用户名: 密码: 验证码:
窒息性心脏骤停心电变化特点及复苏疗效与应激激素变化的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     窒息性心脏骤停(Cardiac arrest, CA)可见于溺水、麻醉意外和中毒等。因窒息发展至CA的过程相对缓慢而渐进,长时间缺氧后,机体全身代谢性酸中毒、心脑肺等重要器官的损害发展至高峰,故窒息性CA的复苏成功率相对较低。
     不同原因的CA复苏效果不尽相同,为了提高窒息性CA的复苏成功率,对其病理生理的深入研究必不可少。观察从窒息性CA开始到CPR前实验动物的心电图改变,有助于了解在窒息性CA过程中动物心电变化的类型和时程,对后续心肺复苏(Cardiopulmonary resuscitation, CPR)策略及复苏药物的选用有重要指导意义;正确应用血管收缩类药物是提高自主循环恢复(Return of spontaneous circulation, ROSC)率的一个关键,单用肾上腺素和血管加压素在不同动物的窒息性CA模型中显示出不同的复苏疗效,两者对窒息性CA复苏疗效的比较目前尚无定论。在幼年家猪VF模型中,联合肾上腺素和加压素显示出显著优于单用药物的复苏效果,那么在窒息性CA中联合药物是否也可产生较单用药物更好的复苏疗效,从而成为CPR新的药物策略?值得验证。CA可引起机体最严重的应激反应,大量神经内分泌因子参与了该过程,并与复苏成功率密切相关。在人类心源性猝死及动物VF模型中,促肾上腺皮质激素(Adrenocorticotropic hormone, ACTH)、皮质醇和血管紧张素Ⅱ(Angiotensin II, AngⅡ)等应激激素的浓度高低与CA的ROSC率呈正相关,但在窒息性CA中,上述激素如何变化、对复苏预后产生何种影响、以及血管收缩类药物的应用对应激激素的影响如何等问题在窒息性CA和CPR的研究中均无明确的结论。
     本研究分三部份,分别比较三种不同实验动物在窒息性CA诱导过程中心电变化的异同;比较联合用药与单用肾上腺素或加压素对于窒息性CA复苏效果的异同;比较不同的复苏药物在CPR过程中对ACTH、皮质醇和AngⅡ等应激激素的影响,旨在探索窒息性CA的心电生理变化、适宜的复苏药物策略及应激激素与复苏疗效的关系。
     第一部分窒息性心脏骤停心电变化特点
     目的:通过建立大鼠、家兔和成年家猪等窒息性CA模型,观察窒息CA中不同种属动物心电变化特点。
     方法:选取30只SD大鼠、30只家兔和20头成年家猪,采用夹闭气管插管法制备窒息性CA模型,达CA标准后5min开始CPR,CPR后3min予肾上腺素0.045mg/kg静脉注射,5min后重复一次。记录循环停止发生时间(TCA)、自主循环恢复时间(TROSC)和ROSC率;记录各组动物在达到CA标准即刻和CPR前的心电节律类型,包括心室颤动(Ventricular fibrillation, VF)/无脉性室速(Pulseless ventricular tachycardia, Pulseless VT)、无脉性电活动(Pulseless electrical activity, PEA)和全心停搏。
     结果:3组动物的TCA、TROSC和ROSC率分别是:大鼠4.48±0.38min、2.44±0.98min和33.3%;家兔6±1 min、5.95±0.75min和30%;家猪13.14±2.7 min、16.14±1.2min和15%。
     各组动物不同时点的心电节律类型:
     CA即刻:大鼠组中29只表现为PEA,余下1只为VF;家兔组中29只表现为PEA,余下1只为VF;家猪组中12头表现为PEA,4头为VF和4头为全心停搏。
     CPR前:大鼠组中6只PEA和24只全心停搏;家兔组中25只PEA和5只全心停搏;家猪组中13只VF、3头PEA和4头全心停搏。大鼠组全心停搏的发生率显著高于家兔和家猪组(P<0.05);家兔组PEA的发生率显著高于大鼠和家猪两组,(P<0.05));而家猪组VF的发生率高于大鼠和家兔组。
     结论:不同种属的动物在窒息性CA中呈现不同的心电节律。达到CA标准即刻,大鼠、家兔和成年家猪的心电节律以PEA为主,随着CA状态的延长,3组动物的心电节律发生明显变化,家猪大部分转变为VF,大鼠绝大多数转变为全心停搏,而家兔仍主要表现为PEA。
     第二部分联合肾上腺素和加压素在成年家猪窒息性心脏骤停模型中的疗效观察
     目的:通过建立成年家猪窒息性CA模型,观察联合肾上腺素和血管加压素对窒息性CA的复苏疗效,是否与单用药物存在差别。
     方法:选用24头雄性成年家猪,通过夹闭气管插管法制备窒息性CA模型,达CA标准后5min开始常规CPR,CPR3min后将家猪随机分成3组,每组8头动物,分别静脉注射肾上腺素0.045mg/kg(肾上腺素组)、加压素0.4U/kg(加压素组)和肾上腺素0.045mg/kg+加压素0.4U/kg(联合用药组),5min后重复注药。记录三组家猪的TCA、TROSC和ROSC%。记录基线状态、CPR2min、注药后90s、注药后5min及ROSC后30min等时点的平均动脉压(Mean artery pressure,MAP)、冠脉灌注压(Coronary perfusion pressure,CPP)、血气分析和呼气末二氧化碳分压( Pressure of end-tidal Carbon dioxide,PETCO2)。
     结果: 3组家猪的TCA、TROSC和ROSC%分别是:肾上腺素组为16.24±2.31 min、17.14min和12.5%,1头家猪复苏成功;加压素组为15.75±1.45min、16.89min和12.5%,1头家猪复苏成功;联合用药组为16.98±2.05min、13.56±2.14min和100%,8头家猪复苏成功。
     联合用药组在注射药物后MAP和PaO2显著高于CPR2min时,而PaCO2则显著低于CPR2min时;联合用药组在注射药物后90sec和5min的MAP及PaO2均显著高于同时点的肾上腺素组(P<0.05)和加压素组(P<0.05),而PaCO2则显著低于同时点的肾上腺素组(P<0.05)和加压素组(P<0.05)。
     CPR过程中,3组动物的CPP和PETCO2在注药后均有所升高,注药后90sec达到峰值。联合用药组最高,重复注药后能保持两者高值,直至复苏成功。虽然加压素组的CPP和PETCO2在注药后高于肾上腺素组,但重复注药后无法维持上述指标在高值,随后逐渐下降。肾上腺素组在复苏全程上述指标均处于低值。
     结论:对于成年家猪窒息性CA模型,联合肾上腺素和加压素显著提高CA动物ROSC率,明显改善复苏过程中通气/血流比值,缓解高碳酸血症,复苏疗效显著优于单用药物。
     第三部分窒息性心脏骤停复苏疗效与应激激素变化的关系
     目的:通过建立成年家猪窒息性CA模型,观察联合用药、单用肾上腺素和单用加压素对应激激素ACTH、皮质醇和AngⅡ在复苏过程中不同时点的影响。
     方法:采用24头雄性成年家猪,动物模型的制备和实验分组同第二部分。在基线状态、CPR2min、注药后90s、注药后5min及ROSC后30min等时点抽取3组动物右心房血液检测ACTH、皮质醇和AⅡ的血液浓度,并比较复苏成功动物和死亡动物在CPR过程中3种激素浓度的变化。皮质醇测定采用化学免疫发光分析法,ACTH测定采用免疫放射分析法,AngⅡ测定采用放射免疫分析法。
     结果:3组动物的TCA、TROSC和ROSC率见第二部分。3组动物在CPR过程中各时间点ACTH、皮质醇和AngⅡ的浓度变化:
     ACTH:3组动物在CPR2min后ACTH的血浆浓度与窒息前相比无显著性差异。联合用药组和单用加压素组在注射首剂药物后,ACTH浓度迅速升高,90sec后显著高于CPR2min(P<0.05)。联合用药组在注射首剂药物后5min, ACTH浓度有所下降,但重复注药后激素浓度回升,并且从第二次注射药物后至ROSC后30min,激素浓度保持在高值,无明显变化。加压素组在注射首剂药物后90sec, ACTH的血浆浓度达到峰值,随后下降,重复注药后激素浓度无回升。肾上腺素组在注射药物后ACTH的血浆浓度逐渐降低。联合用药组在注射首剂药物后的各检测时点,ACTH的血浆浓度显著大于加压素组(P<0.05)和肾上腺素组(P<0.05),加压素组在注射首剂药物后90sec,ACTH浓度显著大于肾上腺素组(P=0.027),肾上腺素组的激素浓度最低。
     皮质醇:3组家猪在CPR2min皮质醇的浓度显著低于窒息前状态(P<0.05)。联合用药组和加压素组在注射首剂药物后皮质醇浓度迅速升高,90sec后显著大于CPR2min(P<0.05)。联合用药组在注射首剂药物后5min,皮质醇浓度有所下降,但重复注药后激素浓度回升,并且从第二次注射药物后至ROSC后30min,激素浓度均保持在高值。加压素组在注射首剂药物后90sec,皮质醇浓度达到峰值,随后下降,重复注药后激素浓度无回升。肾上腺素组注射药物后,皮质醇血浆浓度与CPR2min时比较无明显差异,重复注射药物并没有提升皮质醇血浆浓度。联合用药组在注射首剂药物后的各检测时点,皮质醇的血浆浓度显著大于加压素组(P<0.05)和肾上腺素组(P<0.05),加压素组在注射首剂药物后90sec,ACTH浓度显著大于肾上腺素组(P=0.018),但此后与肾上腺素组相比激素浓度无显著差异。
     AngⅡ:3组家猪CPR2min的AngⅡ血浆浓度比窒息前状态略有升高,但无统计学意义。3组家猪在注射首剂药物后AngⅡ浓度迅速升高,90sec后显著大于CPR2min(P<0.05)。重复注射药物后联合用药组激素浓度逐渐升高,单用药物组则逐渐下降。联合药物组在注射药物后各时间点测定的激素浓度值均显著大于加压素组(P<0.05)和肾上腺素组(P<0.05);肾上腺素组自二次注射药物后90sec起,激素浓度显著大于加压素组(P<0.05)。
     复苏成功动物组的ACTH、皮质醇和AngⅡ在CPR过程中给药后各检测时点的浓度,均显著高于复苏失败动物组(P<0.01)。
     结论:窒息性CA复苏过程中ACTH、皮质醇和AngⅡ血浆浓度的高低与动物ROSC率相关,上述3种激素浓度越高,ROSC率越高。在复苏过程中,联合用药组注射药物后各时点ACTH、皮质醇和AngⅡ的浓度均显著高于单用药物组。显著提高复苏过程中应激激素的分泌可能是联合用药在窒息性CA中获得良好复苏疗效的机制之一。
Background:
     Asphyxial cardiac arrest (CA) are caused by a diversity of pathophysiological processes leading to asphyxia, which preclude movement of gas from the upper airway to the alveoli and ultimately to the tissues, the cell, and then to the mitochondria, thereby sustaining oxidative metabolism in vital organ, including drowning, drug-induced apnea, allergic disease of the airways, et al. In comparison with the sudden cardiac death caused by ventricular fibrillation(VF), the process from asphyxia developing into CA is longer and more aggressive. The severity and persistence of hypoxemia and hypercarbia characterized by asphyxial CA completely destroy the function of important organs and make the successful resuscitation difficult.
     The outcomes of resuscitation are different according to the specific etiologies of CA. It’s necessary for the increasing rate of return of spontaneous circulation (ROSC) to understand the process of pathophysiology characterized by asphyxial CA. The timing and spectrum of change of cardiac rhythm from the onset of asphyxial CA to the initiation of CPR is important information, based on which we can decide the optimal strategy of the subsequent CPR and proper vasopressors. It’s crucial of the application of vasopressors during CPR to improve the rate of ROSC. The application of epinephrine or vasopressin in different animal models of asphyxial CA demonstrated varying outcomes of resuscitation, which implied that there is no confirmed conclusion about which one of epinephrine and vasopressin would bring better effect to the asphyxial CA. The combination of epinephrine and vasopressin showed significantly higher rate of ROSC in a pediatric pig model of VF than epinephrine or vasopressin alone, which inspired us that whether epinephrine administrated with vasopressin in asphyxial CA would bring out better outcome of resuscitation just as in the VF model, and therefore would it be a new pharmacologic strategy of asphyxial CA? It’s necessary to verify it in adult pig model of asphyxial CA. CA could evoke the severest stress response of human, in which large amount of stress hormones involved, and affected the outcome of resuscitation. The concentrations of adrenocorticotropic hormone (ACTH), cortisol and angiotensinⅡ(AngⅡ)are positively correlative with the rate of ROSC in the sudden cardiac death and the animal model of VF. However, in the asphyxial CA, how the concentration of the above three stress hormones changes, what effect they have on the outcomes of resuscitation, and how they response to the vosopressors remain unclear.
     The research consists of three parts. Firstly, to observe the cardiac rhythms of rats、rabbits and pigs during the asphyxial CA; Secondly, to explore the effect of combination of vasopressors and vasopressor alone in the asphyxial CA; finally, to determine what effect of different vasopressors have on ACTH、 cortisol and AngⅡduring the asphyxial CA.
     Part one: The change of cardiac rhythms in the asphyxial CA Objective: to observe the change of cardiac rhythms during the asphyxial CA in different species of animals via establishing the asphyxial CA model of rats、rabbits and pigs.
     Method: 30 rats、30 rabbits and 20 pigs were acutely asphyxiated by endotracheal tube clamping until 5min after coming to the criterion of CA. CPR was then provided. Epinephrine was administrated to the three species of animals after 3min of CPR and repeated intravenously every other 5min. Record the time from the initiation of clamping endotracheal tube to the onset of CA (TCA), the time from the start of CPR to the ROSC(TROSC) and the rate of ROSC in three groups; the cardiac rhythms in rats、rabbits and pigs were recorded at the onset of CA and prior to CPR, including VF/pulseless ventricular tachycardia( Pulseless VT), pulseless electrical activity(PEA) and asystole. Result: TCA、TROSC and the rate of ROSC were 4.48±0.38min、2.44±0.98min and 33.3% in rats, 6±1min、5.95±0.75min and 30% in rabbits, 13.46±2.7min、16.14±1.2min and 15% in pigs.
     Cardiac rhythms of three groups of animals at the different time point: The moment of onset of CA: 29 rats showed PEA and the rest one present VF; 29 rabbits demonstrated PEA and the rest one showed VF; 12 pigs indicated PEA, VF in 4 and asystole in 4.
     Prior to CPR: there are PEA of 6 and asystole of 24 in 30 rats. 25 rabbits showed PEA and the rest 5 present aystole. 13 pigs demonstrated VF, PEA in 3 and aystole in the rest 4. The incidence of asystole in rats was significantly highe -r than the rabbits and the pigs (P<0.05). The rate of PEA in rabbits was sign -ificantly higher than the rats and the pigs. The rate of VF in pigs was highest among three groups of animals.
     Conclusion: the different species of animals demonstrated different cardiac rhythms during the asphyxial CA. At the onset of CA, most of rats、rabbits and pigs showed PEA, however, as the asphyxia prolonged, the obvious changes happened in three groups of animals: most of pigs converted to VF、most of rats altered to asystole and most of rabbits still in PEA.
     Part two: The effect of epinephrine combined with vasopressin in adult pig model of asphyxial CA
     Objective: to observe the effect of combination of epinephrine and vasopressin in the asphyxial CA, and decide what difference between the combination of vasopressors and the vasopressor alone in resuscition via producing the adult pig model of asphyxial CA.
     Method: Clamping of the endotracheal tube was applied on 24 adult male pigs to establish the model of asphxial CA. After 3 minutes of CPR, 24 animals were randomly assigned to receive either epinephrine (epinephrine group, 45μg/kg, n=8), vasopressin (vasopressin group, 0.4U/kg, n=8), or epinephrine combined with vasopressin (vasopressin/epinephrine combination group;μg/kg and U/kg: 45 and 0.4, n=8). All drugs were diluted to 10 ml with normal saline and injected separately intravenously at 5-minute intervals. Record the TCA, the TROSC and the rate of ROSC in the three groups; Mean artery pressure(MAP)、blood-gas analysis、Coronary perfusion pressure (CPP) and the pressure of end-tidal Carbon dioxide (PETCO2) were measured before induction of cardiac arrest, at 2 minutes of CPR, and at 90 seconds and 5 minutes after the first-dose drug administration.
     Result: TCA、TROSC and the rate of ROSC were 16.24±2.31min、17.14min and 12.5% (1 ROSC) in the epinephrine group; 15.75±1.45min、16.89min and 12.5%(1 ROSC) in the vasopressin group; 16.98±2.05min、13.56±2.14min and 100%(8 ROSC) in the epinephrine/vasopressin combination group.
     MAP and PaO2 after first-dose drug administration in the combination group were significantly higher than 2min after CPR (P<0.05), while PaCO2 was significantly lower than 2min after CPR (P<0.05). MAP and PaO2 at 90 sec and 5min after first dose drug administration were significantly higher than the epinephrine group (P<0.05) and the vasopressin group (P<0.05), while PaCO2 was significantly lower than the other two groups.
     Both CPP and PETCO2 of the three groups increased after administration of vasopressors, coming to the climax at the 90sec after drug administration. The combination group maintained the highest level of the above two parameters after the vasoprissors repeated during the rest of the resuscitation. CPP and PETCO2 of the vasopressin group were higher than the epinephrine group, but they couldn’t maintain high level even after repeating the vasopressin. The epinephrine group remained the lowest level among the three groups during the whole process of CPR.
     Conclusion: the combination of epinephrine and vasopressin significantly incre- ased the rate of ROSC in the adult pig model of asphyxial CA, and improved obviously ventilation/perfusion and hypercarbia during the resuscition. The effect of epinephrine administrated with vasopressin is better than the vasopressor alone in the CPR.
     Part three: The correlation of the stress hormone and the outcome of asphyxial CA
     Objective: to observe what impact of epinephrine, vasopressin or both of them have on the concentration of ACTH, cortisol and AngⅡat the different time point during the resuscitation via establishing the adult pig model of asphyxial CA. Method: 24 adult male pigs were elected to produce the model of acute asphxial CA. The preparation of animal and the grouping were same to the part two. ACTH、cortisol and AngⅡmeasured for three groups of pigs( epinephrine group、vasopressin group and epinephrine/vasopressin combination group)were measured before inducing cardiac arrest, at 2 minutes of CPR, at 90 seconds and 5 minutes after the drug administration, and at 30minutes after ROSC. ACTH was measured by immunoradiometric assay (IRMA), cortisol by chemiluminesc -ence immunoassay(CIA), and AngⅡby radio immunoassay (RIMA).
     Result: TCA, TROSC and the rate of ROSC in the three groups can be found in the part two.
     The concentration of ACTH, cortisol and AngⅡof the three groups during CPR:
     ACTH: the concentrations of ACTH at 2min of CPR in the three groups resembled before the asphyxia. After the first-dose of drug administration, ACTH of the combination group and the vasopressin group increased, 90sec significantly higher than CPR2min (P<0.05). The combination group remained the highest level of ACTH until ROSC 30min. ACTH in the vasopressin group came up to the climax at 90 sec after the first-dose of drug administration, but fell after drug repeated. The epinephrine group remained the lowest level of ACTH among the three groups. The concentration of ACTH in the combination group at the different time points after drug were significantly higher than the orther two groups (P<0.05). The vasopressin group was significantly higher than the epinephrine group (P=0.027) at the 90sec after the first-dose drug.
     Cortisol: the concentrations of cortisol at 2min of CPR in the three groups were a little higher than before the asphyxia. After the first-dose of drug administration, cortisol of the combination group and the vasopressin group increased, 90sec significantly higher than CPR2min (P<0.05). The combination group remained high level of cortisol until ROSC 30min. Cortisol in the vasopressin group came up to the climax at 90 sec after the first-dose of drug administration, but fell after drug repeated. Cortisol in the epinephrine group after drug administration resembled CPR2min, and repeating administration can’t increase the concentration of cortisol. The concentration of cortislo in the combination group at the different time points after drug were significantly higher than the other two groups (P<0.05). The vasopressin group was significantly higher than the epinephrine group (P=0.018) at the 90sec after the first-dose drug.
     AngⅡ: AngⅡof the three groups at CPR 2min was a little higher than before asphyxia. After the first-dose of drug, the three groups increased, 90sec significantly higher than CPR2min (P<0.05). Repetition of drug administration increased the concentration of AngⅡin the combination group, but descent in the epinephrine group and the vasopressin group. The concentration of AngⅡin the combination group at the different time points after drug were significantly higher than the orther two groups (P<0.05). The epinephrine group was significantly higher than the vasopressin group (P=0.018) since the 90sec after the second-dose drug (P<0.05).
     The concentration of ACTH, cortisol and AngⅡin the pigs with ROSC were significantly higher than the pigs without ROSC at the different time points after drug in the CPR (P<0.01).
     Conclusion: the concentrations of ACTH, cortisol and AngⅡduring the asphyxial CA were correlative with the rate of ROSC. The higher concentrations of hormores showed, the higher the rate of ROSC. The concentration of ACTH, cortisol and AngⅡin the combination group at the different time points after drug in the CPR were significantly higher than the epinephrine group and the vasopressin group, suggesting that increasing the concentrations of stress hormones may be one of mechanisms responsible for the better resuscitative effect of combined vasopressors.
引文
[1] Ahamed H, Idris, Lance B, et al. Utstein-style guideline for uniform reporting laboratory CPR reseach. Resuscitation. 1996;33(6):69-84
    [2] Hendrickx HH, Rao GR, Safar P, et al. Asphyxia cardiac arrest and resuscitation in rats. Resuscitation. 1984; 12 (2): 97 - 116.
    [3]武建军,李利华,张颖丽,等.大鼠心跳骤停期间心脏和肾脏α1肾上腺素能受体的变化[J].中华医学杂志. 1996; 76 (11): 8-12
    [4]马勇,孟庆义,王志忠,等.氨茶碱与肾上腺素合用在大鼠心脏停搏中的疗效.中华老年心脑血管病杂志[J].2004; 6 (11): 41- 43.
    [5]黄唯佳,李章平,陈寿权.心肺脑复苏动物模型[J].中华急诊医学杂志. 2002; 11 (6) : 419 - 420.
    [6]何明丰,张英俭,陈文元,等.参附注射液对家兔缺氧型心搏骤停心肺复苏模型血清心肌肌钙蛋白T的影响[ J].中华急诊医学杂志. 2004; 13 (9): 586 - 588.
    [7] Weaver ME, Pantely GA, Bristow JD, et al. A auantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man. Cardiovasc Res. 1986; 20(12):907-917
    [8] Patterson RE, Dirk ES. Analysis of coronary collateral structure, function,and ischemic border zones in pigs. Am J Physiol Heart Cric Physiol. 1983; 244(1):H23-H31
    [9] Odrigues M, Silva AP, Agusa, et al. The coronary circulation of the pig heart:comparison with the human heart. Eur J Anat. 2005; 9(2): 67-87
    [10]余明华,黄铁柱,周新华,等.人和猪升主动脉、肺动脉干的形态学和生物力学特性的比较研究概况[J].解剖科学进展. 2002; 8(2):163-165
    [11] Voelckel WG, Lurie KG, Mcknite S, et al. Comparison of epinephrine and vasopressin in a pediatric porcine model of asphyxial cardiac arrest.Crit Care Med. 2000; 28(12):3777-3783
    [12] Berg RA, Henry C, Otto CW, et al. Initial end-tidal CO2 is markedly elevated during cardiopulmonary resuscitation after asphyxial cardiac arrest. Ped Emerg Care. 1996; 12(4):245-248
    [13] Viktoria DM, Volker W, Wolfgang G, et al. Developing a vasopressor combination in a pig model of adult asphyxial cardiac arrest. Circulation. 2001; 104(14): 1651-1056
    [14]马宇洁,心肺复苏后大鼠脑线粒体通透性转化孔改变在脑损伤中的作用及其机制研究.第二军医大学,2006
    [15] Robert A, Karl B, Charies W, et al. Ventricular fibrillation in a swine modil of acute pediatric asphyxial cardiac arrest. Resuscitation. 1996; 33(2):147-153
    [16] Kent KM, Smith ER, Redwood DR, et al. Electrical stability of acrtely ischemic myocardium. Circulation. 1973; 42(2):291-294
    [17] Corr PB, Gillis RA. Role of the bagus nerves in the cardiovascular changesinduced by coronary occlusion. Circulation. 1974; 49(4): 86-90
    [18] Myers RW, Pearlman AS, Hyman RM, et al. Beneficial dffects of vagal stimulation and brady cardia during experimental acute myocardial infarction. Circulation. 1974;49(7): 943-948
    [19] Lura AH, Lynn HH, JR. Enhancement of electrical stability of acutely ischemic myocardium by edrophonium. Circution. 1974; 50(2): 99-10
    [20] Friedman WF. The intrinsic properties of the developing heart. Prog Cardiovasc Dis. 1972; 15(6):87-96
    [21] Manoach M. Factors influencing maintenance and spontaneous termination of ventricular fibrillation. Int J Cardiol. 1984;5(3):398-402
    [22] Song L, Weil MH, Tang W, et al. Cardiopulmonary resuscitation in the mouse. J Appl Physiol. 2002; 93(4):1222-1226
    [23] Chen MH, Liu TW, Xie L, et al. A simpler cardiac arrest model in rats. Am J Emerg Med. 2007; 25(6):623-30
    [24] Chen MH, Liu TW, Xie L et al. A simpler cardiac arrest model in the mouse. Resuscitation. 2007; 75(2):372-9
    [25] Chen MH, Liu TW, Xie L, et al. Ventricular fibrillation induced by transoesophageal cardiac pacing: a new model of cardiac arrest in rats. Resuscitation. 2007; 74(3):546-51
    [26] Yoshimitsu K, Haruke M, Naoki A, et al. Developmental changes in action potential and membrane currents in fetal, neonatal and adult Guinea-pig ventricular myocytes. Journal of Molecular and Cellular Cardiology. 1996 Jul; 28(7):1515-1522.
    [27] Reder RF, Miura DS, Danilo P Jr et al. The electrophysiological properties of normal neonatal and adult canine cardiac Purkinje fibers. Cric Res 1981;48(4):658-668.
    [28] Chen F, Wetzel GT, Friedman WF et al. ATP-senstive potassium channels in neonatal and adult rabbit ventricular myocytes. Ped Res 1992; 32(2):230-235
    [29] Huynh TV, Chen F, Wetzel GT et al. Developmental changes in membrane Ca2+ and K+ currents in fetal neonatal and adult rabbit ventricular myocytes. Circ Res. 1992;70(2):508-515
    [30] T Osaka and RW Joyner. Developmental changes in calcium currents of rabbit ventricular cells. Circ Res. 1991;68(3);788-786
    [31] Wan Chun Tang和方向韶心肺脑复苏研究的现状和对策[J].中华急诊医学. 2007; 16(1):7-9
    [32] Niemann JT, Cairns CB, Sharma J et al. Treatment of prolonged ventricular fibrillation. Immediate countershock versus high-dose epinephrine and CPR preceding countershock. Circulation. 1992;85(3):281-287.
    [1] Dtchey RV, Lindenfeld JA. Failure of epinephrine to improve the balance bet -ween myocardial oxygen supply and demand during closed-chest resuscitation in dogs. Circulation. 1988; 78(2):382–389
    [2]Nieman JT, Haynes KS, Garner D, et al. Postcountershock pulseless rhythms: response to CPR, artificial cardiac pacing, and adrenergic agonists. Ann Emerg Med. 1986;15(3):112–120.
    [3]Tang W, Weil MH, Gazmuri R, er al. Pulmonary ventilation/perfusion defects induced by epinephrine during cardiopulmonary resuscitation. Circulation. 1991; 84(8):2101–2107.
    [4]Tang W, Weil MH, Sun S, et al. Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation. 1995;92(7):3089–3093.
    [5]Woodhouse SP, Cox S, Boyd P, et al. High dose and standard dose adrenaline do not alter survival, compared with placebo, in cardiac arrest. Resuscitation. 1995; 30(4):243–249.
    [6]Callaham M, Madsen CD, Barton CW, et al. A randomized clinical trial of high-dose epinephrine and norepinephrine vs standard-dose epinephrine in prehospital cardiac arrest. JAMA. 1992; 268(10):2667–2672.
    [7]Stiell IG, Hebert PC, Weitzmann BN, et al. High-dose epinephrine in adult cardiac arrest. N Engl J Med. 1992;327(8):1045–1050.
    [8]Lindner KH, Ahnefeld FW, Prengel AW. A comparison of standard and high-dose adrenaline in the resuscitation of asystole and electromechanical dissociation. Acta Anaesthesiol Scand. 1991; 35(7):253–256.
    [9]Lindner KH, Prengel AW, Pfenninger EG, et al. Vasopressin improves vital organ blood flow during closed-chest cardiopulmonary resuscitation in pigs. Circulation. 1995;91(1):215–221
    [10]Wenzel V, Lindner KH, Prengel AW, et al. Vasopressin improves vital organ blood flow after prolonged cardiac arrest with post-countershock pulseless electrical activity in pigs. Crit Care Med. 1999; 27(3):486-492
    [11]Kono S, Bito H, Suzuki A,et al. Vasopressin and epinephrine are equally effective for CPR in a rat asphyxial model. Resuscitation. 2002; 52(2):215-219
    [12]Voelckel WG, Lurie KG, Mcknite S, et al. Comparison of epinephrine and vasopressin in a paediatric porcine model of asphyxial cardiac arrest. Crit Care MED. 2000; 28(12):3777-3783
    [13]宋凤卿,陈蒙华,谢露,等.延迟使用升压素与肾上腺素在窒息家兔心肺复苏中的疗效比较[J].Chin J Crit Care Med. 2005;25(9):662-664
    [14]Viktoria DM, Volker W, Wolfgang G, et al. Developing a vasopressor combination in a pig model of adult asphyxial cardiac arrest. Circulation. 2001;104(14): 1651-1056
    [15]Berg RA, Henry C, Otto CW, et al. Initial end-tidal CO2 is markedly elevated during cardiopulmonary resuscitation after asphyxial cardiac arrest. Ped Emerg Care. 1996;12(4):245-248
    [16]Paradis NA, Martin GB, Rivers EP, et al. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA. 1990;263(8): 1106-13
    [17]Halperin HR, Tsitlik JE, Gelfand M, et al. A preliminary study of cardippulmonary resuscitation by circumferential compression of the chest with use of a pneumatic vest. N Engl J Med. 1993; 329(11):762-8
    [18]Kern KB, Ewy GA, Voorhees WD, et al. Myocardial perfusion pressure: a predictor of 24-hour survival during prolonged cardiac arrest in dogs. Resuscitation. 1988;16(4):241-50
    [19]Kern KB, Niemann JT. Coronary perfusion pressure during cardioplumonar -y resuscitation. In: Cardiac Arrest: The Science and Practice of Resuscitation Medicine. Paradis NA, Halperin HR, Nowak RM(Eds). Baltimore, Williams &Wilkins, 1996; 22(3):270-285.
    [20]Sander AB, Kern KB, Stlas M, et al. Importance of the duration of inadequat -e coronary perfusion pressure on resuscitation form cardiac arrest. J Am Coll Cardiol. 1985; 6(1):113-118
    [21]Sanders AB, Ogle M, Ewy GA. Coronary perfusion pressure during cardiop -ulmonary resuscitation. Am J Emerg Med. 1985; 3(1):11-14
    [22]Yu T, Weil MH, Tang W, et al. Adverse outcome of interrupted precordial compression during automated defibrillation. Circulation. 2002; 106(3):368-372
    [23]Deshmukh HG, Weil MH, Gudipati CV, et al. Mechanism of blood flow generated by precordial compression during CPR: I. Studies on closed chestprecordial compression. Chest. 1989;95(5):1092-1099
    [24]Safar P, Bircher NG. The pathophysiology of dying and reanimation. In: Schwartz GR, Cayten CG, Mangelsen MA, et al, eds. Principles and practice of Emergency Medicine. 3rd ed. Philadephia, Pa: Lea&Febiger. 1992;25(7):3-41
    [25]Vaagenes P, Safar P, Diven W, et al. Brain enzyme levels in CSF after cardiac arrest and resuscitation in dogs: markers of damage and predictors of outcome. J Cereb Blood Flow Metab. 1988;8(2):265-275
    [26]Weil MH, Bisera J, Trevino RP, et al. Cardiac output and end-tidal carbon dioxide. Crit Care Med. 1985;13(11):907-9
    [27]Falk JL, Rackow EC, Weil MH. End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engj J Med. 1988; 318(10):607-611
    [28]Sserles SA, Breen PH. Can changes in end-tidal Pco2 measure changes in cardiac output? Anesth Analg. 1991; 73(6):237-2403
    [29]Gazmuri RJ, Von Planta M, Weil MH, et al. Arterial Pco2 as an indicator of systemic perfusion during cardiopulmonary resuscitation. Crit Care Med. 1989; 17(3):237-240
    [30]azmuri RJ, Weil MH, Bisera J, et al. End-tidal carbon dioxide tendion as a monitor of native blood flow during resuscitation by extracorporeal circulation. J Thorac Cardiovasc Surg 1991; 101(6):984-988
    [31]Yannopoulos D, Aufderheide TP, Mcknite S, et al. Hemodynamic and respir -atory effects of negative tracheal pressure during CPR in pigs. Resuscitation 2006; 69(3):487-494
    [32]Ornato JP, Levine RL, Young DS, et al. The effect of applied chest compress -ion force on systemic arterial pressure and end-tidal carbon dioxide concentration during CPR in human beings. Ann Emerg Med. 1989; 18(7):732-737
    [33]Grmec S, Klemen P. Dose the end-tidal carbon dioxide (EtCO2) concentrati -on have prognostic value during out-of-hospital cardiac arrest? Eur J Emerg Med. 2001; 8(2):263-269
    [34]Cantineau JP, Lambert Y, Merckx P, et al. End-tidal carbon dioxide during cardiopulmonary resuscitation in humans presenting mostly with asystole: a predictor of outcome. Crit Care Med. 1996; 24(5):791-796
    [35]Lindner KH, Strohmenger HU, Ensinger H et al. Stress hormone response during and after cardiopulmonary resuscitation. Anesthesiology. 1992; 77(4): 662-668
    [36]Lindner KH, Haak T, Keller A, et al. Release of endogenous vasopressors during and after cardiopulmonary resuscitation. Heart. 1996;75(2):145-50
    [37]Paradis NA. Rose MI, Garg U. The effect of global ischemia and reperfusion on the plasma levels of vasoactive peptides. The neuroendocrine response to cardiac arrest and resuscitation. Resuscitation. 1993;26(3):261-269.
    [38]Fox AW. Vascular vasopressin receptors. Gen Pharmacol. 1988;19(5):639- 664
    [39]Volker W, Karl H, Lindner KH et al. Repeated administration of vasopressin but not epinephrine maintains coronary perfusion pressure after early and late administration during prolonged cardiopulmonary resuscitation in pigs. Circulation. 1999; 99(10):1379-1384
    [40]Insel PA. Adrenergic receptors: evolving concepts and clinical implications. N Eng J Med. 1996; 334(9):580-585
    [41]Wenzel V, Krismer AC, Arntz HR, et al. A comparison of vasopressin and epinephrine for out-of-hospital cardiopulmonary resuscitation. N Engl J Med. 2004;350(2):105-113.
    [42]Wenzel V, Lindner KH, Prengel AW, et al. Vasopressin improves vital organblood flow after prolonged cardiac arrest with postcountershock pulseless electrical activity in pigs. Cirt Care Med. 1999; 27(3):486-92
    [43]Wenzel V, Lindner KH, Krismer AC, et al. Survival with full neurologic recovery and no cerebral pathology after prolonged cardiopulmonary resuscitation with vasopressin in pigs. J Am Coll Cardiol. 2000; 35(2):527-533.
    [44]Lindner KH, Prengel AW, Pfenninger EG, et al. Vasopressin improves vital organ blood flow during closed-chest cardiopulmonary resuscitation in pigs. Circulation. 1995;91(1):215-221.
    [45]Andreas W, Prengel G, Karl H, et al. Cerebral oxygenation during cardiopul -monary resuscitation with epinephrine and vasopressin in pigs. Stroke. 1996; 27(7):1241-1248
    [46]Wenzel V, Lindner KH, Augenstein S, et al. Intraosseous vasopressin inprov -es coronary perfusion pressure rapidly during cardiopulmonary resuscitation in pigs. Crit Care Med. 1999;27(8):1565-1569
    [1]Worisman J, Foley Pj, Tacker WA, et al.Cerebrospinal fluid changes in experimental cardiac arrest (maximal stress). Am J Physiol.1987;252(6):756-761
    [2]Foley Pj, Tacker WA, Worisman J, et al. Plasma catecholamine and serum cortisol responses to experimental cardiac arrest in dogs. Am J Physiol. 1987; 253(3):283-289
    [3]Huyghens Lp, Calle PA, Moerman EJ, et al. Plasma norepinephrine concentra -tions during resuscitation in the dog. Am J Emerg Med. 199; 9(4):426-431
    [4]Worisman J, Frank S, Cryer P: Adrenomedullary response to maximal stress in humans.Am J Med. 1984;77(5):779-784
    [5]Lindner KH, Ahnefeld FW, Bowdler IM, et al. Influence of epinephrine onsystemic, myocardial, and cerebral acid-base status during cardiopulmonary resuscitation. Anesthesiology. 1991;74(2):333-339
    [6]Prengel AW, Lindner KH, Ensinger H, et al. Plasma catecholamine concentrations after successful resuscitation in patients. Crit Care Med. 1992; 20(5):609-614
    [7]Lindner KH, Strohmenger HU, Prengel AW, et al. Hemodynamic and metabolic effects of epinephrine during cardiopulmonary resuscitation in a pig model. Crit Care Med. 1992;20(7):1020-1026
    [8]Brckingham JC: Hypothalamo-pituitary responses to trauma. Br Med Bull. 1985;41(3):203-211
    [9]Kaisner S: Mechanism of hydrocortisone potentiation of responses to epinephrine and norepinephrine in rabbit aorta. Circulation Research. 1969; 24(3):383-395
    [10]Chamberlain D, Cummins RO: Recommended guidelines for uniform reporting of data from out-of-hospital cardiac arrest: The“Ustein style”. Resuscitation. 1991;22(1):1-22
    [11]Glick SM, Kagan A: Vasopressin, Methods of Hormone Radioimmuno Assay, Edited by Jaffe BM, Behrmann HR. New York, Academic Press. 1979; PP341-351
    [12]Higaki J, Ogihara I, Imai N et al. A new sensitive direct radioimmunoassay for human plasma rennin and its clinical application. J Lab Clin Med. 1984; 104(6):947-954
    [13]Axelrod J, Reisine TD: Stress hormones: Their interaction and regulation. Science. 1984;224(4648):452-459
    [14]Hensen J, Hader O, Bahr V, et al. Effects of incremental infusions of arginine vasopressin on adrenocorticotropin and cortisol secretion in man. J Clin Endocrinol Metab. 1988;66(4):668-671
    [15]Cameron V, Espiner EA, Nicholls MG, et al. Stress hormones in blood and cerebrospinal fluid of conscious sheep: Effect of hemorrhage. Endocrinology. 1985;116(4):1460-1465
    [16]Newsome NH, Rose JC: The response of human adrenocorticotrophic hormone and growth hormone to surgical stress. J Clin Endocrinol Metab. 1971; 33(3):481-487
    [17]Engquist A, Brandt MR, Fernandes A, et al. The blocking effects of epiduralanalgesia on the adrenocortical and hyperglycemia responses to surgery. Acta Anaesthesiol Scand. 1977; 21(4):330-335
    [18]贺石林,李俊成,秦晓群.临床生理学,北京东黄城根北街16号,科学出版社,2001:576-583
    [19]T Ito, D Saitoh, A Takasu, et al. Serum cortisol as a predictive marker of the outcome in patients resuscitated after cardiopulmonary arrest. Resuscitation. 2004;62(1):55-60
    [20]Schultz CH, Rivers EP, Feldkamp CS. et al. A characterization of hypothala -mic–pituitary–adrenal axis function during and after human cardiac arrest. Crit Care Med. 1993; 21(9): 1339–1347
    [21]Smithline H, Rivers E, Appleton T. et al. Corticosteroid supplementation d- uring cardiac arrest in rats. Resuscitation. 1993; 25(3): 257-264
    [22] Lindner KH, Prengel AW, Pfenninger EG, Lindner IM. Effect of angiotensin II on myocardial blood flow and acid-base status in a pig model of cardiopulmo -nary resuscitation. Anesth Analg. 1993;76(6):485-492
    [23] Little CM, Brown CG. Angiotensin II improves myocardial blood flow in ca -rdiac arrest. Resuscitation. 1993;26(7):203-210.
    [24]Little CM & Brown CG. AngiotensinⅡadministration improves cereral blo -od flow in cardiopulmonary arrest in swine. Stroke. 1994; 25(1):183-188
    [25]Little CM, Hobson JL & Brown CG. AngiotensinⅡeffects in a swine model of cardiac arrest. Ann. Emerg. Med. 1993;22(2): 244-247
    [26] Reid IA. Interactions between Ang II, sympathetic nervous system, and bar -oreceptor reflexes in regulation of blood pressure. Am J Physiol. 1992;262(3):E763-E778.
    [27] Peach MJ. Renin-angiotensin system: biochemistry and mechanisms of acti -on. Physiol Rev. 1977; 57(2):313-370
    [28]Peach MJ, Bumpus FM, Khairallah PA. Inhibition of norepinephrine uptake in hearts by angiotensin II and analogs. J Pharmacol Exp Ther. 1969;167 (8):299-307.
    [29]Purdy RE, Weber MA, Prins BA, Stupecky GL. Angiotensin II induced amp -lification of the vasoconstrictor response to norepinephrine and clonidine. Proc West Pharmacol Soc. 1987;30(5):171-174.
    [30]Zimmermann JB, Robertson D, Jackson EK. Angiotensin II-noradrenergic interactions in renovascular hypertensive rats. J Clin Invest. 1987;80(2):443-457
    [31]Timmermans PB, Wong PC, Chiu AT, et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev. 1993;45(2):205-251.
    [32]Timmermans PB, Benfield P, Chiu AT, et al. Angiotensin II receptors and functional correlates. Am J Hypertens. 1992; 5(3):S221-S235.
    [33]Lindner KH, Hans. U, Hermamn E, et al. Stress hormone response during and after cardiopulmonary. Anesthesiology. 1992; 77(4):662-668
    [34]E Kornberger, AW Prengel, A Krismer, et al. Vasopressin-mediated adrenoco rticotropin release increases plasma cortisol concentrations during cardiopulmon ary resuscitation. Crit Care Med. 2000; 28(10):3517-21.
    [35]Lindner KH,Haak T,Keller A,et al.Release of endogenous vasopressin during and after cardiopulmonary resuscitation. Heart. 1996;75(2):145-150
    [36]姜胜,王彤,黄子通等.血管加压素在心肺复苏中的作用研究进展[J].中华急诊医学. 2003;23(9):643-644
    [37]Lindner KH,Prengel AW,Pfenninger EG,et al. Vasoprcssin improves vital organ blood flow during close-chest cardiopulmonary resuscitation in pigs. Circulation. 1995; 91(1):215-221
    [38]Prcngel AW, Lindner KH, Keller A, et al. Cerebral oxygenation during card -iopulmonary resuscitation with epinephrine and vasopressin in pigs. Stroke.1996; 27(7):1241—1248.
    [39]Wenzel V,lindner KH,Prengel AM, et al. Vasopresssin improves vital orga -n blood flow after prolonged cardiac arrest with postcountershock pulseless ele -ctrical activity in pigs. Crit Care Med. l999;27(3):486-492.
    [40]Span LFR, Hermus ARMM, Bartelink AKM, et al. Adrenocortical function: an indicator of severity of disease and survival in chronic critically ill patients. Inten Care Med. 1992;18(1):93–6.
    [41]彭晖,黄捷英.肾素-血管紧张素对大鼠心肌缺血和缺血再灌注.心律失常影响的实验研究[J].中华心血管病杂志. 2003;31(3):207
    [42]Mancia G, levy BL, Michel JB , et al .Recent advance in ACE inhibition in the treatment and heart failure[J ] Am J Cardiol. 1993;71(17) : 8E
    [43]Uinger T , Chung O , Csikos T , et al. Angiotensin receptors. Hypertension. 1996; 14 (Suppl 5): 95-103
    [44]贾大林,张静,齐国先,等.脱氧肾上腺素和血管紧张素Ⅱ对大鼠心肌缺血再灌注心律失常的影响[J ].中国医科大学学报. 2001; 30 (1):12– 14
    [1] Van den Berghe G. Neuroendocrine pathobiology of chronic critical illness. Crit Care Clin. 2002;18(3):509-528
    [2] Van den Berghe G, Baxter RC, Weekers F, et al. A paradoxical gender disso- ciation within the growth hormone/insulin-like growth factorⅠaxis during protracted critical illness. J Clin Endocrinol Metab. 2000; 85 (1):183-192
    [3] Wortsman J, Frank S, Wehrenberg WB, et al. Gamma 3-Melanocyte-stimul- ating hormone immunoreactivity is a component of the neuroendocrine response to maximal stress (cardiac arrest). J Clin. Endocrinol. Metab. 1985; 61(2): 355- 360
    [4] Schultz CH, Rivers EP, Feldkamp CS. et al. A characterization of hypothala- mic–pituitary–adrenal axis function during and after human cardiac arrest. Crit.Care Med. 1993; 21(9): 1339–1347
    [5] Lindner KH, Strohmenger HU, Ensinger H. et al. Stress hormone response d- uring and after cardiopulmonary resuscitation. Anesthesiology. 1992; 77(4):662- 668
    [6] Lindner KH, Haak T, Keller A. et al. Release of endogenous vasopressors du -ring and after cardiopulmonary resuscitation. Heart. 1996; 75(2): 145-150
    [7] O’Leary MJ, Timmins AC, Appleby JN. et al. Dissociation of pituitary-adre nal and catecholamine activation after induced cardiac arrest and defibrillation. Br. J. Anaesth. 1999; 82(2): 271-273
    [8] Kornberger E, Prengel AW, Krismer A. et al. Vasopressin-mediated adreno- corticotropin release increases plasma cortisol concentrations during cardiopul- monary resuscitation. Crit. Care Med. 2000; 28(10): 3517- 3521
    [9] Ito T, Saioh D, Takasu A. et al. Serum cortisol as a predictive marker of the outcome I patients resuscitated after cardiopulmonary arrest. Resuscitation. 2004; 62(1): 55-60
    [10] Karnezis IA. Variations in serum angiotensin-converting enzyme actibity f- ollowing lung resection: a controlled study in a clinical setting. Ann Clin Bioche. 1999; 36(pt2): 212-215
    [11] Bernton EW, Long JB, & Holaday JW. Opioids and neuropeptides: mechanisms in circulatory shock. Fed. Proc. 1985; 44(2): 290-299
    [12] Svedmyr N. Action of corticosteroids on beta-adrenergic receptors. Clinical aspects. Am. Rev. Respir.Dis. 1990; 141(2pt2): S31-S38
    [13] Dorin RI, Kearns PJ. High output circulatory failure in acute adrenal insufficiency. Crit Card Med. 1988; 16(3): 296-297
    [14] Smithline H, Rivers E, Appleton T. et al. Corticosteroid supplementation d- uring cardiac arrest in rats. Resuscitation. 1993; 25(3): 257-264
    [15] Tsai Ms, Huang CH, Chang WT, et al. The effect of hydrocortisone on the outcome of out-of-hospital cardiac arrest patients: a pilot strdy. Am J Emerg Med. 2007;25(3): 318-325
    [16] Pene F, Hyvemat H, Mallet V, et al. Prognostic value of relative adrenal insufficiency after out-of-hospital cardiac arrest. Intensive Card Med. 2005; 31(5):627-633
    [17] Guillaume H, Thomas B, Marie T, et al. Cortisol levels and adrenal reserve after successful cardiac arrest resuscitation. Shock. 2004;22(2):116-119
    [18] de Jong MF, Beishuizen A, de Jong MJ, et al. The pituitary-adrenal a xis is activated more in non-survivors than in survivors of cardiac arrest, irrespective of therapeutic hypothermia. Resuscitation. 2008;78(3):281-8
    [19] Antonawich EJ, Miller G, Rigsby DC, et al. Regulation of ischemic cell de- ath by glucocorticoids and adrenocorticotropic hormone. Neuroscience. 1999;88 (1):319-325
    [20] Foley PJ, Tacker WA, Wortsman J, et al. Plasma catecholamine and serum cortisol responses to experimental cardiac arrest in dogs. Am J Physiol. 1987; 253(3 pt 1):E283-289
    [21] Schoffstall JM, Spivey WH, Davidheiser S, et al. Endogenous and exogen- ous plasma catecholamine levels in cardiac arrest in swine. Resuscitation. 1990; 19(3):241-251
    [22] Wortsman J, Frank S, Cryer PE. Sdrenomedullary response to maximal str- ess in humans. Am J Med. 1984;77(5):779-784
    [23] Wortsman J, Nowak RM, Martin GB, et al. Plasma epinephrine level in res- uscitation with cardiopulmonary bypass. Crit Care Med. 1990;18(10):1134-1137
    [24] Herd JA. Cardiovascular response to stress in man. Annu Rev Physiol. 1984;46(2):177-185
    [25] Little RA, Frayn KN, Randall PE, et al. Plasma catecholamines in patients with acute myocardial infarction and in cardiac arrest. Q J Med. 1985;549 (214):133-140
    [26] Worrsman J, Paradis NA, Martin GB, et al. Functional responses to extrem- ely high plasma epinephrine concentration in cardiac arrest. Crit Care Med. 1993;21(5): 692-697
    [27] Dtchey RV, Lindenfeld JA. Failure of epinephrine to improve the balance b -etween myocardial oxygen supply and demand during closed-chest resuscitatio -n in dog. Circulation. 1988; 78(2):382-389
    [28] Nieman JT, Haynes KS, Garner D, et al. Postcountershock pulseless rhythm -s: response to CPR, artificial cardiac pacing, and adrenergic agonists. Ann Eme -rg Med. 1986;15(3): 112-120
    [29] Tang W, Weil MH, Gazmuri R, et al. Pulmonary ventilation/perfusion defe -cts induced by epinephrine during cardiopulmonary resuscitation. Circulation. 1991;84(8):2101-2107
    [30] Tand W, Weil MH, Sun S, et al. Epinephrine increase the severity of postre -suscitation myocardial dysfunction. Circulation. 1995;92(7):3098-3093
    [31] Woodhouse SP, Cox S, Boyd P, et al. High dose and standard dose a drenal -ine do not alter survival, compared with placebo, in cardiac arrest. Resuscitatio -n. 1995;30(4):243-249
    [32] Callaham M, Madsen CD, Barton CW, et al. A randomized clinical trial of high-dose epinephrine and norepinephrine vs standard-dose epinephrine in preho -spital cardiac arrest. JAMA. 1992;268(10):2667-2672
    [33] Stiell IG, Hebert PC, Weitzmann BN, et al. High-dose epinephrine in adult cardiac arrest. N Engl J Med. 1992;327(8):1045-1050
    [34] Lindner KH, Ahnefeld FW, Prengel AW. A comparison of standard and high-dose adrenalin in the resuscitation of asystole and electromechanical dissociati -on Acta Anaesthesiol Scand. 1991;35(7):253-256
    [35] Niemann JT, Garner D. Post-resuscitation plasma catecholamines after prol -onged arrest in a swine model. Resuscitation. 2005;65(1): 97-101
    [36] Maddens M, Sowers J. Catecholamines in critical care . Crit Care Clin. 1987;3(4):871-882
    [37] Ditchey RV, Rubio-Perez A, Slinker BK. Beta-adrenergic blockade reduces myocardial injury during experimental cardiopulmonary resuscitation. J Am Coll Cardiol, 1994;24(3): 804-812
    [38] Boldt J, Menges T, Kuhn D, et al. Slterations in circulating vasoactive subst -ances in the critically ill- a comparison between survivors and non-survivors. Intensive Care Med. 1995;21(3):218-225
    [39] Tamion E, Le Cam-Duchez, Menard JE, et al. Erythropoietin and re- nin as biological markers in critically ill patients. Crit Care 2004; 8(5): R328-R335
    [40] Paradis NA, Rose MI & Garg U. The effect of global ischemia and reperfus -ion on the plasma levels of vasoactive peptides. The neuroendocrine response t -o cardiac arrest and resuscitation. Resuscitation. 1993;26(3):261-269
    [41] Lindner KH, Prengel AW, Pfenninger EG, et al. Effect of angiotensinⅡon myocardial blood flow and acid-base status in pig model of cardiopulmonary res -uscitation. Anesth Analg. 1993;76(3):485-492
    [42] Little CM & Brown CG. AngiotensinⅡadministration improves cereral blo -od flow in cardiopulmonary arrest in swine. Stroke. 1994; 25(1):183-188
    [43] Little CM, Hobson JL & Brown CG. AngiotensinⅡeffects in a swine mode -l of cardiac arrest. Ann. Emerg. Med. 1993;22(2): 244-247
    [44] Reid IA. Interactions between ANG II, sympathetic nervous system, and ba -roreceptor reflexes in regulation of blood pressure. Am J Physiol. 1992;262(9):E763-E778.
    [45] Peach MJ. Renin-angiotensin system: biochemistry and mechanisms of acti -on. Physiol Rev. 1977;57(4):313-370
    [46] Peach MJ, Bumpus FM, Khairallah PA. Inhibition of norepinephrine uptake in hearts by angiotensin II and analogs. J Pharmacol Exp Ther. 1969;167(3):299- 307.
    [47] Purdy RE, Weber MA, Prins BA, Stupecky GL. Angiotensin II induced amp -lification of the vasoconstrictor response to norepinephrine and clonidine. Proc West Pharmacol Soc. 1987;30(6):171-174.
    [48] Zimmermann JB, Robertson D, Jackson EK. Angiotensin II-noradrenergic i -nergic interactions in renovascular hypertensive rats. J Clin Invest. 1987; 80(5): 443-457
    [49] Timmermans PB, Wong PC, Chiu AT, et al. Angiotensin II receptors and an -giotensin II receptor antagonists. Pharmacol Rev.1993;45(5):205-51
    [50] Timmermans PB, Benfield P, Chiu AT, et al. Angiotensin II receptors and fu -nctional correlates. Am J Hypertens. 1992;5(9):S221-S235.
    [51] Lindner KH, Strohmenger HU, Prengel AW, et al. Hemodynamic and metab -olic effects of epinephrine during cardiopulmonary resuscitation in a pig model. Crit Care Med. 1992; 20(2):1020-1026.
    [52]周荣斌,李春盛.心肺复苏过程中的神经内分泌反应. [J] Chin J Crit Care Med. 1999; 19(10):636-637
    [53]彭晖,黄捷英.肾素-血管紧张素对大鼠心肌缺血和缺血再灌注.心律失常影响的实验研究.[J]中华心血管病杂志. 2003;31(3):207-211
    [54] Mancia G, Levy BL, Michel JB, et al. Recent advance in ACE inhibition in the treatment and heart failure. Am J Cardiol. 1993; 71(17):8E
    [55] Uinger T, Chung O, Csikos T, et al. Angiotensin receptors. Hypertension.1996;14(suppl 5):95-103
    [56]贾大林,张静,齐先国等.去氧肾上腺素和血管紧张素Ⅱ对大鼠心肌缺血再灌注心律失常的影响. [J]中国医科大学学报. 2001; 30(1):12-14
    [57] Rocha R & Stier CT. Pathophysiological effects of aldosterone in cardiovas -cular tissues. Trends Endocrinol Metab. 2001;12(7):308-314
    [58] Weber KT. Aldosterone in congestive heart failure. N Engl J Med. 2001; 345(23):1689-1697
    [59] Gomez-Sanchez CE & Gomez-Sanchez EP. Editorial: Cardiac steroidogene -sis-new sites of synthesis, or much about nothing? J. Clin. Endocrinol Mebtab. 2001; 86(11):5118-5120
    [60] Orth DN & Kovacs WJ. The adrenal cortex. In Wilson JD & Foster DW, ed -s. Williams Textbook of Endocrinology. Philadelphia: WB Saunders, 1998.
    [61] Findling JW, Waters VO & Raff H. The dissociation of rennin and aldoster -one during critical illness. J. Clin. Endocrinol. Metab. 1987;64(3):592-595
    [62] Zipser RD, Davenport MW, Martin KL, et al. Hyperreninemic hypoaldoster -onism in the critically ill: a new entity. J Clin. Endocrinol. Metab. 1981;53 (4):867-873
    [63] Antonipillai I & Horton R. Paracrine regulation of the rennin-aldosterone sy -stem. J Steroid Biochem. Mol. Biol. 1993;45(1-3):27-31
    [64] Davenport MW & Zipser Rd. Association of hypotension with hyperrenine -mic hypoaldosteronism in the critically ill patient. Arch. Intern. Med. 1983;143 (4):735-737
    [65] Wutke T. Endocrinology. In Schmidt RE, Thews G, eds. Human Physiolog -y. Berlin, Heidelberg, New York:Springer, 1993.390-420
    [66] Chikanza IC, Petrou P, Chrousos G. Perturbations of arginine vasopressin s -ecretion during inflammatory stress: Pathophysiologic implications. Ann N YAcad Sci. 2000;917(23):825-834
    [67] Mastorakos G, Weber JS, Magiakou MA, et al. Hypothalamic-pituitary-adr -enal axis activation and stimulation of systemic vasopressin secretion by recom -binant interleukin-6 in humans: potential implications for the syndrome of inap -propriate vasopressin secretion. J Clin Endocrinol Metab. 1994;79(4):934-939
    [68] Zelazowski P, Patchev VK, Zelazowska EB, et al. Release of hypothalamic corticotropin-releasing hormone and arginine-vasopressin by interleukin 1 beta a -nd alpha MSH: studies in rats with different susceptibility to inflammatory dise -ase. Brain Res.1993;63(1):22-26
    [69] Yamamoto T, Kimura T, Ota K, et al. Central effects of endothelin-1 on vas opressin and atrial natriuretic peptide release and cardiovascular and renal funtio -n in conscious rats. J Cardiovasc Pharmacol. 1991;17 (suppl 7):s316-318
    [70] Schichiri M, Hirata Y, Kanno K, et al. Effect of endothelin-1 on release of a -rgnine-vasopressin from perifused rat hypothalamus. Biochem Biophys Res Co -mmun. 1989;163(3):1332-1337
    [71] Standaert DC, Cechetto DF, Needleman P, et al. Inhibition of the firing of v -asopressin neurons by atriopeptin. Nature. 1987;329(6316):151-153
    [72] Obana K, Naruse M, Inagami T, et al. Atrial natriuretic factor inhibits vaso pressin secretion from rat posterior pituitary. Biochem Biophys Res Commun. 1985;132(3):1088-1094
    [73] Sharshar T, Blanchard A, Pallard M, et al. Circulating vasopressin levels in eptic shock. Crit Care Med.2003;31(6):1752-1758
    [74] Landry DW, Levin HR, Gallant EM, et al. Vasopressin deficiency contribut es to the vasodilation of sepic shock. Circulation. 1997;95(5):1122-1125
    [75] Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001; 345(8):588-595
    [76] Goldsmith SR. Vasopressin deficiency and vasodilation of septic shock. Circulation. 1998;97(3):292-293
    [77] DeBehnke DJ & Benson L. Effects of endothelin-s on resuscitatio rate duri -ng cardiac arrest. Resuscitation 2000; 47(2):185-189
    [78] DeBehnke D. The effects of graded doses of endothelin-1 on coronary perf -usion pressure and vital organ blood flow during cardiac arrest. Acad Emerg Med 2000;7(3):211-221
    [79] DeBehnke DJ, Spreng D, Wickman LL et al. The effects of endothelin-1 on coronary perfusion pressure during cardiopulmonary resuscitation in a canine m -odel. Acad Emerg Med. 1996;3(2):137-141
    [80] Holzer M, Sterz E, Behringer W, et al. Endothelin-1 elevates regional cereb -ral perfusion during prolonged ventricular fibrillation cardiac arrest in pigs. Resuscitation 2002;55(3):317-727
    [81] Hilwig RW, Berg RA, Kern KB et al. Endothelin-1 vasoconstriction during swine cardiopulmonary resuscitation improves coronary perfusion pressures but worsens postresuscitation outcome. Circulation. 2000;101(17):2097-2102
    [82] Wenzel V, Ewy GA & Lindner KH. Vasopressin and endothelin during car -diopulmonary resuscitation. Crit Care Med. 2000;28(11 suppl): N233-N235
    [83] Magder S & Cernacek P. Role of endothelins in septic, cardiogenic, and he -morrhagic shock. Can J Physiol Pharmacol. 2003;81(6):635-643
    [84] Battistini B, Forget MA & Laight D. Potential roles for endothelins in syste -mic inflammatory response syndrome with a particular relationship to cytokines . Shock. 1996;5(3):167-183
    [85] Weitzberg E, Lundberg JM & Rudehill A. Elevated plasma levels of endoth -elin in patients with sepsis syndrome. Circ Shock. 1991;33(4):222-227
    [86] Pittet JE, Morel DR, Hemsen A, et al. Elevated plasma endothelin-1 concetr-ations are associated with the severity of illness in patients with sepsis. Ann Sur -g. 1991;213(3):261-264
    [87] Buunk G, van der Hoeven JG, Frolich M, et al. Cerebral vasoconstriction in comatose patients resuscitated from a cardiac arrest? Intens Care Med. 1996;22 (11):1191-1196
    [88] Krep H, Brinker G, Schwindt W. Endothelin type A-antagonist improves lo -ng-term neurological recovery after cardiac arrest in rats. Crit Care Med. 2000; 28(8):2873-2880
    [89] Krep H, Brinker G, Pillekamp E, et al. Treatment with an endothelin type A receptor-antagonist after cardiac arrest and resuscitation improves cerebrall hem -odynamic and functional recovery in rats. Crit Care Med. 2000;28(8)2866-2872
    [90] Pluta R, Lossinsky AS, Wisniewski HM, et al. Early blood-brain barrier cha -nges in the rat following transient complete cerebral ischemia induced by cardia -c arrest. Brain Res. 1994;633(1-2):41-52
    [91] Levin ER, Gardner DG & Samson WK. Natriuretic peptides. N Engl J Med. 1998;339(95):321-328
    [92] Naruse M, Takeyama Y, Tanabe A, et al. Atrial and brain natriuretic peptid -es in ccardiovascular diseases. Hypertension. 1994;23(1 suppl): 123-1234
    [93] Morita E, Yasue H, Yoshimura M, et al. Increased plasma levels of brain na -triuretic peptide in patients with acute myocardial infarction. Circulation. 1993; 88(1): 82-91
    [94] Kapuscinski A. Atrial natriuretic peptide in the rat brain and plasma during clinical death and after resuscitation. Folia Neuropathol. 1994; 32(2):17-20
    [95] Stein BC & Levin RI. Natriuretic peptides: phyxiology, therapeutic potentia -l, and risk stratification in ischemic heart disease. Am Heart J 1998;135(5 pt 1): 914-923
    [96] Gardner DC. Designer natriuretic peptides. J Clin Invest. 1993;92 (4) : 1606-1607
    [97] Paradis NA, Martion GB, River EP, et al. The standard and high-dose epine -phrine coronary perfusion pressure during prolonged cardiopulmonary resuscita -tion. J Am Med Assoc. 1991; 2650(24):1139-1144
    [98] Wang BC, Leadley RJ, Goetz KL. Atriopepiton alters the vasopressin and r -ennin responses elicited by hemorrhage. Proc Soc Exp Biol Med.1990; 193:85- 91
    [99] Nagao K, Hayashi N, Kanmatsuse K, et al. B-type natriuretic peptide as a m -arker of resuscitation in patients with cardiac arrest outside the hospital. Circ J. 2004;68(5):477-482
    [1] Guidelines 2000 for cariopulmonary resuscitation and emergency cardiovasc ular care. Part 6 : Advanced cardiovascular life support [J ] . Circulation. 2003; 102(8 Suppl) : I86 - I66.
    [2] Idris AH , Chair , Becker LB , et al. Utstein - Style Guidelines for uniform re porting of laboratory CPR research[J ] . Circulation. 1996; 94(9) : 2324 - 2336.
    [3] Li MM, Payne RS , Tseng MT, et al. Correlates of delayed neuronal damage d and neuroprotection in a rat model of cardiac arrest - induced cerebral ischemi a. Brain Res. 1999; 826 (1) : 44 - 52.
    [4] Bottiger BW, Krumnikl JJ , Gass P , et al. The cerebral no reflow phenomen on after cardiac arrest in rats - influence of low - flow reperfusion. Resuscitation. 1997; 34(1) : 79 -87.
    [5] Lei S , Weil MH , Tang WCh , et al. Cardiopulmonary resuscitation in the m ouse. J Appl Physiol. 2002; 93(4) : 1222- 1226.
    [6] Paiva EF , Perondi MBM, Kern KB , et al. Effect of amiodarone on haemody namics during cardiopulmonary resuscitation in a canine model of resistant ventr icular fibrillation. Resuscitation. 2003; 58(2) : 203 -208.
    [7]何明丰,张英俭,黎练达,等.气管夹闭窒息法家兔心脏骤停模型的研究.[J]中华实验外科杂志. 2004; 21(3): 375-376
    [8]宋凤卿,陈蒙华,谢露,等.延迟使用升压素与肾上腺素在窒息家兔复苏中的疗效比较. [J]中国急救医学. 2005; 25(9):662-664
    [9] Weaver ME, Pantely GA, Bristow JD, et al. A auantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man. Cardiovasc Res. 1986; 20(12):907-917
    [10] Patterson RE, Dirk ES. Analysis of coronary collateral structure, function,and ischemic border zones in pigs. Am J Physiol Heart Cric Physiol. 1983; 244(1):H23-H31
    [11] Odrigues M, Silva AP, Agusa, Grande NR. The coronary circulation of the pig heart:comparison with the human heart. Eur J Anat. 2005; 9(2): 67-87
    [12]余明华,黄铁柱,周新华,等.人和猪升主动脉、肺动脉干的形态学和生物力学特性的比较研究概况. [J]解剖科学进展.2002; 8(2):163-165
    [13] Voelckel WG; Lurie KG, McKnite BS, et al. Comparison of epinephrine and vasopressin in a pediatric porcine model of asphyxial cardiac arrest. Crit Care Med. 2000; 28(12):3777-3783
    [14] Viktoria DM, Volker W, Wolfgang GV, et al. Developing a Vasopressor Combination in a Pig Model of Adult Asphyxial Cardiac Arrest. Circulation. 2001; 104(14):1651-1658
    [15] Melinda SJ, Steven KS, Lisa LT, et al. Anesthetic regimen effects on a ped iatric porcine model of asphyxial arrest. Resuscitation. 1997; 35(1):69-75
    [16] Berg, RA, Otto, CW, Kern, KB, et al. A randomized, blinded trial of high-d ose epinephrine versus standard-dose epinephrine in a swine model of pediatric asphyxial cardiac arrest. Crit Care Med. 1996; 24(10):1695-1700
    [17] Berg, RA, Hilwig, RW, Kern, KB, et al. Simulated mouth-to-mouth ventil ation and chest compressions (bystander cardiopulmonary resuscitation) improves outcome in a swine model of prehospital pediatric asphyxial cardiac arrest. Crit Care Med. 1999; 27(9):1893-1899
    [18]申颖,刘唐威,陈蒙华,等.窒息性心跳骤停家猪心脏节律变化特点. [J]中华急诊医学杂志.2008; 17(6):614-617
    [19]申颖,刘唐威,陈蒙华,等.猪窒息性心跳骤停动物模型的建立. [J]广西医科大学学报. 2008; 25(3):344-346
    [20] Voelchel WG, Lurie KG, Mcknite SE. et al. Effect of epinephrine and vasopressin in a piglet of prolonged ventricular fibrillation and cardiopulmonary resuscitation. Crit Care Med. 2002; 30(5):957-962
    [21] Voelchel WG, Lurie KG, Mcknite S et al. Comparison of epinephrine and vasopressin in a pediatric porcine model of asphyxial cadiac arrest. Crit Care Med. 2000; 28(12):3777-3783.
    [22] Robert A, Karl B, Charies W, Ricardo A, et al. Ventricular fibrillation in a swine modil of acute pediatric asphyxial cardiac arrest. Resuscitation. 1996; 33(2):147-153
    [23] Fisher M, Dahmen A, Standop J, et al. Effects of hypertonic saline on myocardial blood flow in a porcine model of prolonged cardiac arrest. Resuscitation. 2002; 54(3):269-280
    [24] Nozari A, Ruberisson S, Cedeborg. et al. Maximisation of cerebral blood f -low during experimental cardiopulmonary resuscitation dose not ameliorate po st-resuscitation hypoperfusion. Resuscitation. 1999; 40(1):27-35
    [25] Mizushima, H, Banks WA, Lohi K, et al. Effect of cardiac arrest on brain w eight and the permeability of the blood-brain and blooe-spinal core barrier to alb umin and tumor necrosis factor-α. Life Science. 1999; 65(2)):2127-2134
    [26] Hendrickx HH , Rao GR , Safar P , et al . Asphyxia cardiac arrest and resus citation in rats. Resuscitation. 1984;12 (2) : 97 - 116.
    [27]武建军,李利华,张颖丽,等.大鼠心跳骤停期间心脏和肾脏α1肾上腺素能受体的变化. [J]中华医学杂志.1996; 76(11):812. Wu JJ , Li LH , Zhang YL , et al . Change of adenoreceptor2al in heart and kidn ey during cardiac arrest in the rats. Natl Med J China. 1996; 76 (11) : 812.
    [28]马勇,孟庆义,王志忠,等.氨茶碱与肾上腺素合用在大鼠心脏停搏中的疗效. [J]中华老年心脑血管病杂志.2004; 6 (11):41- 43. Ma Y, Meng QY, Wang ZZ , et al . The efficacy of the combination of aminoph ylline with epinephrine in treatment of a rat model of asphyxial cardiac arrest. Chin J Geriatr Heart Brain Vessel Dis. 2004; 6 (1):41 - 43.
    [29]黄唯佳,李章平,陈寿权.乌司他丁对心肺脑复苏后细胞因子与脑超微结构的影响. [J]中国临床药理学与治疗学杂志. 2004; 9(9):1057 - 1060. Huang WJ , Li ZP , Chen SQ. Effect of ulinastation on cytokine and brain ultratr ucture after CPR. Chin J Clin Pharmacol Ther. 2004; 9 (19): 1057 -1060.
    [30]陈寿权,李章平,王珊珊,等.窒息法致大鼠心脏骤停模型复苏的影响因素.[J]中华急诊医学杂志. 2005;14(10):814-816
    [31] Berg RA, Otto CW, Kern KB, et al. High-dose epinephrine results in greater early mortality after resuscitation from prolonged cardiac arrest in pigs: a prospective. randomized study. Crit Care Med. 1994; 22(2); 282-290
    [32] Berg RA, Henry C, Otto CW, et al. Initial end-tidal CO2 is markedly elevated during cardiopulmonary resuscitation after asphyxial cardiac arrest. Ped Emerg Care. 1996; 12(4):245-248
    [33]刘唐威,陈蒙华,谢露,等.窒息性心跳骤停大鼠呼吸变化特点与复苏疗效的关系. [J]广西医科大学学报. 2007;24(3):329-331

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700