用户名: 密码: 验证码:
复方丹参方有效成分对神经细胞氧化损伤的保护作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:复方丹参方被广泛用于治疗心血管疾病。近年来,实验及临床研究提示:复方丹参具有神经保护作用。因此本研究探讨复方丹参方的神经细胞保护作用机制,以期明确该复方成分与神经细胞靶分子的对应关系。
     方法:本研究以氧化因子6-羟基多巴胺(6-OHDA)引起的神经细胞损伤和凋亡为模型,考察复方丹参方活性单体对6-OHDA引起的SH-SY5Y细胞凋亡及相关药理学指标的影响,分析其作用机制。通过培养人神经瘤母细胞(SH-SY5Y),观察了6-OHDA (100μmol/L,24小时)诱导损伤后SH-SY5Y细胞活力、胞内离子水平等的变化情况以及复方丹参方单体对氧化损伤的保护作用。
     结果:通过帕金森病细胞模型进行具有神经保护活性单体成分的初步筛选,从30多种复方丹参方单体成分中筛选出有3种具有神经保护活性的单体,活性筛选结果表明人参皂苷Rg1、异龙脑(Iso)、Sal B保护作用明显,Rg1已有广泛深入的的神经保护作用机制研究,我们主要考察(±)异龙脑和丹酚酸B的神经保护作用及其作用机制。
     Sal B显著的抑制6-OHDA导致的活性氧族物质的产生(reactive oxygen species, ROS) ,抑制6-OHDA导致的细胞内钙浓度升高。Heochest 33258染色和AnnexinⅤ-FITC/PI定量检测实验发现,Sal B抑制6-OHDA导致的凋亡,且呈现出剂量依赖关系。进一步对相关信号转导通路进行检测的结果表明:Sal B抑制6-OHDA导致的caspase-3活性升高,抑制cytochrome c从线粒体到胞质的移位。Sal B抑制6-OHDA导致的Bcl-2/Bax比率的降低。此外,Sal B抑制6-OHDA导致的细胞外信号调节蛋白激酶(extracellular signal-regulated kinase, p-ERK)活性的降低,抑制6-OHDA导致的蛋白激酶C (protein kinase C, PKC)活性的降低。异龙脑(Isoborneol, Iso)显著的抑制6-羟基多巴胺导致的ROS的产生,抑制6-OHDA导致的细胞内钙浓度升高。此外,Iso剂量依赖地抑制6-OHDA导致的凋亡。对相关信号转导通路深入研究的结果表明:Iso抑制6-OHDA导致的caspase-3活性升高,抑制cytochrome c从线粒体到胞质的移位。Iso抑制6-OHDA导致的Bcl-2/Bax比率的降低。此外,Iso抑制6-OHDA导致的c-Jun氨基末端激酶(c-Jun N-terminal kinase, p-JNK)的激活,Iso抑制6-OHDA导致的p-ERK活性的降低,抑制6-OHDA导致的PKC活性的降低。
     综上所述,Sal B和Iso的神经保护作用可能与其抗氧化作用和调节细胞内钙平衡作用有关,其作用机制可能与其清除自由基和阻断凋亡信号通路有关。
     结论:通过实验发现复方丹参方中活性单体可以通过抑制氧化应激反应(oxidative stress)和细胞凋亡发挥神经保护作用,为研究该方内组分神经保护作用的靶点提供了更为深入的资料,有助于揭示复方丹参方神经保护作用的物质基础和作用途径;在中药复方作用机制的阐释方面作出了有益的尝试。
Aim: The Chinese complex formula Fufangdanshen has been widely used to treat cardiovascular and nervous system diseases, and has been found to have beneficial effects on the nervous system including the effect of anti-Parkinson’s disease, while the molecular mechanism still needs further study. Parkinson's disease (PD) is the most common movement disorder. While the cause of PD is not known, data obtained from familial disease and from animal models of PD support a pathogenic process that is closely linked to mitochondrial dysfunction and oxidative stress. In this research, the neuro-protective effects of the active monomers in Fufangdanshen were observed and the related mechanisms were also studied.
     Method: The PD in vitro model is built to quickly screen neuro-protective monomers from the Fufangdanshen formula in this experiment. Some researches focus on the molecular mechanisms of 6-OHDA induced damages and protective effects of salvianolic acid B and Isoborneol by means of cellular and molecular technologies.
     The human neuroblastoma cell line SH-SY5Y was culutred, and several parameters were observed after 6-OHDA (100μmol/L,24hr) induced damage by pharmaceutical methods, including cell viability and the change of intracellular ion level, etc. The protective mechanism of salvianolic acid B and Isoborneol were studied.
     Results: Experiments were carried to screen neuro-protective monoers from monomers in Fufangdanshen formula preliminary, and three of them show neuro-protective activies. Rg1, salvianolic acid B and Isoborneol showed protective effect dramatically. The neuro-protective mechanism of ginsenoside Rg1 we, so we focus on the protective mechanism of salvianolic acid B and Isoborneol.
     Pretreatment of SHSY5Y cells with salvianolic acid B significantly reduced 6-hydroxydopamine-induced generation of reactive oxygen species, and prevented 6-hydroxydopamine-induced increases in intracellular calcium. Our Heochest 33258 staining and Annexin V-FITC/PI quantification data demonstrated that 6-hydroxydopamine-induced apoptosis was reversed by salvianolic acid B treatment. The related signal transduction pathway experiement showed that: Salvianolic acid B reduced the 6-hydroxydopamine-induced increase of caspase-3 activity, and reduced cytochrome C translocation into the cytosol from mitochondria. The 6-hydroxydopamine-induced decrease in the Bcl-x/Bax ratio was prevented by salvianolic acid B. Additionally, salvianolic acid B decreased the activation of extracellular signal-regulated kinase and induced the activation of 6-hydroxydopamine-suppressed protein kinase C.
     Pretreatment of SH-SY5Y cells with isoborneol significantly reduced 6-OHDA-induced generation of reactive oxygen species (ROS) and 6-OHDA-induced increases in intracellular calcium. Furthermore, apoptosis induced by 6-OHDA was reversed by isoborneol treatment. Isoborneol protected against 6-OHDA-induced increases in caspase-3 activity and cytochrome C translocation into the cytosol from mitochondria. Isoborneol prevented 6-OHDA from decreasing the Bax/Bcl-2 ratio. We also observed that isoborneol decreased the activation of c-Jun Nterminal kinase and induced activation of protein kinase C (PKC) which had been suppressed by 6-OHDA.
     In summary, Salvianolic acid B and isoborneol-mediated cytoprotection is due, at least in part, to inhibition of the oxidative stress and the regulation of intracellular calcium balance. Protective effects of salvianolic acid B and isoborneol are involved in its free radical scavenging actions and inhibitory effect on cell apoptosis.
     Conclusion: Collectively, these results showed that the inhibition of oxidative stress and apoptosis may contribute to explain the the neuro-protective effect of monomers in Fufangdanshen formula. Furthermore, this research may explain the mechanism of traditional complex formula in the view of modern life science.
引文
1. Zhou Z, Liu Y, Miao AD, Wang SQ. Salvianolic acid B attenuates plasminogen activator inhibitor type 1 production in TNF-alpha treated human umbilical vein endothelial cells [J]. J Cell Biochem, 2005, 96: 109-116.
    2. Zhou Z, Wang SQ, Liu Y, Miao AD. Cryptotanshinone inhibits endothelin-1 expression and stimulates nitric oxide production in human vascular endothelial cells [J]. Biochim Biophys Acta , 2006, 1760: 1-9.
    3. Zhou Z, Liu Y, Miao AD, Wang SQ. Protocatechuic aldehyde suppresses TNF-alpha-induced ICAM-1 and VCAM-1 expression in human umbilical vein endothelial cells [J]. Eur J Pharmacol, 2005, 513: 1-8.
    4. Zhang HS, Wang SQ. Nrf2 is involved in the effect of tanshinone IIA on intracellular redox status in human aortic smooth muscle cells [J]. Biochem Pharmacol, 2007, 73: 1358-1366.
    5. Zhang HS, Wang SQ. Salvianolic acid B from Salvia miltiorrhiza inhibits tumor necrosis factor-alpha (TNF-alpha)-induced MMP-2 upregulation in human aortic smooth muscle cells via suppression of NAD(P)H oxidase-derived reactive oxygen species [J]. J Mol Cell Cardiol, 2006, 41: 138-148.
    6. Zhang HS, Wang SQ.Notoginsenoside R1 inhibits TNF-alpha-induced fibronectin production in smooth muscle cells via the ROS/ERK pathway [J]. Free Radic Biol Med, 2006, 40: 1664-1674.
    7. Zhang HS, Wang SQ. Ginsenoside Rg1 inhibits tumor necrosis factor-alpha (TNF-alpha)-induced human arterial smooth muscle cells (HASMCs) proliferation [J]. J Cell Biochem, 2006, 98: 1471-1481.
    8. Zhang HS, Wang SQ. Notoginsenoside R1 from Panax notoginseng inhibits TNF-alpha-induced PAI-1 production in human aortic smooth muscle cells [J]. Vascul Pharmacol, 2006, 44: 224-230.
    9.张秋娟,张云云,黄文燕.中医药治疗帕金森病的思路与方法[J].中西医结合学报, 2004, 2(1): 75-77.
    10. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment ofchemosensitivity testing[J]. Cancer Res, 1987, 47(4): 936-942.
    11. Chen XC, Fang F, Zhu YG, Chen LM, Zhou YC, Chen Y. Protective effect of ginsenoside Rg1 on MPP+-induced apoptosis in SHSY5Y cells[J]. J Neural Transm, 2003, 110(8): 835-845.
    12. Chen XC, Zhou YC, Chen Y, Zhu YG, Fang F, Chen LM. Ginsenoside Rg1 reduces MPTP-induced substantia nigra neuron loss by suppressing oxidative stress[J]. Acta Pharmacologica Sinica, 2005, 26(1): 56-62.
    13. Hastings, T. G., Lewis, D. A., & Zigmond, M. J.Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections[J]. PNAS, 1996, 93: 1956–1961.
    14. O. Inanami, Y. Watanabe, B. Syuto, M. Nakano, M. Tsuji and M. Kuwabara. Oral administration of (?)catechin protects against ischemia–reperfusion-induced neuronal death in the gerbil[J]. Free Radic Res, 1998, 29 (4): 359–365.
    15. X.J. Wang and J.X. Xu, Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity[J]. Neuroscience Research, 2005 (51): 129–138.
    16. Xiao XQ, Zhang HY, Tang XC. Huperzine A attenuates amyloid beta-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation[J]. J Neurosci Res, 2002, 67(1): 30-36.
    17. Yoneda T, Hiramatsu M, Sakamoto M, Togasaki K, Komatsu M, Yamaguchi K. Antioxidant effects of "beta catechin"[J].Biochem Mol Biol Int, 1995, 35(5): 995-1008.
    18. G.T. Liu, T.M. Zhang, B.E. Wang and Y.W. Wang. Protective action of seven natural phenolic compounds against peroxidative damage to biomembranes[J]. Biochem Pharmacol, 1992, (43): 147–152.
    19. S.J. Lin, The effects of antioxidant from Chinese medicinal herb on intimal hyperplasia in restenosis animal model[J]. Atherosclerosis, 1998, 136(1): S34–S134.
    20. J. Wu, C.Y. Hong, S.J. Lin, P. Wu and M.S. Shiao, Increase of vitamin E contentin ldl and reduction of atherosclerosis in cholesterol-fed rabbits by a water-soluble antioxidant-rich fraction of Salvia miltiorrhiza[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998 (18): 481–486.
    21. B.L. Zhao, W. Jiang, Y. Zhao, J.W. Hou and W.J. Xin, Scavenging effects of Salvia miltiorrhiza on free radicals and its protection for myocardial mitochondrial membranes from ischemia–reperfusion injury[J]. Biochem Mol Biol Int. 1996(38): 1171–1182.
    22. Y.H. Chen, G.H. Du and J.T. Zhang, Salvianolic acid B protects brain against injuries caused by ischemia–reperfusion in rats[J]. Acta Pharmacologica Sinica, 2000 (21): 463–466.
    23. Y.S. Huang and J.T. Zhang, Antioxidative effect of three water-soluble components isolated from Salvia miltiorrhiza in vitro[J]. Yao Xue Xue Bao, 1992 (27): 96–100.
    24. Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G, Symons M, Borrello S, Galeotti T, Ramponi G.. Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion[J]. J Cell Biol, 2003 , 161(5): 933-944.
    25. Zhang Y, Zhao B.Green tea polyphenols enhance sodium nitroprusside-induced neurotoxicity in human neuroblastoma SH-SY5Y cells[J]. J Neurochem, 2003, 86(5): 1189-1200.
    26. H. Aoshima, T. Satoh, N. Sakai, M. Yamada, Y. Enokido and T. Ikeuchi et al. Generation of free radicals during lipid hydroperoxide-triggered apoptosis in PC12 cells[J]. Biochimica et Biophysica Acta, 1997, (1345): 35–42.
    27. C. Sachs, G. Jonsson, R. Heikkila and G. Cohen. Control of the neurotoxicity of 6-hydroxydopamine by intraneuronal noradrenaline in rat iris[J]. Acta Physiologica Scandinavica, 1975, 93: 345–351.
    28. G.W. Burton and K.U. Ingold. Vitamin E as an in vitro and in vivo antioxidant[J]. Annals of the New York Academy of Sciences, 1989, 570: 7–22.
    29. .G. Graham, S.M. Tiffany, W.R. Bell and W.F. Gutknecht. Autooxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cellsin vitro[J]. Molecular Pharmacology, 1978, 14: 644–653.
    30. Budihardjo, H. Oliver, M. Lutter, X. Luo and X. Wang. Biochemical pathways of caspase activation during apoptosis[J]. Annu Rev Cell Dev Biol, 1999, 15 : 269–290.
    31. J.P. Durkin, R. Tremblay, B. Chakravarthy, G. Mealing, P. Morley and D. Small et al. Evidence that the early loss of membrane protein kinase C is a necessary step in the excitatory amino acid-induced death of primary cortical neurons[J]. J Neurochem, 1997, 68: 1400–1412.
    32. Y.H. Lin, A.H. Liu, H.L. Wu, C. Westenbroek, Q.L. Song and H.M. Yu et al. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents Abeta(25-35)-induced reduction in BPRP in PC12 cells[J]. Biochem Biophys Res Commun, 2006, 22: 593–599.
    33. X.J. Wang and J.X. Xu. Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity[J]. Neuroscience Research, 2005, 51: 129–138.
    34. J.L. Cadet, M. Katz, V. Jackson-Lewis and S. Fahn. Vitamin E attenuates the toxic effects of intrastiatal injection of 6-hydroxydopamine (6-OHDA) in rats: Behavioral and biochemical evidence[J]. Brain Research, 1989, 476: 10–15.
    35. R.M. Kostrzewa and D.M. Jacobowitz. Pharmacological actions of 6-hydroxydopamine[J]. Pharmacological Reviews, 1974, 26: 199–288.
    36. R. Kumar, A.K. Agarwal and P.K. Seth. Free radical-generated neurotoxicity of 6-hydroxydopamine[J]. J Neurochem, 1995, 64: 1703–1707.
    37. A.S. Perumal, V.B. Gopal, W.K. Tordzro, T.B. Cooper and J.L. Cadet. Vitamin E attenuates the toxic effects of 6-hydroxydopamine on free radical scavenging systems in rat brain[J]. Brain Research Bulletin, 1992, 29: 699–701.
    38. Y. Levites, T. Amit, M.B. Youdim and S. Mandel. Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (?)-epigallocatechin 3-gallate neuroprotective action[J]. J Biol Chem, 2002, 23: 30574–30580.
    39. E. Berra, M.M. Municio, L. Sanz, S. Frutos, M.T. Diaz-Meco and J. Moscat.Positioning atypical protein kinase C isoforms in the UV-induced apoptotic signaling cascade[J]. Molecular and Cellular Biology, 1997, 17: 4346–4354.
    40. E.C. Dempsey, A.C. Newton, D. Mochly-Rosen, A.P. Fields, M.E. Reyland and P.A. Insel et al. Protein kinase C isozymes and the regulation of diverse cell responses[J]. Am J Physiol Lung Cell Mol Physiol, 2000, 279: L429–L438.
    41. P. Maher. How protein kinase C activation protects nerve cells from oxidative stress-induced cell death[J]. The Journal of Neuroscience, 2001, 21: 2929–2938.
    42. R.D. Whelan and P.J. Parker. Loss of protein kinase C function induces an apoptotic response[J]. Oncogene, 1998, 16: 1939–1944.
    43. J.C. Louis, E. Magal and E. Yavin. Protein kinase C alterations in the fetal rat brain after global ischemia[J]. J Biol Chem, 1998, 25: 19282–19285.
    44. Standaert DG, Stern MB. Update on the management of Parkinson's disease[J]. Med Clin North Am, 1993, 77(1): 169-183.
    45. Cohen G. and RE, Heikkila. The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents[J]. J Biol Chem, 1974, 249: 2447-2452.
    46. Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones[J]. Mol Pharmacol, 1978, 14: 633-643.
    47. Hastings TG. Enzymatic oxidation of dopamine: the role of prostaglandin H synthase[J]. J. Neurochem, 1995, 64: 919-924.
    48. Jenner P: Oxidative stress in Parkinson's disease[J]. Ann Neurol, 2003, 53 (3): S26-36.
    49. Hastings TG, Lewis DA, and Zigmond MJ. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections[J]. Proc Natl Acad Sci USA, 1996, 93: 1956-1961.
    50. Jeffrey L. Cummings, Kate Zhong. Treatments for behavioural disorders in neurodegenerative diseases: drug development strategies[J]. Nat Rev Drug Discov, 2006, 5: 64-74.
    51. Dawson TM, Dawson VL.Neuroprotective and neurorestorative strategies forParkinson’s disease[J]. Nat Neurosci, 2002, 5: S1058-1061.
    52. Buchbauer G. Lavender oil and its therapeutic properties. M Lis-Balchin, Editor, Lavender: the genus lavandula, Taylor & Francis, London 2002; 29: 124-139.
    53. Cupp MJ, Chamomile, MJ Cupp, Editor: Toxicology and clinical pharmacology of herbal products. Humana Press, Totowa, NJ 2000; 79-83.
    54. Forster HB, H Niklas and S Lutz. Antispasmodic effects of some medicinal plants[J]. Planta Med, 1980, 40: 309-319.
    55. Gyllenhall C, SL Merritt, SD Peterson, KI Block and T Gochenour. Efficacy and safety of herbal stimulants and sedatives in sleep disorders[J]. Sleep Med Rev, 2000, 4: 229-251.
    56. Ryu EJ, Harding, HP, Angelastro, JM, Vitolo, OV Ron D, and Greene, LA. Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease[J]. J Neurosci, .2002, 22: 10690-10698.
    57. Storch A, Burkhardt K, Ludolph AC, and Schwarz J. Protective effects of riluzole on dopamine neurons: involvement of oxidative stress and cellular energy metabolism[J]. J Neurochem, 2000, 75: 2259-2269.
    58. Choi WS, Yoon SY, Oh TH, Choi EJ, O'Malley KL, and Oh YJ.Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP+-induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK[J]. J Neurosci Res, 1999, 57: 86-94.
    59. Takahashi T, Deng Y, Maruyama W, Dostert P, Kawai M, and Naoi M. Uptake of a neurotoxin-candidate, (R)-1, 2-dimethyl-6, 7-dihydroxy-1, 2, 3, 4-tetrahydroisoquinoline into human dopaminergic neuroblastoma SH-SY5Y cells by dopamine transport system[J]. J Neural Transm Gen Sect, 1994, 98: 107-118.
    60. Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, Munoz-Patino AM, Labandeira-Garcia JL. Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease[J]. J Neurochem, 2000, 74: 1605-1612.
    61. van Acker SA, Koymans LM, Bast A. Molecular pharmacology of vitamin E:structural aspects of antioxidant activity[J]. Free Radic Bio Med, 1993, 15: 311-328.
    62. Maher P. How protein kinase C activation protects nerve cells from oxidative stress-induced cell death[J]. J Neurosci, 2001, 21: 2929-2938.
    63. Samanta S, Perkinton MS, Morgan M, and Williams RJ. Hydrogen peroxide enhances signal-responsive arachidonic acid release from neurons: role of mitogen-activated protein kinase[J]. J Neurochem, . 1998, 70: 2082-2090.
    64. Singer CA, Figueroa-Masot XA, Batchelor RH, and Dorsa DM. The mitogen-activated protein kinase pathway mediates estrogen neuroprotection after glutamate toxicity in primary cortical neurons[J]. J Neurosci, 1999, 19: 2455-2463.
    65. Cadet JL, Katz M, Jackson-Lewis V, Fahn S. Vitamin E attenuates the toxic effects of intrastiatal injection of 6-hydroxydopamine (6-OHDA) in rats: behavioral and biochemical evidence[J]. Brain Res, 1989, 476: 10-15.
    66. Kostrzewa RM, Jacobowitz DM. Pharmacological actions of 6-hydroxydopamine[J]. Pharmacol Rev, 1974, 26: 199-288.
    67. Kumar R, Agarwal AK, Seth PK. Free radical-generated neurotoxicity of 6- hydroxydopamine[J]. J Neurochem, 1995, 64: 1703-1707.
    68. Perumal AS, Gopal VB, Tordzro WK, Cooper TB, Cadet JL. Vitamin E attenuates the toxic effects of 6-hydroxydopamine on free radical scavenging systems in rat brain[J]. Brain Res Bull, 1992, 29(5): 699-701.
    69. Glinka Y, Gassen M, Youdim MB. Mechanism of 6-hydroxydopamine neurotoxicity[J]. J Neural Transm , 1997, 50: 55-66.
    70. Glinka YY, Youdim MB. Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine[J]. Eur J Pharmacol, 1995, 292: 329-332.
    71. Castillo MR, Babson JR. Ca2+-dependent mechanisms of cell injury in cultured cortical neurons[J]. Neuroscience, 1998, 86: 1133-1144.
    72. Chakraborti T, Das S, Mondal M, Roychoudhury S, Chakraborti S, Oxidant, mitochondria and calcium[J]. Cell Signal, 1999, 11: 77-85.
    73. Kruman II, Mattson MP. Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis[J]. J Neurochem, 1999; 72: 529-540.
    74. Vander Heiden MG, CB Thompson. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis[J]? Nat Cell Biol, 1999, 1 E209-216.
    75. Li P, D Nijhawan, Budihardjo SM, Srinivasula M, Ahmad ES, Alnemri, X Wang. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade[J]. Cell, 1997, 91: 479-489.
    76. Levites Y, Amit T, Youdim MB, Mandel S. Involvement of protein kinase C activation and cell survival/ cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action[J]. J Biol Chem, 2002, 23, 277(34): 30574-30580.
    77. Mandel S, Weinreb O, Amit T, Youdim MB. Mechanism of neuroprotective action of the anti-Parkinson drug rasagiline and its derivatives[J]. Brain Res Brain Res Rev, 2005; 48(2): 379-387.
    78. Youdim MB, Amit T, Bar-Am O, Weinreb O, Yogev-Falach M. Implications of co-morbidity for etiology and treatment of neurodegenerative diseases with multifunctional neuroprotective-neurorescue drugs ladostigil[J]. Neurotox Res, 2006, 10(3-4): 181-192.
    79. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis[J]. Science, 1995, 270(5240): 1326-1331.
    80. Satoh T, Nakatsuka D, Watanabe Y, Nagata I, Kikuchi H, Namura S. Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons[J]. Neurosci Lett, 2000, 288(2): 163-166.
    81. Singer CA, Figueroa-Masot XA, Batchelor RH, Dorsa DM. The mitogen-activated protein kinase pathway mediates estrogen neuroprotection after glutamate toxicity in primary cortical neurons[J]. J Neurosci, 1999, 19(7): 2455-2463.
    82. H Schroeter, J P Spencer, C Rice-Evans, and R J Williams. Flavonoids protectneurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3[J]. Biochem J, 2001, 358: 547-557.
    83. Samanta S, Perkinton MS, Morgan M, Williams RJ. Hydrogen peroxide enhances signal-responsive arachidonic acid release from neurons: role of mitogen-activated protein kinase[J]. J Neurochem, 1998, 70(5): 2082-2090.
    84. Dempsey EC, Newton AC, Mochly-Rosen D, Fields AP, Reyland ME, Insel PA, Messing RO. Protein kinase C isozymes and the regulation of diverse cell responses[J]. Am J Physiol Lung Cell Mol Physiol, 2000, 279(3): L429-438.
    85. Whelan RD, Parker PJ. Loss of protein kinase C function induces an apoptotic response[J]. Oncogene, 1998, 16(15): 1939-1944.
    86. Tremblay R, Hewitt K, Lesiuk H, Mealing G, Morley P, Durkin JP. Evidence that brain-derived neurotrophic factor neuroprotection is linked to its ability to reverse the NMDA-induced inactivation of protein kinase C in cortical neurons[J]. J Neurochem, 1999, 72(1): 102-111.
    87. Gressens P, Marret S, Martin JL, Laquerrière A, Lombet A, Evrard P. Regulation of neuroprotective action of vasoactive intestinal peptide in the murine developing brain by protein kinase C and mitogen-activated protein kinase cascades: in vivo and in vitro studies[J]. J Neurochem, 1998, 70(6): 2574-2584.
    [1]康永.中药药理学.北京:科学出版社, 2001.
    [2] Lee CM, Wong HN, Chui KY, et al. Miltirone, a central benzodiazepine receptor partial agonist from a Chinese medicinal herb Salvia miltiorrhiza [J]. Neurosci Lett, 1991, 127: 237–241.
    [3] Chang HM, Chui KV, Tan FW et al. Structure-activity relationship of miltirone, an active central benzodiazepine receptor ligand isolated from Salvia miltiorrhiza Bynge (Danshen) [J]. J Med Chem, 1991, 34: 1675–1692.
    [4] Seon-il J, Seung-il J, Kang-ju K et al. Tanshinone IIA from Salvia miltiorrhiza inhibits inducible nitric oxide synthase expression and production of TNF-alpha, IL-1beta and IL-6 in activated RAW 264.7 cells [J]. Planta Med, 2003, 69: 1057–1059.
    [5] Liu C, Shi W, Sun L, Zheng Q. Effects of radix Salviae miltiorrhizae on visceral pain discharges in the posterior nucleus of the thalamus in cats [J]. Zhongguo Zhong Yao Za Zhi, 1990, 15: 112–115.
    [6] Long-xuan L, Jia-pei D, Li-qiang R, et al. Effects of tanshinone on neuropathological changes induced by amyloid beta-peptide(1–40) injection in rat hippocampus [J]. Acta Pharmacol Sin, 2004, 25: 861– 868.
    [7] Ren Y, Houghton PJ, Hider RC, et al. Novel diterpenoid acetylcholinesterase inhibitors from Salvia miltiorhiza [J]. Planta Med,2004, 70: 201–204.
    [8] Leung AW, Mo ZX, Zheng YS. Reduction of cellular damage induced by cerebral ischemia in rats [J]. Neurochem Res, 1991, 16: 687– 692.
    [9] Lam BYH, Lo ACY, Sun X, et al. Neuroprotective effects of tanshinones in transient focal cerebral ischemia in mice [J]. Phytomedicine, 2003, 10: 286–291.
    [10] Chih-Jui L, Jaung-Geng L, Jon-Son K et al. Effect of Salvia miltiorrhiza Bunge on cerebral infarct in ischemiareperfusion injured rats [J]. Am J Chin Med, 2003, 31: 191–200.
    [11] Dong JC, Xu LN. Effects of acetylsalvianolic acid A on focal cerebral ischemic rats subjected to middle cerebral artery thrombosis [J]. Yaoxue Xuebao, 1996, 31: 6– 9.
    [12] Huang YS, Zhang JT. Antioxidative effect of three watersoluble components isolated from Salvia miltiorrhiza in vitro [J]. Acta Pharm Sin, 1992, 27: 96–100.
    [13] Wang XL, Yu SL, Yu T, et al. Treatment of neonatal hypoxic-ischaemic encephalopathy (HIE) with compound Salvia miltiorrhizae and citicoline: a comparative study in China [J]. Singapore Paediatr J, 1997, 39: 120–123.
    [14] Leung AW, Mo ZX, Zheng YS. Reduction of cellular damage induced by cerebral ischemia in rats [J]. Neurochem Res, 1991, 16: 687– 692.
    [15] Byung-Soo K, Tae-Sig K, Cheorl-Ho K. Salviae miltiorrhizae Radix inhibits superoxide generation by activated rat microglias and mimics the action of amphetamine on in vitro rat striatal dopamine release [J]. Neurochem Res, 2004, 29: 1837–1845.
    [16] Do You S, Sook Hee R, Jung Sun K et al. Peroxynitrite scavenging activity of lithospermate B from Salvia miltiorrhiza [J]. J Pharm Pharmacol, 2003, 55: 1427–1432.
    [17] Hye Sook K, Hae Young C, et al. Further isolation of antioxidative (+)-1-hydroxypinoresinol-1-O-b-D-glucoside from the rhizome of Salvia miltiorrhiza that acts on peroxynitrite, total ROS and 1,1-diphenyl-2-picrylhydrazyl radical [J]. Arch Pharmacol Res, 2003, 26: 24– 27.
    [18] Cheng J. Effects of transient forebrain ischemia and radix Salvia miltiorrhiza (RSM) on extra cellular levels of monoamine neurotransmitters and metabolites in the gerbil striatum an in vivo microdialysis study [J]. J Tradit Chin Med, 1999, 19: 135–140.
    [19] Kuang P. Effect of radix Salvia miltiorrhiza on nitric oxide in cerebral ischemic-reperfusion injury [J]. J Tradit Chin Med, 1996, 16: 224–227.
    [20] Kuang P. Effect of radix Salvia miltiorrhiza on EAA and IAA during cerebral ischemia in gerbils: a microdialysis study [J]. J Tradit Chin Med, 1994, 14: 45–50.
    [21] Rong-jun Z, Chao Y, Bo-wen C, Yuqing W, Min H, Hao L. Effect of compound Salvia injection on blood coagulation in patients with traumatic cerebral infarction [J]. Chin J Integ Trad West Med, 2004, 24: 882– 884.
    [22] Jiang S, Wu W, Zhang X. Effects of radix Salvia miltiorrhizae improving spatial cognition of rats with left temporal ischemic and expression of platelet-derived growth factor [J]. Chin J Neurol, 1999, 32: 290–292.
    [23] Wu W. ET-1 gene expression of rat brain during ischemia and reperfusion and the protective effect of radix Salvia miltiorrhiza [J]. J Tradit Chin Med, 1997, 17: 59–64.
    [24] Wu W. Protective effect of radix Salvia miltiorrhiza on apoptosis of neurons during focal cerebral ischemia and reperfusion injury [J]. J Tradit Chin Med, 1997, 17: 220–225.
    [25] Xiaohong C, Lianfang B, Shoufeng J, et al. Protective effects of radix Salviae miltiorrhizae on injured neurons by lactate acid and its mechanism [J]. Zhongguo Yaolixue Tongbao, 2003, 19: 214–216.
    [26] Xiaoru S, Ling Nga C, Xiandi G, et al. N-Methyl-Daspartate receptor antagonist activity in traditional Chinese stroke medicines [J]. Neurosignals, 2003, 12: 31–38.
    [27] Hong XR, Wu AQ, You ZD. Effect of Salvia miltiorrhiza on neuropeptide Y1-36 and calcitonin gene-related peptide in neonatal rats with hypoxia-ischemic brain injury [J]. Chin J Integ Trad West Med, 2002, 22: 607– 609.
    [28] Liquan Z, Jinyan W, Qinlian Z. A study of effect of TCH on cerebral blood flow [J]. J Xi’an Med Univers, 1998, 19: 543–544.
    [29] Jingjun C, Peigen K, Weiping W. Effect of radix Salviae miltiorrhizae on extracellular fluid cysteine during cerebral ischemia and reperfusion in striatum of gerbils [J]. Chin J Neurol, 1997, 30: 232–235.
    [30] Fanglei Y, Mingmin D. Effects of radix Salviae miltiorrhizae and nimodipine on cochlea after ischemia-reperfusion injury [J]. Zhengzhou Daxue Xuebao, 2003, 38: 763–765.
    [31] Byung-Soo K, Tae-Sig K, Cheorl-Ho K. Salviae miltiorrhizae Radix inhibits superoxide generation by activated rat microglias and mimics the action of amphetamine on in vitro rat striatal dopamine release [J]. Neurochem Res, 2004, 29: 1837–1845.
    [32] Xu Y, Bao S, Luo W, Zhang Z. Effects of medications on dopamine of rat corpus striatum treated with 6-OHDA [J]. Jiangsu Yiyao, 2003, 29: 328–330.
    [33] Xin-Jian W, Jian-Xing X. Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity [J]. Neurosci Res, 2005, 51: 129–138.
    [34] Dittmann K, Gerhaeuser C, Klimo K, et al. HPLCbased activity profiling of Salvia miltiorrhiza for MAO A and iNOS inhibitory activities [J]. Planta Med, 2004, 70: 909–913.
    [35] Lin RD, Hou WC, Yen KY, Lee MH. Inhibition of monoamine oxidase B (MAO-B) by Chinese herbal medicines [J]. Phytomedicine, 2003, 10: 650–656.
    [36] Brunetti G, Serra S, Vacca G et al. IDN 5082, a standardized extract of Salvia miltiorrhiza, delays acquisition of alcohol drinking behavior in rats [J]. J Ethnopharmacol, 2003, 85: 93–97.
    [37] Vacca G, Colombo G, Brunetti G et al. Reducing effect of Salvia miltiorrhiza extracts on alcohol intake: influence of vehicle [J]. Phytother Res, 2003, 17: 537–541.
    [38] Mostallino MC, Mascia MP, Pisu MG, et al. Inhibition by miltirone of up-regulation of GABAA receptor a4 subunit mRNA by ethanol withdrawal in hippocampal neurons [J]. Eur J Pharmacol, 2004, 494: 83– 90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700