashi M, Takase H, Kimata I, et al. Electron microscopic observation of cytoskeletal frame structures and detection of tubulin on the apical region of Cryptosporidium parvum sporozoites. Parasitology, 2008, 135(3):295-301.
    [68]Wolosewiek JJ,Porter KR. Microtrabecular lattice of the cytoplasmic ground substance. artifact or reality. J Cell Biol, 1979, 82(1):l14-139.
    [69]王春梅,黄晓峰,杨家骥,等.激光扫描共聚焦显微镜技术.西安:第四军医大学出版社,2004,3-19.
    [70]王稚英,王兴,肖军军,等.牵引成骨体外模型的建立及成骨细胞骨架的观察.中华口腔医学杂志,2006,41(2):111-113.
    [71]Yamada H, Ando H. Orientation of apical and basal actin stress fibers in isolated and subconfluent endothelial cells as an early response to cyclic stretching. Mol Cell Biomech, 2007,4(1):1-12.
    [72]Qi MC, Hu J, Zou SJ, et al. The changes of cytoskeleton F-actin in rat bone marrow mesenchymalstem cells and calvarial osteoblasts under mechanical strain. Hua Xi Kou Qiang Yi Xue Za Zhi, 2005,23(2):110-121.
    [73]赵子琴.法医病理学.北京:人民卫生出版社,2004,38-63.
    [74] Jiang BH, Semenza GL, Bauer C, et al. Hypoxiainducible factor-1 levels vary exponentially over a physioloslcally relevant range of 02 tension. Am J Physiol, 1996, 271(4): 1172-1180.
    [75]陈宪,李延吉,陈翰.腐败尸体的法医学检验.法医学杂志,2000,17(2):126-128.
    [76]宋宇,廖林川,颜有仪,等.不同死亡原因大鼠肌组织中ATP、ADP和AMP含量比较.法医学杂志,2007,23(1):1-3.
    [77]张蓓蕾,杨志惠,冉鹏,等.两种窒息死亡原因下大鼠体内缺氧诱导因子1-a的变化规律.法医学杂志,2007,23(1):4-6.
    [78]Zhu BL, Ishikawa T, Michiue T, et al. Postmortem serum catecholamine levels in relation to the cause of death. Forensic Sci Int, 2007, 173(2-3):122-129.
    [79]Zhu BL, Ishida K, Taniguchi M, et al. Possible postmortem serum markers for differentiation between fresh-, saltwater drowning and acute cardiac death: a preliminary investigation. Leg Med (Tokyo), 2003, 5(S1):S298-301.
    [80]Zhu BL, Ishikawa T, Michiue T, et al. Postmortem serum endotoxin level in relation to the causes of death. Leg Med (Tokyo), 2005, 7(2):103-109.
    [81]Lee RC, River LP, Pan F, et a1. Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc Natl Acad Sci U S A, 1992, 89(10):4524-4528.
    [82]Lee RC, Kolodney MS. Electrical injury mechanisms: dynamics of the thermal response. Plast Reconstr Surg, 1987, 80(5):663-671.
    [83]Gehl J. Electroporation: theory and methods, perspective for drug delivery, gene therapy and research. Acta Physiol Scand, 2003, 177(4): 437-447.
    [84]张彦伟,刘杨,蒯锦霞,等.大鼠骨骼肌肌钙蛋白与死亡及离体时间的相关性探讨.山西医科大学学报,2008,6(4): 438-440.
    [85]何方刚,刘亚玲,舒细记,等.不同温度下离体人脾细胞DNA降解的差异性研究.中国法医学杂志,2005,20(6):321-324.
    [86]Jemiolo B, Trappe S. Single muscle fiber gene expression in human skeletal muscle: validation of internal control with exercise. Biochem Biophys Res Commun, 2004, 320(3):1043-1050.
    [87]Dalla Libera L, Ravara B, Gobbo V, et al. Skeletal muscle myofibrillar protein oxidation in heart failure and the protective effect of Carvedilol. J Mol Cell Cardiol, 2005, 38(5):803-807.
    [88]Nowak R, Balabanova S. Determination of calcium and magnesium in postmortem human vitreous humor as a test to ascertain the cause and time of death. Z Rechtsmed, 1989, 102(2-3):179-183.
    [89]Singh D, Prashad R, Sharma SK, et al. Estimation of postmortem interval from human pericardial fluid electrolytes concentrations in Chandigarh zone of India: log transformed linear regression model. LegMed (Tokyo), 2006, 8(5):279-287.
    [90]Moriya F, Hashimoto Y. Endogenous gamma-hydroxybutyric acid levels in postmortem blood. Leg Med (Tokyo), 2004, 6(1):47-51.
    [91]Yadav J, Deshpande A, Arora A, et al. Estimation of time since death from CSF electrolyte concentration in Bhopal region of central India. Leg Med (Tokyo), 2007,9(6):309-313.
    [92]Kozhemyako V, Dirlam G, Smolin I, et al. Features of expression of iNOS mRNA in postmortem brain. International Congress Series, 2004, 1261: 596–598.
    [93]Onori N, Onofri V, Alessandrini F, et al. Post-mortem DNA damage: A comparative study of STRs and SNPs typing efficiency in simulated forensic samples. International Congress Series, 2006 (1288): 510–512.
    [94]Bauer M, Gramlich I, Polzin S, et al. Quantification of mRNA degradation as possible indicator of postmortem interval-a pilot study. Leg Med (Tokyo), 2003, 5(4):220-227.
    [95]Kitamura O, Gotohda T, Ishigami A, et al. Effect of hypothermia on postmortem alterations in MAP2 immunostaining in the human hippocampus. Leg Med (Tokyo), 2005, 7(5):340-344.
    [96]Jemiolo B, Trappe S. Single muscle fiber gene expression in human skeletal muscle: validation of internal control with exercise. Biochem Biophys Res Commun, 2004,320(3):1043-1050.
    [97]Dalla Libera L, Ravara B, Gobbo V, et al. Skeletal muscle myofibrillar protein oxidation in heart failure and the protective effect of Carvedilol. J Mol Cell Cardiol, 2005, 38(5):803-807.
    [98]Toth MJ, Matthews DE, Ades PA, et al. Skeletal muscle myofibrillar protein metabolism in heart failure: relationship to immune activation and functional capacity. Am J Physiol Endocrinol Metab, 2005, 288(4): 685-692.
    [99]Toth MJ, Ades PA, Lewinter MM, et al. Skeletal muscle myofibrillar mRNA expression in heart failure: relationship to local and circulating hormones. J Appl Physiol. 2006, 100(1):35-41.
    [100]Woolstenhulme MT, Conlee PK, Drummond MJ. Temporal response of desmin and dystrophin proteins to progressive resistance exercise in human skeletal muscle. J Appl Physiol. 2006, 100(6): 1876-1882.
    [1]Hennessey ES, Drummond DR, Sparrow JC. Molecular genetics of actin function. Biochem J, l993, 291 (3):657-671.
    [2]Kabsch W, Mannnherz HG, Suck D, et al. Atomic structure of the actin: DNase I complex. Nature, 1990, 347(6288):37-44.
    [3]Hanson J, Lowy J. The structure of F-actin and of actin filaments isolated from muscle. J Mol Biol,1963, 6: 46
    [4]Murray RK, Granner DK, M ayes PA , et al. Harper’s Biochemistry, 23rd edition. Norwalk, onnecticut, Appleton and Lange, 1993, 647-664.
    [5]Fujiwara I, Takahashi S, Tadakuma H, et a1. Microscopic analysis of polymerization dynamics with individual actin filaments. Nat Cell Biol, 2002,4(9): 666-673.
    [6]Shi D, Somlyo AV, Somlyo AP, et a1.Visualizing filamentous actin on lipid bilayers by atomic force microscopy in solution. J Microsc, 2001, 201(3):377-382.
    [7]Stossel TP. The machinery of cell crawling. Sci Am, 1994, 271(3): 54-63.
    [8]Byers HR, Fujiwara K. Stress fibers in cells in situ: immunofluorescence visualization with antiactin, antimyosin, and anti-alpha-actinin. J Cell Biol, 1982, 93(3):804-811.
    [9]Coluccio LM, Bretscher A. Reassociation of microvillar core proteins: making a microvillar core in vitro. J Cell Biol, 1989, 108(2):495-502.
    [10]Furukawa R, Fechheimer M. The structure, function, and assembly of actin filament bundles [J]. Int Rev Cytol, 1997, 175:29-90.
    [11]Janmey PA, Hvidt S, K(a|¨)s J, et a1. The mechanical properties of actin gels. Elastic modulus and filament motions. J Biol Chem, 1994, 269(51):32503-32513.
    [12] Zaner KS. Physics of actin networks. Rheology of semi-dilute F-actin. Biophys J, 1995, 68(3):1019-1026.
    [13]Pollard TD, Blanchoin L, Mullins RD. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct, 2000, 29:545-576.
    [14]Wegner A. Head to tail polymerization of actin. J Mol Biol, 1976,108(1): 139-150.
    [15]Sept D, McCammon JA. Thermodynamics and Kinetics of Actin Filament Nucleation. Biophys J, 2001, 81(2):667-674.
    [16]Korn ED, Carlier MF, Pantaloni D. Actin polymerization and ATP hydrolysis. Science, 1987, 238(4827): 638-644.
    [17]Atkinson SJ, Hosford MA, Molitoris BA. Mechanism of Actin Polymerization in Cellular ATP Depletion. J Biol Chem, 2004, 279(7):5194-5199.
    [18]Estes JE, Selden LA, Kinosian HJ, et a1. Tightly-bound divalent cation of actin. J Muscle Res Cell Motil, 1992,13(3):272-284.
    [19]Le M, Rajat RJ, Marc WK. The Arp2/3 complex mediates actin polymerization induced by the smal GTP -binding protein Cdc42. Cell Biol, 1998, 95: 15362- 15367.
    [20]Cooper JA. Effects of cytochalasin and phalloidin on actin.Cell Biol, 1987,105:1473-1478.
    [21]Sampath P, Pollard TD. Effects of cytochalasin, phalloidin, and pH on the elongation of actin filaments. Biochemistry, 1991, 30(7):1973-1980.
    [22]Kawabta K, Sado Y, Nagayama M, et a1.Visuation of dynamic organization of cytoskeleton gels in living cells by hybrid-SPM. Chinese Journal of polymer Science, 2003, 21: 169-174.
    [23]徐国恒.细胞骨架-肌动蛋白纤维.生物学通报, 2005,40(2):43-44.
    [24]王金发.细胞生物学.北京:科学出版社. 2005,443-454.
    [25]林珏龙,陈耀文,蔡唯佳,等.细胞内F-actin的聚合与解聚对肝癌Bcl-7402细胞的影响.激光生物医学,2005 ,14 (1):52-55.
    [26]Coleman ML, Olson MF. Rho GTPases signaling pathways in the morphological changes associated with apoptosis. Cell death difer, 2002, 9: 493-504.
    [27]Mills JC, Stone NL, Pittman RN. Extranuclear apoptosis the role of the cytoplasm in the execution phase. J Cell Biol, 1999, 146(4): 703-707.
    [28]Takai Y, Sasaki T, Matozaki T, Small GTP-binding proteins. Physiol Rev, 2001,81(1): 153- 208.
    [29]Hall A. Rho GTPases and the actin cytoskeleton. Science, 1998, 279: 509-514.
    [30]Jm SD, Shimizu M, Balasubramanyam A, et a1. Myotonic dystrophy protein kinase(DMPK) induces actin cytoskclctal reorganization and apoptotic-like blebbing in lens cells. Cell Motil Cytoskeleton, 2000, 45: 133-148.
    [31]Krieser RJ, Eastman A. Cleavage and nuclear translocation of the caspase 3 substrate Rho DOP-dissociation inhibitor, D4-GDI, during apoptosis. Cell Death Differ, 1999, 6(5):412-419.
    [32]Dong LQ, Landa LR, Wick MJ, et al. Phosphorylation of protein kinase N by phosphoinoside-dependent protein kinase-1 mediates insulin signals to the actin cytoskeleton. Proc Natl Acad Sci U S A, 2000, 97(10):5089-5094.
    [33]Levee MG, Dabrowska MI, Lelli JL, et al. Actin polymerization and depolymerization during apoptosis in HL-60 cells. Am J Physiol, 1996,271(6 Pt 1):C1981-1992.
    [34]Leverrier Y, Ridley AJ. Requirment for Rho GTPases and PI3-kinases during apoptotic cell phagocytosis by macrophages. Curr Biol, 2001, 11(3): 195-199.
    [35]Wang XC, Wu YC, Fadok VA, et al. Cell corpse engulfment mediated by C.elegans phosphatidylerine receptor throurh CED-5 and CED-12. Science, 2003, 302:1563-1566.
    [36]Miki H, Yamaguchi H, Suetsugu S, et al. IPSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature, 2000, 408:732-735.
    [37]Mashima T, Naito M, Tsuruo T. Caspase-mediated cleavage of cytoskeletal actin plays a positive role in the process of morphological apoptosis. Oncogene, 1999, 18(15):2423-2430.
    [38]Brancolini C, Lazarevic D, Rodriguez J, et al. Dismantling cell-cell contacts during apoptosis is coupled to a caspase-dependent proteolytic cleavage of beta-catenin. J Cell Biol, 1997, 139(3) :759-771.
    [39]Palladini G, Finardi G, Bellomo G. Disruption of actin microfilament organization by cholesterol oxides in 73/73 endothelial cells. Exp Cell Res, 1996, 223(1):72-82.
    [40]Pavalko FM, WaIker DM, Graham L, et al. The cytoplasmic domain of L-selectin interacts with cytoskeletal proteins via alpha-actinin: receptor positioning in microvilli does not require interaction with alpha-actinin. J Cell Biol, l995,129(4):l155-1164.
    [41]Mine S, Tanaka Y, Suematu M, et al. Hepatocyte growth factor is a potent trigger of neutrophil adhesion through rapid activation of lymphocyte function-associated antigen-1. Lab Invest, 1998,78(11):1395-1404.
    [42]Saito H, Minamiya Y, Kitamura M, el al. Endothelial myosin light chain kinase regulates neutrophil migration across human umbilical vein endothelial cell monolayer . J Immunol, 1998, 161(3):1533-1540.
    [43]Wang Q, Patton WF, Chiang ET, et al. Filamin translocation is an early endothelial cell inflammatory response to bradykinin: regulation by calcium, protein kinases, and protein phosphatases. J Cell Biochem, 1996, 62(3):383-396.
    [44]Thurston G, Baldwin AL, Wilson LM. Changes in endothelial actin cytoskeleton at leakage sites in the rat mesenteric microvasculature. Am J Physiol, 1995, 268(1 Pt 2):H316-329.
    [45]Bird SD, Walker RJ. Mast cell histamine-induced calcium transients in cultured human peritoneal mesothelial cells. Perit Dial Int, 1998,18(6):626-636.
    [46]Salzman AL. Nitric oxide in the gut. New Horiz, 1995, 3(2):352-364.
    [47]Cross AK, Woodroofe MN. Chemokines induce migration and changes in actin polymerization in adult rat brain microglia and a human fetal microglial cell line in vitro. Neurosci Res,1999, 55(1):17-23.
    [48]Singh R, Wang B, Shirvaikar A, et al. The IL-1 receptor and Rho directly associate to drive cell activation in inflammation. J Clin Invest, 1999, 103(11):1561-1570.
    [49]DeFife RM , Jenney CR, Colton E, et al. Disruption of filamentous actin inhibits human macrophage fusion. ASEB J, 1999,13(8):823-832.
    [50]Wilson SL, Drevets DA. Listeria monocytogenes infection and activation of human brain microvascular endothelial cells. J Infect Dis, 1998, 178(6):1658-1666.
    [51]Sansonetti PJ, Tran Van Nhieu G, Egile C. Rupture of the intestinal epithelial barrier and mucosal invasion by Shigella flexneri. Clin Infect Dis, 1999 ,28(3):466-475.
    [52]Biancone L, Conaldi PG, Toniolo A, et al. Escherichia coli porin induces proinflammatory alterations in renal tubular cells. Exp Nephrol, 1997, 5(4):330-336.
    [53]Yap AS, Stevenson BR, Cooper V, et al. Protein tyrosine phosphorylation influences adhesive junction assembly and follicular organization of cultured thyroid epithelial cells. Endocrinology, 1997,138(6):2315-2324.
    [54]Melamed I, Turner CE, Aktories K, et al. Nerve growth factor triggers microfilament assembly and paxillin phosphorylation in human B lymphocytes. J Exp Med, 1995, 181(3):1071-1079.
    [55]dos Remedios CG, Chhabra D, Kekic M, el al. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev, 2003, 83(2):433-473.
    [56]Winder SJ, Ayscough KR. Actin-binding proteins. J Cell Sci, 2005, 118(4): 65l-654.
    [57]Shumaker D K, Kuczmarski E R, Goldman R D. The nucleoskeleton: Lamins and actin are major players in essential nuclear functions. Curr Opin Cell Bio1, 2003, I5 (3): 358-366.
    [58]Pederson T. Half a Century of“the nuclear matrix”. Mol Biol Cel1, 2000, I1 (3): 799-805.
    [59]Bremer JW, Busch H, Yeoman LC. Evidence for a species of nuclear actin distinct from cytoplasmic and muscle actins. Biochemistry, 1981, 20(7): 2013-2017.
    [60]Nakayasu H, Ueda K Association of actin with the nuclear matrix from bovine lymphocytes. Exp Cell Res, 1983, 143(1):55-62.
    [61]Pederson T. Thinking about a nuclear matrix. J Mol Biol, 1998, 277(2):147-159.
    [62]Rando OJ, Zhao K, Crabtree GR. Searching for a function for nuc1ear actin. Trends Cell Biol, 10(3):92-97.
    [63]Valkov NI, Ivanova MI, Uscheva AA, et a1. Association of actin with DNA and nuclear matrix from Guerin ascites tumour cells. Mol Cell Biocbem, 1989, 87(1):47-56.
    [64]Gonsior SM, Platz S, Buchmeier S, et a1. Conformational difference between nuclear and cytoplasmic actin as detected by a monoclonal antibody. Cell Sci, 1999,112 ( Pt 6):797-809.
    [65]Johnson N, Krebs M, Boudreau R, et al. Actin-filled nuclear invaginations indicate degree of cell de-differentiation. Differentiation, 2003, 71(7):414-424.
    [66]Pederson T, Aebi U.Actin in the nucleus:What form and what for?. J Struct Biol, 2002 , 140(1-3):3-9.
    [67]Sun HQ, Kwiatkowska K, Yin HL. Actin monomer binding proreins. Curr Opin Cell Biol, 1995, 7(1):102-110.
    [68]Skare P, Kreivi JP, Bergstr(o|¨)m A, et a1. Profilin I colocalizes with speckles and Cajal bodies: a possible role in pre-mRNA splicing. Exp Cell Res, 2003, 286(1):12-21
    [69]Bonet C, Ternent D, Maciver SK, et a1. Rapid formation and high diffusibility of actin-cofilin cofilaments at low pH . Eur J Biochem, 2000, 267(11):3378-3384.
    [70]Boyer LA, Peterson CL. Actin-related proteins (Arps): Conformational switches for chromatinremodeling machines? Bioessays, 2000, 22(7): 666-672.
    [71]Frankel S, Mooseker MS. The actin-related proteins. Curr Opin Cell Biol, 1996 8(1):30-37.
    [72]Amann KJ, Pollard TD. Cellular regulation of actin network assembly. Curr Biol, 2000, 10(20): R728-730.
    [73]Olave IA, Reck-Peterson SL, Crabtree GR. Nuclear actin and actin-related proteins in chromatinremodeling. Annu Rev Biochem, 2002, 71:755-781.
    [74]Zhao K, Wang W, Rando OJ, et a1. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell, 1998, 95(5):625-636.
    [75]Sotiropoulos A, Gineitis D, Copeland J, et a1.Signal-regulated activation of serum response factor is mediated by chartges in actin dynamics. CeI1, 1999, 98(2):l59-l69.
    [76]Percipalle P, Fomproix N, Kylberg K, et a1. An actin-ribonucleoprotein interaction is involved in transcription by RNA polymerase II. Proc Natl Acad Sci USA, 2003,100(11):6475-6480.
    [77]Pestic-Dragovich L, Stojiljkovic L, Philimonenko AA, et a1. A myosin I isoform in the nucleus. Science, 2000, 290(5490): 337-34l.
    [78]Fomproix N, Percipalle P. An actin-myosin complex on actively transcribing genes. Exp Cell Res, 2004, 294(1): l40-l 48.
    [79]Zhu BL, Ishida K, Taniguchi M, et al. Possible postmortem serum markers for differentiation between fresh-, saltwater drowning and acute cardiac death: a preliminary investigation. Leg Med (Tokyo), 2003, 5(S1):S298-301.
    [80]Zhu BL, Ishikawa T, Michiue T, et al. Postmortem serum endotoxin level in relation to the causes of death. Leg Med (Tokyo), 2005, 7(2):103-109.
    [79]Milankov K, De Boni U. Cytochemical localization of actin and myosin aggregates in interphase nuclei in situ . Exp Cell Res, 1993,209(2):189-199.
    [80]Nakayasu H, Ueda K. Small nuclear RNA-protein complexes anchors on the actin filaments in bovine lymphocyte nuclear matrix. Cell Struct Funct, 1984, 9(4): 3l7-326.
    [81]Percipalle P, Jonsson A, Nashchekin D, et a1. Nuclear actin is associated with a specific subset of hnRNP A/B-type proteins. Nucleic Acids Res, 2002, 30(8): l725-l734.
    [82]Percipalle P, Zhao J, Pope B, et a1. Actin bound to the heterogeneous nuclear rjbonucleoprotein hrp36 is associated with Balbianiring mRNA from the gene to polysomes. J Cell Biol, 2001,153(1):229-236.
    [83]Kimura T, Hashimoto I, Yamamoto A, et a1. Rev-dependent association of the intron-containing HIV-1 gag mRNA with the nuclear actin bundles and the inhibition of its nucleocytoplasmic transport by latrunculin-B. Genes Cells, 2000, 5(4):289-307.
    [84]Hofmann W, Reichart B, Ewald A, et a1. Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin. J Cell Biol, 2001, 152(5):895-910.
    [85]Zhang S, Buder K, Burkhardt C, et a1. Nuclear DNA helicase II/RNA helicase A binds to filamentous actin. J Biol Chem, 2002, 277(1):843-853.
    [86]Dix J, Graham M. Time of death, decomposition and identification. CRC press, 2000, 29-197.
    [87]Hiroshi lnoue, Akihiko Kimura, Tsutomu Tuji. Degradation profile of mRNA in a dead rat body: basic semi-quantification study. Forensic Sci Int , 2002, 130(2-3): 127-132.
    [88]Kovarik C, Stewart D, Cockerell C. Gross and histologic postmortem changes of the skin. Am J Forensic Med Pathol, 2005, 26(4):305-308.
    [89]Catts VS, Catts SV, Fernandez HR, et a1. A microarray study of post-mortem mRNA degradation in mouse brain tissue. Brain Res Mol Brain Res, 2005, 138 (2): 164-177.
    [90]贺淹才.肌动蛋白和肌动蛋白基因的研究进展.生命的化学,2002,22(3):248-250.
    [91]Omura K, Morishita M, Kawakami K, et a1. Quantification of thymidylate synthase genes expression in human gastrointestinal carcinoma tissues using competitive PCR. Hepatogastroenterology, 1999, 46(26): 985-990.
    [92]梁赞姜,汲坤,王立军.大鼠不同脏器β-actin mRNA稳定性差异的实验研究.锦州医学院学报,2006,27(6):8-10.
    [93]肖俊辉,陈玉川,王江峰,等.根据mRNA稳定性推断死亡时间的研究.法医学杂志,2005,21(1):19-20.
    [94]肖俊辉,陈玉川.死后不同时间大鼠心肌膈肌β-肌动蛋白mRNA的检测.中国法医学杂志,2005,20(4):196-198.
    [95]陈晓瑞,易少华,杨丽萍,等.大鼠死后视网膜细胞mRNA降解与死亡时间的关系研究.中国法医学杂志,2007,22(3):169-172.
    [96]Sabucedo AJ, Furton KG. Estimation of postmortem interval using the protein marker cardiac Troponin I. Forensic Sci Int, 2003, 134 (1):11-16.
    [97]Wehner F, Wehner HD, Schieffer MC, et al. Delimitation of the time of death by immunohisochemical detection of thyroglobulin. Forensic Sci Int, 2000,110(3):199-206.
    [98]卞杰,沈忆文,赵子琴.肌红蛋白降解与人体死亡时间的相关性.法医学杂志,2007,23(2):90-91.
    [99]刘力,成俊英,王繁泷,等.尸体甲状腺球蛋白降解及其与死亡时间的关系.中国法医学杂志,2005,20(5):265-267.
    [100]Kang S, Kassam N, Gauthier ML, et al. Post-mortem changes in calmodulin binding proteins in muscle and lung . Forensic Sci Int, 2003, 131(2-3):140-147.
    [101]郑旭东,张益鹄,支献民,等.免疫印迹检测人胸大肌肌钙蛋白I推断较晚期死后经过时间.中国法医学杂志, 2006, 21(3):146-148.
    [102]胡松年,阎隆飞.肌动蛋白与真核生物的进化.动物学报,1999,45(4):440-447.
    [103]肖俊辉,陈玉川.蛋白质降解与死亡时间推断的初步研究.法医学杂志,2005,21(2):110-112.
    [104]吕江明,余家树,陈民敬,等.大鼠死后心肌骨骼肌细胞肌动蛋白变化及与死亡时间的关系.中国法医学杂志, 2004, 19(4):213-215.
    [105]刘杨,蒯锦霞,张彦伟,等.鼠死后肌动蛋白降解与死亡时间的相关性.法医学杂志,2008,24(3):165-167.
    [107]Vandekerckhove J, Weber K. The complete amino acid sequence of actin from bovine aorta, bovineheart, bovine fast skeletal muscle, and rabbit slow skeletal muscle. Differenciation, 1979, 14(3): 123-133.
    [108]Vandekerckhove J, Weber K. At least six different actins are expressed in a higher mammalian analysis based on the amino acid sequence of the amino terminal tryptic peptide. J Mol Biol, 1978, 126(4): 783-802.
    [109]Huxley HE. Elcctron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J Mol Biol, 1963, 7: 281-308.
    [110]Braunwald E, Ross J, SonnenBlick EH. Mechanisms of contraction of the normaland failing heart. N Engl J Med, 1967, 277(19):1012-1022.
    [111]Huxley AF, Niedergerke R. Structural changes in muscle during contraction. Interference microscopy of living muscle fibers. Nature, 1954, 173(4412):971-973.
    [112]Huxley HE, Hanson J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature, 1954, 173(4412):973-976.
    [113]Huxley HE. Apersonal view of muscle and mo tility mechanisms. Annu Rev Physiol, 1996, 58: 1-7.
    [114]Tobacman LS. Thin filament-mediated regulation of cardiac contraction. Annu Rev Physiol, 1996, 58:447-481
    [115]Winegrad S. Regulation of cardiac contractile proteins. Correlations between physiology and biochemistry. Circ Res, 1984, 55 (5) : 565-574.
    [116]Swynghedauw B, Delcayre C. Biology of cardiac overload. Pathobiol Annu, 1982,12:137-183.
    [117]Bai Shuling, Campbell SE, Moore JA , et al. Influence of growth, and sex on cardiacmyocyte size and number. Anat Rec, 1990, 226(2): 207-212.
    [118] Schwartz K, Bouvorct P, Alonso S, et al.α-skeletal muscle actin mRNA’s accumulate in hypertrophied adult rat hearts. Circ Res 1986, 59 (5) : 551-555.
    [119] Long SC, Ordahl CP, Simpson PC. Alpha 1-adrenergic receptor stimulation of sarcomeric actin isogene transcription in hypertrophy of cultured rat heart muscle cells . J Clin Invest, 1989, 83(3): 1078-1082.
    [120]Cohn PF. Mechanism of myocardial ischemia . Am j Cardioi,1992,70(17) : 14G-18G
    [121]胡丙杰,陈玉川,李杰,等.实验性早期心肌缺血肌动蛋白的免疫组织化学研究.广东公安科技,1998,(4):70-72.
    [122]宋一璇,傅晨钟,祝家镇,等.抗肌动蛋白单克隆抗体在早期心肌缺血诊断中的应用.中国法医学杂志, 1994,9(3):131-133.
    [123]Radio S. Ischemic myocardial injury: Optimal detection with anti-actin monoclonal anibody HHF35. Circulation, 1988, 78(4): 131-138.
    [124]Nishida S, Hiruma S, Hashimoto S, et a1. Immunohistochemical change of actin in experimental myocardlal ischemia: Its usefulness for detect very early myocardial damages. Histol Histopathol, 1987, 2(4):417-428.
    [125]胡丙杰,陈玉川,祝家镇,等.对抗肌动蛋白单克隆抗体诊断早期心肌梗死的评价.法医学杂志,1999,15(3):138-140.
    [126]Ky(o|¨)sola KT. Effects of myocardial catecholamine accumulations on arrhythmias following ischaemia and reperfusion. A problem of open-heart surgery. Cardiovasc Res, 1985, 19(7):452-453.
    [127]Sheehan FH, Epstein SE. Determinants of arrhythmic due to coronary spasm : efect of preexisting artery stenosis on the incidence of reperfuslon arrhythmia. Circulation, 1982, 65(2):259-264.
    [128]刘双,邓恭华,蒋磊,等.HSP25对小鼠心肌缺血-再灌注所致肌动蛋白损伤的保护作用.中国现代医学杂志, 2002,12(16):29-31.
    [129]傅晨钟,宋一璇,薛冠华,等.大鼠心肌缺血再灌流损伤的免疫组化研究.中国法医学杂志,1993,8(3):193-195.
    [130]于家华,姜英,刘盾,等.心肌肌动蛋白在青壮年猝死综合征患者死因诊断中的应用.江苏临床医学杂志,2002,6(4):337-339.
    [131]徐英含.实用法医病理学.北京:群众出版社,1992,8.
    [132]胡丙杰,陈玉川,祝家镇.青壮年猝死综合征心肌细胞内纤维连接蛋白免疫组化观察初探法医学杂志,1996,12(1):15.
    [133]罗斌,罗质人,汪冠三,等.心肌及传导组织内3种蛋白的变化与SMDS的相关性.中国法医学杂志,2004,19(6):340-342.
    [131]Reue K. mRNA quantitation techniques: considerations for experimental design and application. J Nutr, l998, l28(11): 2038-2044.
    [132]Bustin SA. Quantification of mRNA using rea1-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol, 2002, 29(11): 23-39.
    [133]Huggett J, Dheda K, Bustin S, et a1. Real-time RT-PCR normalization: strategies and considerations. Genes Immun, 2005, 6: 279-284.
    [134]Suzuki T, Higgins PJ, Crawford DR. Control selection for RNA quantification. Biotec-hinaues, 2000, 29: 332-337.
    [135]McNeel RL, Mersmann HJ. Distribution and quantification of beta1-, beta2-, and beta3-adrenergic receptor subtype transcripts in porcine tissues. J Anim Sci, 1999, 77(3):611-621.
    [136]Graven KK, McDonald RJ, Farber HW. Hypoxic regulation of endothelial glyceraldehydes-3-phosphate dehydrogenase. Am J Physiol, 1998, 274(2 Pt 1):C347-355.
    [137]Yamaji R, Fujita K, Takahashi S, et al. Hypoxia up-regulates glyceraldehyde-3-phosphate dehydrogenase in mouse brain capillary endothelial cells: involvement of Na+/Ca2+ exchanger. Biochim Biophys Acta, 2003, 1593(2-3):269-276.
    [138]Eaton P, Wright N, Hearse DJ, et al. Glyceraldehyde phosphate dehydrogenase oxidation during cardiac ischemia and reperfusion. J Mol Cell Cardiol, 2002, 34(11):1549-1560.
    [139]刘杨,韩艳玲,刘季,等.大鼠脊髓损伤后HIF-1α基因的表达.中国法医学杂志,2008,23(1):4-8.
    [140]刘杨,刘季,王亚芳,等.大鼠脊髓挫伤后BDNF表达的实验性研究.中国法医学杂志,2007,22(1):15-18.
    [141]Anderson S, Howard B, Hobbs GR, et a1. A method for determining the age of a bloodstain. Forensic Sci Int, 2005, 148(1):37-45.
    [142]Bauer M, Polzin S, Patzelt D. Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains? Forensic Sci Int, 2003, 138(1):94-103.
    [143]Sato Y, Ohshima T. The expression of mRNA of proinflammatory cytokinesduring skin wound healing in mice: a preliminary study for forensic wound age estimation. Int J Legal Med, 2000, 113 :140–145.
    [144]王慧君,丁云川. RT-PCR检测不同时间大鼠皮肤切创TGF-β1mRNA表达.中国法医学杂志,2003,18(2):67-69.
    [145]黄代新,吴梅筠,张林,等.大鼠液压冲击脑损伤bFGF及其受体FGFR1 mRNA表达.中国法医学杂志,2003,18(3):131-133.
    [146]李晓军,秦浚川,武建国.蛋白印迹技术研究进展.临床检验杂志,2004,22(3):227-229.
    [147]汪家政,范明.蛋白质技术手册.北京:科学出版社,2005,51-293.
    [148]Zhang JJ, Guan DW, Yang DL. A study on the time-dependent expression of phospho-p38 MAPK during the skin incised wound healing in mice. Fa Yi Xue Za Zhi, 2007, 23(5):321-324.
    [149]路斌,赵锐,官大威,等.小鼠皮肤切创愈合过程中caspase-3的表达及其活性.法医学杂志,2007,23(3):
    [150]王起. Caspase-3在大鼠骨骼肌挫伤愈合过程中的表达及其时间规律性研究:[硕士学位论文].沈阳:中国医科大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700