用户名: 密码: 验证码:
伴耳聋的桥脑延髓麻痹临床、病理、分子生物学及TDP-43蛋白表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴有耳聋的桥脑延髓麻痹,又称为Brown-Vialleto-Van Laere综合征(BVVL综合征)、延髓遗传性运动神经病Ⅰ型(Bulbar hereditary motor neuropathy typeⅠ),是一种非常罕见的运动神经元病的特殊类型。本文报告了BVVL的临床、组织病理(包括中枢神经系统、周围神经系统、肌肉及皮肤)、TDP-43等蛋白表达、与SCAs部分亚型及SBMA基因鉴别诊断的分子生物学研究。临床研究发现BVVL表现为耳聋起病、进行性面神经及第九至第十二对脑神经受累、上/下运动神经元受累为其临床三组征;中枢神经系统病理以蜗神经核为主的脑干神经核团、脊髓前角运动神经元丢失伴胶质增生及脊髓小脑束等传导束髓鞘丢失等为病理特征,周围神经改变较轻,全身骨骼肌呈神经源性肌萎缩的改变,皮肤神经纤维分布明显减少,免疫组化研究未见TDP-43、泛素、tau、α共核蛋白等核内及胞浆内阳性包涵体;基因检测未见SCAs及SBMA的异常条带的产生。伴有耳聋的桥脑延髓麻痹的研究填补了我国在这种罕见的特殊神经变性疾病在临床、病理和分子生物学等方面研究的空白,为进一步从临床、病理及分子生物学研究伴有耳聋的桥脑延髓麻痹提供了基础。
Pontobulbar palsy with deafness (MIM 211530),also called bulbar hereditary neuropathy typed I ,is a rare neurodegeneration which was first described by Brown in 1894 and subsequently by Vialetto and Van Laere in 1936 and 1966 respectively , therefore, it is also named as Brown-Vialetto-Van Laere syndrome (BVVL). The etiopathogenesis is still unknown,and genetic transmission as well as autoimmune origin has been considered. Fifty-eight cases of BVVL have been reported in the world until 2008,and half of them are sporadic.
     BVVL is commonly considered as a special subtype of motor neuron disease, characterized by sensorineural deafness followed or accompanied by progressive pontobulbar palsy,usually involving the motor component of the seven and the ninth to the twelfth cranial nerves, besides upper and lower motor neuropathy .The age of onset of the first symptom varies ranging from infancy to the third decade, but usually from late childhood to early adulthood. Several neuropathological findings revealed mainly confined to the brainstem and spinal cord,especially in the cochlear nerve nuclei,in most lower cranial nerve nuclei and in the anterior horns of the spinal cord which marked neuronal atrophy and reduction in the number of nerve cells with gliosis. Until now, there is no report about the research of immunohistology on this scare neurodegenerative disease in the world. The diagnosis of BVVL is according to the clinical manifestations and neuropathological findings.
     This paper is mainly located autopsy of a male who developed progressive bilateral sensorineural deafness followed by unsteadiness of gait, muscle atrophy, bilateral facial nerve palsy, abnormality of horizontal eye movements, bulbar palsy and external ophthalmoplegia. The research is involved of the clinical study, neuropathology (including central nervous system, peripheral nervous system, muscles and skins) and molecular biology, and the method is including histopathology, immunohistochemistry and genetic tests for SCA1, SCA3/MJD, SCA6, SCA7, SCA12, SCA17, DRPLA and Kennedy disease.
     Materials and Methods:
     The persons in this study were divided into three groups: Experiment BVVL group (Pontobulbar palsy with deafness), control neuropathological group (the patient with no abnormality in nervous system) and control genetic test group (the patients with SCAs). The autopsy was performed after the BVVL patient died after 1 hour and the person of control neuropathological group died after 10 hours , we observed the tissues of cerebrum, cerebellum, brainstem, spinal cord, sural nerve, sciatic nerve, biceps brachii muscle, quadriceps femoris, gastrocnemius muscle,and tibialis anterior muscle , extraocular muscles and diaphragmatic muscle as well as skins of upper arm, elbow, wrist, upper leg and distal leg from BVVL and cerebrum, cerebellum, brainstem, spinal cord from control neuropathological group ,which were removed at necropsy by microscopy. Monoclonal antibody was used to check for TDP-43, UBQ、AT8、NACP、NeuN、MAP2、Calbindin-D-28K、NF、GFAP by immunohistochemistry of central nervous system samples from BVVL patient. At the same time, we observed the ultrastructure of sural nerve by electron microscopy. DNA was extracted from BVVL patient’s frozen brain and from control genetic test person’s venous blood , and the products amplified by polymerase chain reaction (PCR) method were purified to test whether there exist abnormality of bands.
     Results:
     Experimental group of patient developed progressive sensorineural deafness as the initial symptom, followed by unsteadiness of gait, muscle atrophy, bilateral facial nerve palsy, abnormality of horizontal eye movements, bulbar palsy and external ophthalmoplegia, and was diagnosed of pontobulbar palsy with deafness (BVVL) according to clinical manifestations.
     Light microscopic examination revealed that the main neuropathological changes in the central nervous system of BVVL were located in the spinal cord and brain stem. In the spinal cord, severely atrophic with obvious neuronal loss and heavy gliosis were shown in the anterior horns and myelin sheathes in the anterior column and lateral column showed severe loss, especially in the spinocerebellar tract while the posterior column was intact. Mild neuronal dropout was present in the Clarke columns. In the brain stem, there was severe neuronal loss with gliosis in the dorsal cochlear nucleus, mild to moderate neuronal loss in hypoglossal nucleus and moderate neuronal loss in locus ceruleus. There was slight neuronal loss with gliosis in infra and medial vestibular nuclei. Gliosis was present in the inferior colliculus, the medulla oblongata tegmentum, dorsal nucleus of vagus nerve, pontine tegmentum and periaqueduct gray matter. In the cerebellum, mild to moderate neuronal loss with Bergmann gliosis in Purkinje cell layer was revealed. Axonal torpedoes were present in the vermis. Grumose degeneration was recognized in dentate nucleus. Besides, massive corpora amylacea was deposited in the central nervous system.
     No TDP-43-positive, ubiquitin-positive, tau-positive orα-synucleinin-pos- itive tranueronal or intracytoplasmic inclusion nor senile plaques were seen in the immunohistochemistry within the central nervous system of BVVL.
     The large diameter myelinated fibers of the sural nerves were reduced and there were no corpora amylacea in the peripheral nervous system. Heavy amyotrophy was neurogenic mainly and widespread such as in the oculorotatory muscles, biceps brachii, anterior tibial muscle, gastrocnemius, quadriceps femoris, diaphragmatic muscle and so on. The pathological find reveals that there are few fibers remaining in the skins of BVVL.
     The PCR results indicated that no mutation of SCA1, SCA3/MJD, SCA6, SCA7, SCA12, SCA17,DRPLA and Kennedy disease has occurred in BVVL gene.
     Conclusion:
     Experimental group of pontobulbar palsy with deafness (BVVL) is a forty year old male with course of disease of 22 years, whose clinical features were characteristic: progressive sensorineural deafness as the initial symptom, followed by bilateral facial nerve palsy, bulbar palsy, upper and lower motor neuropathy as well as unsteadiness of gait and abnormality of horizontal eye movements.
     The neuropathological lesions are mainly located in auditory-vestibular path, brainstem and spinal cord, including the severe neuronal loss in cochlear nuclei, anterior horn of spinal cord as well as the degeneration of spinocerebellar tracts and the change in cerebellum is slight. The pathological characteristic of auditory- vestibular path is prominent in the dorsal cochlear nuclei with slight in inferior colliculus and normal in temporal lobe .The lesions of spinal cord is heavier in the upper segment than in the lower segment. Another feature in our study is that quite a lot of corpora amylacea deposits in the central nervous system. Immun- ohistochemical analysis indicated that there are no TDP-43-positive, ubiquitin- positive, tau-positive orα-synucleinin-positive tranueronal or intracytopl- asmic inclusion in the central nervous system of BVVL which suggests that BVVL is different from ALS in pathogenesis and neuropathology though both of them belong to the motor neuron disease. In addition, corpora amylacea is ubiquitin- positive, tau-positive andα-synucleinin-positive but TDP - 43 -negative.
     The lesions of peripheral nervous system is quite slight. And all the muscles including the limbs,trunk and face are severe neurogenic atrophy. The pathological study of skins reveals that BVVL induce the small fiber sensory neuropathy.
     Genetic tests show that BVVL is different from SCA1, SCA3/MJD, SCA6, SCA7, SCA12,SCA17,DRPLA and Kennedy disease though they are overlapped in clinical manifestations.
     Characteristic and innovation of this study:
     There are some studies about BVVL correlated neuropathology, but they are limited to the research of histology, whereas, this study is characterized by:
     (1)First reporting about BVVL patients on immunohistochemistry of TDP-43,UBQ,AT8,NACP,NeuN,MAP2,Calbindin-D-28K,NF and GFAP,and indicating that BVVL is different from the neurodegenerative diseases such as ALS,SBMA,α-synucleinopathy,tauopathy,MSA and so on .
     (2)First obtaining the data of BVVL patient’s skin from autopsy and proving that BVVL can induce Small-fiber neuropathy though the patient had no manifestation of sensory disturbance .
     (3)First finding BVVL patient with quite a lot of corpora amylacea depositing in the central nervous system .
     (4)First studying in Asia on clinical and neuropathological features of BVVL and indicating that the degeneration including cochlear nuclei, anterior horns and spinocerebellar tract of spinal cord results in the deafness, neurogenic amyotrophy and gait ataxia clinically.
     (5)First studying in Asia on gene tests of BVVL and indicating that there is no genetic mutation of SCA1、SCA2、SCA3/MJD、SCA6、SCA7、SCA12、SCA17、DRPLA and SBMA, which manifests that BVVL is the different molecular biological entity from the above diseases.
引文
[1] De Grandis D, Passadore P, Chinaglia M, Brazzo F, Ravenni R, Cudia P. Clinical features and neurophysiological follow-up in a case of brown- vialetto-van laere syndrome. Neuromuscul Disord. 2005;15:565-568.
    [2] Brown CH. Infantile amyotrophic lateral sclerosis of the family type. J Nerv Mental Dis. 1894;21:707-716.
    [3] Vialetto E. Contributo alla forma ereditaria della paralisi bulbare progre-ss ive. Riv Sper Freniat. 1936;40:1-24.
    [4] Van Laere J. [familial progressive chronic bulbo-pontine paralysis with deafness. A case of klippel-trenaunay syndrome in siblings of the same family. Diagnostic and genetic problems]. Rev Neurol (Paris). 1966;115:289-295.
    [5] Sathasivam S. Brown-vialetto-van laere syndrome. Orphanet J Rare Dis. 2008;3:9.
    [6] Miao J, Li H, Lin H, Su C, Liu Y, Lei G, Yang T, Li Z. Severe sleep-disordered breathing in a patient with brown-vialetto-van laere syndrome: Polysomnographic findings. J Neurol Sci. 2007;263:214-217.
    [7] Nemoto H, Konno S, Nomoto N, Wakata N, Kurihara T. [a case of brown-vialetto-van laere (bvvl) syndrome in japan]. Rinsho Shinkeigaku. 2005;45:357-361.
    [8] RamachandranNair R, Parameswaran M, Girija AS. Vialetto-van laere syndrome in two sisters born to consanguineous parents. Pediatr Neurol. 2004; 30: 354-355.
    [9] Megarbane A, Desguerres I, Rizkallah E, Delague V, Nabbout R, Barois A, Urtizberea A. Brown-vialetto-van laere syndrome in a large inbred lebanese family: Confirmation of autosomal recessive inheritance? Am J Med Genet. 2000;92:117-121.
    [10] Malheiros JA, Camargos ST, Oliveira JT, Cardoso FE. A brazilian family with brown-vialetto-van laere syndrome with autosomal recessive inheritance. Arq Neuropsiquiatr. 2007;65:32-35.
    [11] Hawkins SA , Nevin NC , Harding AE. Pontobulbar palsy and neurosensory deafness (brown-vialetto-van laere syndrome) with possible autoso- mal dominant inheritance. J Med Genet. 1990;27:176-179.
    [12] Gallai V, Hockaday JM, Hughes JT, Lane DJ, Oppenheimer DR, Rushworth G. Ponto-bulbar palsy with deafness (brown-vialetto-van laere syndrome). J Neurol Sci. 1981;50:259-275.
    [13] Lombaert A, Dom R, Carton H, Bruchler JM. Progressive ponto-bulbar palsy with deafness. A clinico-pathological study. Acta Neurol Belg. 1976;76: 309-314.
    [14] Dipti S, Childs AM, Livingston JH, Aggarwal AK, Miller M, Williams C, Crow YJ. Brown-vialetto-van laere syndrome; variability in age at onset and disease progression highlighting the phenotypic overlap with fazio-londe disease. Brain Dev. 2005;27:443-446.
    [15] Orrell RW, Habgood JJ, de Belleroche JS, Lane RJ. The relationship of spinal muscular atrophy to motor neuron disease: Investigation of smn and naip gene deletions in sporadic and familial als. J Neurol Sci. 1997;145:55-61.
    [16] Sztajzel R, Kohler A, Reichart M, Djientcheu VP, Chofflon M, Magistris MR. [brown-vialetto-van laere syndrome: A case with anti-ganglioside gm1 antibodies and literature review]. Rev Neurol (Paris). 1998;154:51-54.
    [17] Summers BA, Swash M, Schwartz MS, Ingram DA. Juvenile-onset bulbospinal muscular atrophy with deafness: Vialetta-van laere syndrome or madras-type motor neuron disease? J Neurol. 1987;234:440-442.
    [18] Abarbanel JM, Ashby P, Marquez-Julio A, Chapman KR. Bulbo-pontineparalysis with deafness: The vialetto-van laere syndrome. Can J Neurol Sci. 1991;18:349-351.
    [19] Aydin OF, Ozcelikel D, Senbil N, Gurer YK. Brown-vialetto-van laere syndrome; the first turkish case. Acta Neurol Belg. 2004;104:111-113.
    [20] Voudris KA, Skardoutsou A, Vagiakou EA. Infantile progressive bulbar palsy with deafness. Brain Dev. 2002;24:732-735.
    [21] Sathasivam S, O'Sullivan S, Nicolson A, Tilley PJ, Shaw PJ. Brown-vialetto-van laere syndrome: Case report and literature review. Amyot- roph Lateral Scler Other Motor Neuron Disord. 2000;1:277-281.
    [22] Descatha A, Goddet S, Aboab J, Allary J, Gergereau A, Baer M, Fletcher D. Cardiac arrest in a patient with brown-vialetto-van laere syndrome. Amyotroph Lateral Scler. 2006;7:187-188.
    [23] Piccolo G, Marchioni E, Maurelli M, Simonetti F, Bizzetti F, Savoldi F. Recovery from respiratory muscle failure in a sporadic case of brown- vialetto-van laere syndrome with unusually late onset. J Neurol. 1992;239:355- 356.
    [24] Arnould G, Tridon P, Laxenaire M, Picard L, Weber M, Brichet B. [chronic progressive bulbo-pontine paralysis with deafness: A case of fio-londe syndrome]. Rev Otoneur- oophtalmol. 1968;40:158-161.
    [25] Francis DA, Ponsford JR, Wiles CM, Thomas PK, Duchen LW. Brown-vialetto-van laere syndrome. Neuropathol Appl Neurobiol. 1993; 19:91- 94.
    [26] Alberca R, Montero C, Ibanez A, Segura DI, Miranda-Nieves G. Progressive bulbar paralysis associated with neural deafness. A nosological entity. Arch Neurol. 1980;37:214-216.
    [27] Koc AF, Bozdemir H, Sarica Y. Mental retardation associated with brown-vialetto-van laere syndrome. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4:52-53.
    [28] Brucher JM, Dom R, Lombaert A, Carton H. Progressive pontobulbar palsy with deafness: Clinical and pathological study of two cases. Arch Neurol. 1981;38:186-190.
    [29] Introini S, Sasso GM, Moioli G, Morandini WL. [case report brown- vialetto-van laere syndrome]. Minerva Anestesiol. 2003;69:75-79.
    [30] Perticoni GF, Cantisani TA, Fisher H. Progressive bulbar paralysis in childhood: A case report. Ital J Neurol Sci. 1983;4:107-111.
    [31] Koul R, Jain R, Chacko A, Alfutaisi A, Hashim J, Chacko J. Pontobulbar palsy and neurosensory deafness (brown-vialetto-van laere syndro- me) with hyperintense brainstem nuclei on magnetic resonance imaging: New finding in three siblings. J Child Neurol. 2006;21:523-525.
    [32] McShane MA, Boyd S, Harding B, Brett EM, Wilson J. Progressive bulbar paralysis of childhood. A reappraisal of fazio-londe disease. Brain. 1992;115 ( Pt 6):1889-1900.
    [33] Forman MS, Trojanowski JQ, Lee VM. Tdp-43: A novel neurod- egenerative proteinopathy. Curr Opin Neurobiol. 2007;17:548-555.
    [34] Kennedy WR, Alter M, Sung JH. Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-linked recessive trait. Neurology. 1968;18:671-680.
    [35] Duenas AM, Goold R, Giunti P. Molecular pathogenesis of spinoc- erebellar ataxias. Brain. 2006;129:1357-1370.
    [36] Cremers CW, Ter Haar BG, Van Rens TJ. The nathalie syndrome. A new hereditary syndrome. Clin Genet. 1975;8:330-340.
    [37] Boltshauser E, Lang W, Spillmann T, Hof E. Hereditary distal muscular atrophy with vocal cord paralysis and sensorineural hearing loss: A dominant form of spinal muscular atrophy? J Med Genet. 1989;26:105-108.
    [38] Meenakshisundaram E, Jagannathan K, Ramamurthi B. Clinical pattern ofmotor neuron disease seen in younger age groups in madras. Neurol India. 1970;18:Suppl 1:109-112.
    [39] Schols L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: Clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291-304.
    [40] Cagnoli C, Mariotti C, Taroni F, Seri M, Brussino A, Michielotto C, Grisoli M, Di Bella D, Migone N, Gellera C, Di Donato S, Brusco A. Sca28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain. 2006;129:235-242.
    [41] Tang B, Liu C, Shen L, Dai H, Pan Q, Jing L, Ouyang S, Xia J. Frequency of sca1, sca2, sca3/mjd, sca6, sca7, and drpla cag trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from chinese kindreds. Arch Neurol. 2000;57:540-544.
    [42] Sasaki H, Yabe I, Tashiro K. The hereditary spinocerebellar ataxias in japan. Cytogenet Genome Res. 2003;100:198-205.
    [43] Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, Stevanin G, Durr A, Zuhlke C, Burk K, Clark HB, Brice A, Rothstein JD, Schut LJ, Day JW, Ranum LP. Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet. 2006;38:184-190.
    [44] Di Donato S. The complex clinical and genetic classification of inherited ataxias. I. Dominant ataxias. Ital J Neurol Sci. 1998;19:335-343.
    [45] Furtado S, Das S, Suchowersky O. A review of the inherited ataxias: Recent advances in genetic , clinical and neuropathologic aspects. Parkinsonism Relat Disord. 1998;4:161-169.
    [46] Kim BC, Kim MK, Cho KH, Jeon BS. Spinocerebellar ataxia type 7 without retinal degeneration: A case report. J Korean Med Sci. 2002;17:577-579.
    [47] Klockgether T, Wullner U, Spauschus A, Evert B. The molecular biology of the autosomal-dominant cerebellar ataxias. Mov Disord. 2000;15: 604- 612.
    [48] Holmes SE, O'Hearn E, Margolis RL. Why is sca12 different from other scas? Cytogenet Genome Res. 2003;100:189-197.
    [49] Herman-Bert A, Stevanin G, Netter JC, Rascol O, Brassat D, Calvas P, Camuzat A, Yuan Q, Schalling M, Durr A, Brice A. Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3-q13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation. Am J Hum Genet. 2000;67:229-235.
    [50] Waters MF, Minassian NA, Stevanin G, Figueroa KP, Bannister JP, Nolte D, Mock AF, Evidente VG, Fee DB, Muller U, Durr A, Brice A, Papazian DM, Pulst SM. Mutations in voltage-gated potassium channel kcnc3 cause degenerative and developmental central nervous system phenotypes. Nat Genet. 2006;38:447-451.
    [51] Alonso I, Costa C, Gomes A, Ferro A, Seixas AI, Silva S, Cruz VT, Coutinho P, Sequeiros J, Silveira I. A novel h101q mutation causes pkcgamma loss in spinocerebellar ataxia type 14. J Hum Genet. 2005;50:523-529.
    [52] Yamashita I, Sasaki H, Yabe I, Fukazawa T, Nogoshi S, Komeichi K, Takada A, Shiraishi K, Takiyama Y, Nishizawa M, Kaneko J, Tanaka H, Tsuji S, Tashiro K. A novel locus for dominant cerebellar ataxia (sca14) maps to a 10.2-cm interval flanked by d19s206 and d19s605 on chromosome 19q13.4-qter. Ann Neurol. 2000;48:156-163.
    [53] Lasek K, Lencer R, Gaser C, Hagenah J, Walter U, Wolters A, Kock N, Steinlechner S, Nagel M, Zuhlke C, Nitschke MF, Brockmann K, Klein C, Rolfs A, Binkofski F. Morphological basis for the spectrumof clinical deficits in spinocerebellar ataxia 17 (sca17). Brain. 2006;129:2341-2352.
    [54] Koskinen M, Hietaharju A, Kylaniemi M, Peltola J, Rantala I, Udd B , Haapasalo H. A quantitative method for the assessment of intraepidermal nerve fibers in small-fiber neuropathy. J Neurol. 2005;252:789-794.
    [55] Orr HT, Chung MY, Banfi S, Kwiatkowski TJ, Jr., Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY. Expansion of an unstable trinucleotide cag repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4:221- 226.
    [56] Malandrini A, Galli L, Villanova M, Palmeri S, Parrotta E, DeFalco D, Cappelli M, Grieco GS, Renieri A, Guazzi G. Cag repeat expansion in an italian family with spinocerebellar ataxia type 2 (sca2): A clinical and genetic study. Eur Neurol. 1998;40:164-168.
    [57] Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Kataya- ma S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, et al. Cag expansi- ons in a novel gene for machado-joseph disease at chromosome 14q32.1. Nat Genet. 1994;8:221-228.
    [58] Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC. Autosomal dominant cerebellar ataxia (sca6) associated with small polyglutamine expansions in the alpha 1a-voltage-dependent calcium channel. Nat Genet. 1997;15:62-69.
    [59] David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel JL, Brice A. Cloning of the sca7 gene reveals a highly unstable cag repeat expansion.Nat Genet. 1997;17:65-70.
    [60] Andres AM, Lao O, Soldevila M, Calafell F, Bertranpetit J. Dynamics of cag repeat loci revealed by the analysis of their variability. Hum Mutat. 2003;21:61-70.
    [61] Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, Schols L, Riess O. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (sca17). Ann Neurol. 2003;54:367-375.
    [62] Yoshii F, Tomiyasu H, Shinohara Y. Fluid attenuation inversion recovery (flair) images of dentatorubropallidoluysian atrophy: Case report. J Neurol Neurosurg Psychiatry. 1998;65:396-399.
    [63] La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in x-linked spinal and bulbar muscular atrophy. Nature. 1991;352:77-79.
    [64] Lelong M, I. Bertrand and J.Lereboullet. Affection degenerative systé- matisée des protoneurones moteurs et sensitivo-sensoriels stimulant la sclérose amyotrophique. Soc Pédiat Paris. 1939;37:424-426.
    [65] Lelong M, I. Bertrand and J.Lereboullet. Affection degenerative syst-ématisée des protoneurones moteurs et sensitivo-sensoriels. Rev Neurol (Paris). 1941;73:309- 314.
    [66] Rosemberg S, Lancellotti CL, Arita F, Campos C, de Castro NP, Jr. Progressive bulbar paralysis of childhood (fazio-londe disease) with deafness. Case report with clinicopathologic correlation. Eur Neurol. 1982;21:84-89.
    [67] Hoyaux D, Decaestecker C, Heizmann CW, Vogl T, Schafer BW, Salmon I, Kiss R, Pochet R. S100 proteins in corpora amylacea from normal human brain. Brain Res. 2000;867:280-288.
    [68] Cavanagh JB. Corpora-amylacea and the family of polyglucosan diseases. Brain Res Brain Res Rev. 1999;29:265-295.
    [69] Ou SH, Wu F, Harrich D, Garcia-Martinez LF, Gaynor RB. Cloning and characterization of a novel cellular protein, tdp-43, that binds to human immunodeficiency virus type 1 tar DNA sequence motifs. J Virol. 1995; 69:3584- 3596.
    [70] Buratti E, Dork T, Zuccato E, Pagani F, Romano M, Baralle FE. Nuclear factor tdp-43 and sr proteins promote in vitro and in vivo cftr exon 9 skipping. Embo J. 2001;20:1774-1784.
    [71] Mercado PA, Ayala YM, Romano M, Buratti E, Baralle FE. Depletion of tdp 43 overrides the need for exonic and intronic splicing enhancers in the human apoa-ii gene. Nucleic Acids Res. 2005;33:6000-6010.
    [72] Ayala YM, Pantano S, D'Ambrogio A, Buratti E, Brindisi A, Marchetti C, Romano M, Baralle FE. Human, drosophila, and c.Elegans tdp43: Nucleic acid binding properties and splicing regulatory function. J Mol Biol. 2005;348: 575-588.
    [73] Wang HY, Wang IF, Bose J, Shen CK. Structural diversity and functi- onal implications of the eukaryotic tdp gene family. Genomics. 2004;83: 130- 139.
    [74] Buratti E, Brindisi A, Giombi M, Tisminetzky S, Ayala YM, Baralle FE. Tdp-43 binds heterogeneous nuclear ribonucleoprotein a/b through its c-terminal tail: An important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem. 2005;280:37572-37584.
    [75] Acharya KK, Govind CK, Shore AN, Stoler MH, Reddi PP. Cis- requirement for the maintenance of round spermatid-specific transcription. Dev Biol. 2006;295:781-790.
    [76] Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskeyLF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM. Ubiquitinated tdp-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130-133.
    [77] Snowden JS, Neary D, Mann DM. Frontotemporal dementia. Br J Psychiatry. 2002;180:140-143.
    [78] Pickering-Brown SM. The complex aetiology of frontotemporal lobar degeneration. Exp Neurol. 2007;206:1-10.
    [79] Cairns NJ, Neumann M, Bigio EH, Holm IE, Troost D, Hatanpaa KJ, Foong C, White CL, 3rd, Schneider JA, Kretzschmar HA, Carter D, Taylor- Reinwald L, Paulsmeyer K, Strider J, Gitcho M, Goate AM, Morris JC, Mishra M, Kwong LK, Stieber A, Xu Y, Forman MS, Trojanowski JQ, Lee VM, Mackenzie IR. Tdp-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol. 2007;171:227-240.
    [80] Lomen-Hoerth C, Anderson T, Miller B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology. 2002;59:1077-1079.
    [81] Murphy J, Henry R, Lomen-Hoerth C. Establishing subtypes of the continuum of frontal lobe impairment in amyotrophic lateral sclerosis. Arch Neurol. 2007;64:330-334.
    [82] Murphy JM, Henry RG, Langmore S, Kramer JH, Miller BL, Lomen-Hoerth C. Continuum of frontal lobe impairment in amyotrophic lateral sclerosis. Arch Neurol. 2007;64:530-534.
    [83]Kumar-Singh S, Van Broeckhoven C. Frontotemporal lobar degene- ration: Current concepts in the light of recent advances. Brain Pathol. 2007;17: 104-114.
    [84] Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: Insights from genetics. Nat Rev Neurosci. 2006;7:710-723.
    [85] Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y, Oda T. Tdp-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351: 602-611.
    [86] Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ, Kwong LK, Forman MS, Ravits J, Stewart H, Eisen A, McClusky L, Kretzschmar HA, Monoranu CM, Highley JR, Kirby J, Siddique T, Shaw PJ, Lee VM, Trojanowski JQ. Pathological tdp-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with sod1 mutations. Ann Neurol. 2007;61:427-434.
    [87] Davidson Y, Kelley T, Mackenzie IR, Pickering-Brown S, Du Plessis D, Neary D, Snowden JS, Mann DM. Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the tar DNA-binding protein, tdp-43. Acta Neuropathol. 2007;113:521-533.
    [88] Wang IF, Reddy NM, Shen CK. Higher order arrangement of the eukaryotic nuclear bodies. Proc Natl Acad Sci U S A. 2002;99:13583-13588.
    [89] Wang IF, Wu LS, Chang HY, Shen CK. Tdp-43, the signature protein of ftld-u , is a neuronal activity-responsive factor. J Neurochem. 2008;105:797-806.
    [90] Igaz LM, Kwong LK, Xu Y, Truax AC, Uryu K, Neumann M, Clark CM, Elman LB, Miller BL, Grossman M, McCluskey LF, Trojanowski JQ, Lee VM. Enrichment of c-terminal fragments in tar DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinalcord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Am J Pathol. 2008;173:182-194.
    [91] Winton MJ, Igaz LM, Wong MM, Kwong LK, Trojanowski JQ, Lee VM. Disturbance of nuclear and cytoplasmic tar DNA-binding protein (tdp-43) induces disease-like redistribution, sequestration, and aggregate formation. J Biol Chem. 2008;283:13302-13309.
    [92] Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P. Stress granule assembly is mediated by prion-like aggregation of tia-1. Mol Biol Cell. 2004;15:5383-5398.
    [93] Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R , Graff-Radford NR , Hutton ML , Dickson DW. Tdp-43 immunoreactivity in hippocampal sclerosis and alzheimer's disease. Ann Neurol. 2007;61:435-445.
    [94] Uryu K, Nakashima-Yasuda H, Forman MS, Kwong LK, Clark CM, Grossman M, Miller BL, Kretzschmar HA, Lee VM, Trojanowski JQ, Neumann M. Concomitant tar-DNA-binding protein 43 pathology is present in alzheimer disease and corticobasal degeneration but not in other tauopathies. J Neuropathol Exp Neurol. 2008;67:555-564.
    [95] Higashi S, Iseki E, Yamamoto R, Minegishi M, Hino H, Fujisawa K, Togo T, Katsuse O, Uchikado H, Furukawa Y, Kosaka K, Arai H. Concurrence of tdp-43, tau and alpha-synuclein pathology in brains of alzheimer's disease and dementia with lewy bodies. Brain Res. 2007;1184:284-294.
    [96] Nakashima-Yasuda H, Uryu K, Robinson J, Xie SX, Hurtig H, Duda JE, Arnold SE, Siderowf A, Grossman M, Leverenz JB, Woltjer R, Lopez OL, Hamilton R, Tsuang DW, Galasko D, Masliah E, Kaye J, Clark CM, Montine TJ, Lee VM, Trojanowski JQ. Co-morbidity oftdp-43 proteinopathy in lewy body related diseases. Acta Neuropathol. 2007;114:221-229.
    [97] Hasegawa M, Arai T, Akiyama H, Nonaka T, Mori H, Hashimoto T , Yamazaki M , Oyanagi K. Tdp-43 is deposited in the guam parkinsonism- dementia complex brains. Brain. 2007;130:1386-1394.
    [98] Geser F, Winton MJ, Kwong LK, Xu Y, Xie SX, Igaz LM, Garruto RM, Perl DP, Galasko D, Lee VM, Trojanowski JQ. Pathological tdp-43 in parkins- onismdementia complex and amyotrophic lateral sclerosis of guam. Acta Neuropathol. 2008;115:133-145.
    [99] Probst A, Taylor KI, Tolnay M. Hippocampal sclerosis dementia: A reappraisal. Acta Neuropathol. 2007;114:335-345.
    [100]Forman MS, Trojanowski JQ, Lee VM. Neurodegenerative diseases: A decade of discoveries paves the way for therapeutic breakthroughs. Nat Med. 2004;10:1055-1063.
    [101]Periquet MI, Novak V, Collins MP, Nagaraja HN, Erdem S, Nash SM, Freimer ML, Sahenk Z, Kissel JT, Mendell JR. Painful sensory neuropathy: Prospective evaluation using skin biopsy. Neurology. 1999;53:1641-1647.
    [102]Lacomis D. Small-fiber neuropathy. Muscle Nerve. 2002;26:173-188.
    [103]Gorson KC, Ropper AH. Idiopathic distal small fiber neuropathy. Acta Neurol Scand. 1995;92:376-382.
    [104]Lee JE, Shun CT, Hsieh SC, Hsieh ST. Skin denervation in vasculitic neuropathy. Arch Neurol. 2005;62:1570-1573.
    [105]Satoh JI, Kuroda Y. Ubiquitin c-terminal hydrolase-l1 (pgp9.5) expre- ssion in human neural cell lines following induction of neuronal different- iation and exposure to cytokines, neurotrophic factors or heat stress. Neuropathol Appl Neurobiol. 2001;27:95-104.
    [106]McArthur JC, Stocks EA, Hauer P, Cornblath DR, Griffin JW. Epider- mal nerve fiber density: Normative reference range and diagnostic efficie- ncy. Arch Neurol. 1998;55: 1513- 1520.
    [107]Tomlinson BE, Walton JN. Superficial haemosiderosis of the central nervous system. J Neurol Neurosurg Psychiatry. 1964;27:332-339.
    [108]Fearnley JM, Stevens JM, Rudge P. Superficial siderosis of the central nervous system. Brain. 1995;118 ( Pt 4):1051-1066.
    [109]Turner B, Wills AJ. Superficial siderosis associated with anterior horn cell dysfunction. J Neurol Neurosurg Psychiatry. 2002;72:274-275.
    [110]Bracchi M, Savoiardo M, Triulzi F, Daniele D, Grisoli M, Bradac GB, Agostinis C, Pelucchetti D, Scotti G. Superficial siderosis of the cns: Mr diagnosis and clinical findings. AJNR Am J Neuroradiol. 1993;14:227-236.
    [111]Kumar A, Aggarwal S, Willinsky R, TerBrugge KG. Posterior fossa surgery: An unusual cause of superficial siderosis. Neurosurgery. 1993;32:455- 457; discussion 457.
    [112]Leussink VI, Flachenecker P, Brechtelsbauer D, Bendszus M, Sliwka U, Gold R, Becker G. Superficial siderosis of the central nervous system: Pathogenetic heterogeneity and therapeutic approaches. Acta Neurol Scand. 2003;107:54-61.
    [113]Mascalchi M, Salvi F, Pirini MG, D'Errico A, Ferlini A, Lolli F, Plasmati R, Tessa C, Villari N, Tassinari CA. Transthyretin amyloidosis and superficial siderosis of the cns. Neurology. 1999;53:1498-1503.
    [114]Gourie-Devi M, Suresh TG. Madras pattern of motor neuron disease in south india. J Neurol Neurosurg Psychiatry. 1988;51:773-777.
    [115]Nalini A, Yamini BK, Gayatri N, Thennarasu K, Gope R. Familial madras motor neuron disease (fmmnd): Study of 15 families from southernindia. J Neurol Sci. 2006;250:140-146.
    [116]Shankar SK, Gourie-Devi M, Shankar L, Yasha TC, Santosh V, Das S. Pathology of madras type of motor neuron disease (mmnd)--a histological and immunohistochemical study. Acta Neuropathol. 2000;99:428-434.
    [117]Robitaille Y, Carpenter S, Karpati G, DiMauro SD. A distinct form of adult polyglucosan body disease with massive involvement of central and peripheral neuronal processes and astrocytes: A report of four cases and a review of the occurrence of polyglucosan bodies in other conditions such as lafora's disease and normal ageing. Brain. 1980;103:315-336.
    [118]Klein CJ, Boes CJ, Chapin JE, Lynch CD, Campeau NG, Dyck PJ, Dyck PJ. Adult polyglucosan body disease: Case description of an expanding genetic and clinical syndrome. Muscle Nerve. 2004;29:323-328.
    [119]Gray F, Gherardi R, Marshall A, Janota I, Poirier J. Adult polyglucosan body disease (apbd). J Neuropathol Exp Neurol. 1988;47:459-474.
    [120]Lossos A, Barash V, Soffer D, Argov Z, Gomori M, Ben-Nariah Z, Abramsky O, Steiner I. Hereditary branching enzyme dysfunction in adult polyglucosan body disease: A possible metabolic cause in two patients. Ann Neurol. 1991;30:655-662.
    [121]McDonald TD, Faust PL, Bruno C, DiMauro S, Goldman JE. Polyglucosan body disease simulating amyotrophic lateral sclerosis. Neurology. 1993;43:785-790.
    [122]Cafferty MS, Lovelace RE, Hays AP, Servidei S, Dimauro S, Rowland LP. Polyglucosan body disease. Muscle Nerve. 1991;14:102-107.
    [123]Peress NS , DiMauro S , Roxburgh VA. Adult polysaccharidosis. Clinicopathological, ultrastructural, and biochemical features. Arch Neurol. 1979;36:840-845.
    [124]Klein CM, Bosch EP, Dyck PJ. Probable adult polyglucosan body disease. Mayo Clin Proc. 2000;75:1327-1331.
    [125]Oyanagi K, Ohama E, Ikuta F. The auditory system in methyl mercurial intoxication: A neuropathological investigation on 14 autopsy cases in niigata, japan. Acta Neuropathol. 1989;77:561-568.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700