用户名: 密码: 验证码:
水稻介导的害虫互作及相关水稻基因OsRLK突变体获得
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植食性昆虫取食植物后,使受害植物释放一些在质和(或)量上与健康植株不同的挥发性化合物,这些化合物会对昆虫自身、其它植食性昆虫等产生影响。另外,植物细胞能通过类受体蛋白激酶感受生物和非生物因子的刺激,并通过细胞膜将胞外的信号传导到胞内,从而激活胞内下游的防御基因,使植物具有防御功能。本研究的主要结果如下:
     1.利用顶空动态吸附法对健康稻株、二化螟和稻纵卷叶螟取食为害24小时的水稻挥发物进行捕集。结果表明,在2种虫害苗和健康苗中,共捕集到28种挥发物组分,其中定性的16种,包括萜类化合物9种,烷烃类化合物4种,酮类、醇类、酯类化合物各1种。从健康稻株中共捕集到22种挥发物,已鉴定出的化合物有2-庚酮、α-蒎烯、柠檬烯、芳樟醇、α-古巴烯、正十四烷、姜烯、α-雪松烯、雪松醇、正十七烷、正十八烷和正十九烷共12种化合物。在二化螟幼虫取食诱导的水稻挥发物中共捕集到26种挥发物,鉴定出的化合物有α-蒎烯,柠檬烯,α-古巴烯,α-雪松烯,芳樟醇氧化物,芳樟醇,雪松烯和姜烯等萜类化合物8种,其他有2-庚醇,2-庚酮,正十七烷,正十八烷,正十九烷和正十四烷。在稻纵卷叶螟幼虫取食为害苗中共捕集到26种挥发物,其中鉴定的化合物有萜类化合物9种,分别为α-蒎烯,柠檬烯,α-古巴烯,β-石竹烯,α-雪松烯,芳樟醇氧化物,芳樟醇,雪松醇和姜烯;其它化合物7种,分别为2-庚酮,2-庚醇,水杨酸甲酯,正十七烷,正十八烷,正十九烷和正十四烷。
     2.利用EAG技术测定了二化螟雄虫和稻纵卷叶螟雌、雄虫对水稻挥发物的电生理反应。结果表明,二化螟雄虫除正十四烷以外,对2-庚醇、正十八烷、正十九烷、柠檬烯、芳樟醇和2-庚酮6种化合物反应值均随样品浓度的增加而增大。二化螟雄虫对上述7种化合物的阈值为1ng/μl。稻纵卷叶螟雌蛾除正十八烷和正十九烷外,其对2-庚醇、正十四烷、柠檬烯、芳樟醇和2-庚酮5种化合物反应值均随样品浓度的增加而增大。稻纵卷叶螟雄蛾除正十八烷和柠檬烯外,其对2-庚醇、正十四烷、芳樟醇和2-庚酮4种化合物反应值均随样品浓度的增加而增大。稻纵卷叶螟雌、雄蛾的EAG反应值比较发现,除芳樟醇和正十八烷对其雌、雄蛾触角EAG反应值差异不显著,2-庚醇、正十四烷、2-庚酮和柠檬烯均使雌蛾的EAG值发生值显著比雄蛾大。尤其对柠檬烯的浓度剂量表现更为明显,当柠檬烯浓度低于0.001ng/μl时,对雄虫影响较大,当浓度大于0.1ng/μl时反而对其雌虫影响较大。
     3.二化螟取食为害稻株对灰飞虱生长发育的影响。田间调查发现二化螟为害苗上的灰飞虱数量极显著地比健康苗上的灰飞虱数量多。室内研究表明,二化螟为害稻株上的灰飞虱若虫的生长历期显著比健康稻株上的生长历期短,同时雌成虫寿命显著比雄虫寿命长,对翅型分化、性比及产卵前期无显著影响,而为害苗上灰飞虱的产卵量显著比健康苗上的多。在受害株上的灰飞虱若虫最喜食二化螟的取食部位的茎秆。雌成虫选择性试验表明,灰飞虱比较显著偏向受害株。从二化螟为害株和健康株中共检测到17种游离氨基酸,比较二化螟为害9天的稻株与健康稻株中游离氨基酸,发现苏氨酸含量在受害株中有所下降,而天冬氨酸、丝氨酸、甘氨酸、异亮氨酸、亮氨酸和苯丙氨酸的含量在受害株中显著增多,谷氨酸、丙氨酸、半胱氨酸、缬氨酸、甲硫氨酸、酪氨酸、赖氨酸、组氨酸、精氨酸和脯氨酸含量变化不显著。
     4.通过RT-PCR的方法,从二化螟取食后的水稻中分离出OsRLK基因,经测序和Blastn、Blastp比较分析,确定所克隆的基因为OsRLK。将该基因和表达载体连接后经一系列连接转化后,获得了过量表达载体,利用农杆菌介导法将该基因成功转入到水稻中,并获得了含有OsRLK的过量表达转基因植株。
After being fed by phytophagous insects, the damaged plants can produce and release the volatile compounds which are different qualitatively or/and quantatively from the healthy plants, and the compounds can affect the phytophagous insects themselves and others. In addition, plant cells can feel the stimulation of the biotic and abiotic factors through receptor-like protein kinase and conduct the signal from extracellular to intracellular through the cellar membrane, which can activate the defense genes of intracellular downstream and make the plants get the defense function. The main results as following:
     1.Using the dynamic techniques for headspace desorption, the rice volatiles from the healthy plants and damaged plants were trapped after damaged by Chilo suppressalis and Cnaphalocrocis medinalis for 24h. The results showed that 28 kinds of volatiles compounds were trapped from the damaged and healthy seedlings, and 16 kinds of volatile compounds were qualitatively determined including 9 terpenoid, 4 alkanes, 1 ketones, 1 alcohols and 1 esters. 22 volatiles were trapped from the healthy seedlings, and 2-heptanone,α-pinene, (+)-limonene, linalool,α-copaene, n-tetradecane, zingiberene, (-)-α-cedrene, (+)-cedrol, n-heptadecane, n-octadecane and n-nonadecane were identified. 26 volatiles were trapped from the rice damaged by C. suppressalisr larvae, and terpenoidα-pinene, (+)-limonene,α-copaene, (-)-α-cedrene, (E)-linalool oxide, linalool, (+)-cedrol,zingiberene, 2-heptanone, 2-heptanonol, n-heptadecane, n-octadecane, n-nonadecane and n-tetradecane were identificated. 26 volatiles were trapped from the seedlings damaged by C. medinalis larvae, and 9 terpenoid, includingα-pinene, (+)-limonene,α-copaene,β-caryophyllene, (-)-α-cedrene, (E)-linalool oxide, linalool, (+)-cedrol and zingiberene, were identificated, and the others (2-heptanone, 2-heptanonol, MeSA, n-heptadecane, n-octadecane, n-nonadecane and n-tetradecane) were also identificated.
     2.Using EAG technology, the response of C. suppressalis male adults, and C. medinalis male and female adults to the rice volatiles from the rice seedlings was tested. The results showed that Except n-tetradecane, the response value of C. suppressalis male adult to 2-heptanonol, n-octadecane, n-nonadecane, limonene, linalool and 2-heptanone increased with increasing sample concentration. The threshold of C. suppressalis male adult to seven substance above is 1ng/μl. Except n-octadecane and n-nonadecane, the response value of C. medinalis female adult to 2-heptanonol, n-tetradecane, limonene, linalool and 2-heptanone increased with increasing sample concentration. Except n-octadecane and limonene, the response value of C. medinalis male adult to 2-heptanonol, n-tetradecane, linalool and 2-heptanone increased with increasing sample concentration. Comparing the response value of EAG between C. medinalis female adult and male adult, it was found that the EAG response value of linalool and n-octadecane to the female and male adult had no obvious difference, and 2-heptanonol, n-tetradecane,2-heptanone and limonene cause the EAG response value of female adult significantly greater than that of male adult. Especially the dose of limonene concentration, when the limonene concentration was lower than 0.001ng/μl, it had great influence on male adult. But when limonene concentration was higher than 0.001ng/μl, it had great influence on female adult.
     3.Field investigation showed that the number of Laodelphax striatellus on the seedlings damaged by C. suppressalis was much more than that on the healthy seedlings. The growth period of L. striatellus nymph on the seedlings damaged by C. suppressalis was much shorter than that on the healthy seedlings, and the life of female adults was further longer than that of male adults, but the wing dimorphism, sex ratio and preoviposition period had no difference whereas the fecundity of L. striatellus on the damaged seedlings was much more than that on the healthy seedlings. L. striatellus nymphs on the damaged plants preferred to the stem of feeding sites of C. suppressalis. L. striatellus female adults prefered to the damaged plants. 17 free amino acids in the plants damaged by C. suppressalis and healthy plants were detected. Through the comparison of the plants damaged by C. suppressalis and the healthy plants, threonine content in damaged plants decreased somewhat, and the contents of aspartate, serine, glycine, isoleucine, leucine and phenylalanine in damaged plants significantly increased whereas the contents of glutamate, alanine, cysteine, valine, methionine, tyrosine, lysine, histidine, arginine and proline did not significantly change.
     4.Using RT-PCR, the OsRLK(receptor-like protein kinase)gene from the rice fed by C. suppressalis was isolated, and sequencing and comparative analysis of Blastn and Blastp confirmed that the cloned gene was OsRLK. By a series of connection and transformation after connecting the OsRLK with expression vector, the over expression vector was obtained. The OsRLK was transferred to rice successfully using agrobacterium-mediated transformation and the over expression of transgenic plant including the OsRLK was obtained.
引文
1钦俊德.昆虫与植物的关系—论昆虫与植物的相互作用及演化[M].北京:科学出版社, 1987, 38-83.
    2 Tumlinson J. H., Turlings T. C. J., Lewis W. J. Semiochemically mediated foraging behavior in beneficial parasitic insects[J]. Arch. Insect Biochm. Physiol. 1993, 22:385-391.
    3 Dicke M., Van Loon J. A. A. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context[J]. Entomol. Exp. Appl., 2000, 97(3):237-249.
    4刘芳,娄永根,程家安.虫害诱导的植物挥发物:植物与植食性昆虫及其天敌相互作用的进化产物[J].昆虫知识, 2003, 40(6):481-486.
    5戈峰.我国松树诱导抗虫性研究进展[J].林业科学, 1999, 39(5):119-128.
    6彭金英,黄勇平.植物防御反应的两种信号转导途径及其相互作用[J].植物生理与分子生物学学报, 2005, 31(4): 347-353.
    7 Ryan C. A. Protease inhibitors in plants: genes for improving defenses against insects and pathogens[J]. Ann. Rev. Phytopathol., 1990, 28:425-449.
    8 Wang H., Shaw Y., et. al. Clonal Variation in Foliar chemistry of aspen: Effects on gypsy moths and forest tent Caterpillars[J]. Oecologia, 1997, 111(1):99-108.
    9娄永根,程家安.植物的诱导抗虫性[J].昆虫学报, 1997, 40(3): 320-331.
    10马波,娄永根,程家安.几种生物因子对褐飞虱诱导的水稻挥发物活性的影响[J].浙江大学学报, 2004, 30(6): 589-595.
    11 Lou Y. G., Du M. H., Turlings T. C. J., et al. Exogenous application of Jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae[J]. J. Chem. Ecol., 2005, 31(9): 1985-2002.
    12 Lou Y. G., Ma B., Cheng J. A. Attraction of the parasitoid Anagrus nilaparvatae to rice volatiles induced by the rice brown plantthopper Nilaparvata lugens[J]. J. Chem. Ecol., 2005, 31(10): 2357-2371.
    13 Turlings T. C. J., Lengwiler U. B., Bernasconi M. L., et al. Timing of induced volatile emissions in maize seedlings[J]. Planta, 1998, 207: 146-152.
    14陈华才,娄永根,程家安.二化螟绒茧蜂对二化螟及其寄主植物挥发物的趋性反应[J].昆虫学报, 2002, 45(5): 617-622.
    15钦俊德,王深柱.论昆虫与植物的相互作用和进化的关系[J].昆虫学报, 2001, 44:360-365.
    16秦秋菊,高希武.昆虫取食诱导的植物防御反应[J].昆虫学报, 2005, 48(1):125-134.
    17张蓬军.植物对专性植食者的组成抗性和诱导抗性的平衡调节机制[D].浙江大学博士学位论文, 2007.
    18 ParéP. W., Tumlinson J. H. Plant volatiles as a defense against insect herbivores[J]. Plant Physiology, 1999, 121:325-331.
    19 Preston C. A., Laue G., Baldwin I. T. Plant-plant signaling:Application of trans-or cis-methyl jasmonate equivalent to sagebrush releases does not elicit direct defenses in native tobacco[J]. J. Chem. Ecol., 2004, 30:2193-2214.
    20娄永根,程家安.虫害诱导的植物挥发物:基本特性、生态学功能及释放机制[J].生态学报, 2000, 20(6):10971-1106.
    21 Turlings T. C. J., Wackers F. L, Vet L. E. M., et al. Learing of host-finding cues by Hymenopterous Parasitoids. In: Papaj D. R. and A. C. Lewis. Eds. Insect learning: Ecological and Evolutionary Persoectives[C], New York: Chapman & Hall, 1993, 51-78.
    22 Tooker J. F., De Moraes C. M. Feeding by Hessian fly [Mayetiola destructor (Say)] larvae does not induce plant indirect defences[J]. Ecological Entomology, 2007, 32:153-161.
    23杜孟浩,严兴成,娄永根,等.褐飞虱唾液中诱导水稻释放挥发物的活性组分研究[J].浙江大学学报, 2005, 31(3): 237-244.
    24娄永根,程家安,平霄飞,等.稻虱缨小蜂对褐飞虱和白背飞虱卵的识别机制[J].昆虫学报, 2002, 45(6): 770-776.
    25 Alborn H. T., Turling T. C. J., Jones T. H., et al. An elicitor of plant volatiles from beet armyworm oral secretion[J]. Science, 1997, 276(9): 945-949.
    26 Mattiacci L., Dicke M., Posthumus M. A.β-glucosidase:an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps[J]. Proc. Natl. Acad. Sci. USA, 1995, 92(6): 2036-2040.
    27 Mttiacci,L., Dicke M, Posthumus M. A. Induction of parasitoid attracting synomone in Brussels sprouts plants by feeding of Pieris brassicae larvae:role of mechanical damage and herbivore elicitor[J]. J. Chem. Ecol., 1994, 20:2229-2247.
    28 Bostock R. M. Signal crosstalk and induced resistance: straddling the line between cost and benefit[J]. Annual review of phytopathology, 2005,43:545-580.
    29杜永均,严福顺.植物挥发性次生物质在植食性昆虫!寄主植物和昆虫天敌关系中的作用机理[J].昆虫学报, 1994, 37(2):233-249.
    30杜家纬.昆虫信息素及其应用[M].北京:中国林业出版社, 1988.
    31 Mitchell E. R.,Tingle F. C., Heath R. R. Ovipostional responses of three Heliothis species(Lepidoptera:Noctuidae) to allelochemicals from cultivated and wild hostplants[J]. J. Chem. Ecol., 1990, 16(6):1817-1827.
    32 Baldwin I. T., Halitschke R., Paschold A., et al. Volatile signaling in plant-plant interactions:“Talking trees”in the genomics Era[J]. Science, 2006, 311:812-815.
    33王勇,何忠,戈峰,等.植物植食性昆虫天敌之间的化学信息联系.江西农业学报, 2008, 20(1):26-28.
    34周琼,梁广文.植物挥发性物质在蚜虫寄主定位中的作用[J].昆虫知识, 2001, 38(5):334-336.
    35 Visser J. H. Electroantennogram responses of the Colorado beetle, Lepsinotarsa decemlineata, to plant volatiles[J]. Entomol. Exp. Appl., 1979, 25:86-97.
    36 Thiery D., Visser J H. Making of host plant odour in the olfactory orientation of the Colorado potato beetle[J]. Entomol. Exp. Appl, 1986, 41:165-172.
    37 Thiery D., Visser J. H. Misleading in the Colorado potato beetle with an odour blend[J]. J. Chem. Ecol., 1987, 13:1139-1146.
    38 Nottingham S. F., Hardie J., Dawson G. W., et al. Behavioral and electrophysiological responses of aphids to host and nonhost plant volatiles[J]. J. Chem. Ecol., 1991, 17(6):1231-1242.
    39杜永均,严福顺,韩心丽,等.大豆蚜在选择寄主植物中的作用[J].昆虫学报, 1994, 37(4):385-392.
    40 Kessler A., Halitschke R. Specicity and complexity:the impact of herbivore-induced plant responses on arthropod community structure[J]. Current Opinion in Plant Biology, 2007, 10:409-414.
    41徐正浩,崔绍荣,何勇,等.植物次生代谢植物和害虫防治[J].植物保护, 2004, 30(4):8-11.
    42闫凤鸣.化学生态学[M].科学出版社, 2003.
    43李雪艳,杨勇,许维岸.植物蛋白酶抑制剂及其在植物基因工程中的应用[J].生命的化学, 2002, 22(3):270-273.
    44 Thaler J. S., Fidantsef L., Bostock R. M., Antagonism between jasmonate and salicylate-mediated plant resistance: effect of concentration and timing of elicition on defense-related protein, herbiviore, and pathogen performance in tomato[J]. J. Chem. Ecol., 2002, 28:1131-1159.
    45 Gibbs B. F., Alli I. Characterization of a purifieelα-amylase inhibitor from white kidney beans(phaseolus vulganis)[J]. Food Research International, 1998, 31:217-225.
    46路子显,常团结,朱祯.植物外源凝集素及其在植物基因工程中的应用[J].生物工程进展, 2002, 22(2):3-9.
    47程茂高,乔卿梅,原国辉.外源毒性物质及其在植物抗虫品种培育中的应用概况[J].中国生物工程杂志, 2005, 1:87-90.
    48 Broadway R. M. Are insects resistant to plant proteinase inhibitors[J]? Journal of insect Physiology, 1995, 41:107-116.
    49朱新生,朱玉贤.抗虫植物基因工程研究进展[J].植物学报, 1997, 39(3):282-288.
    50 Tscharntke T., Thiessen S., Dolch R., Boland W. Herbivory, induced resistance, and interplant signal transfer in Alnus gltinose[J]. Biochemical Systematics and Ecology, 2001, 29:1025-1047.
    51袁胜亮,李明,周国娜.浅析抗虫基因种类及抗虫原理[J].安徽农业科学, 2007, 35(31):9963-9964.
    52谢先芝.抗虫转基因植物的研究进展及前景[J].生物工程进展, 1999, 19(6):47-52.
    53赵伟春,娄永根,程家安,等.褐飞虱、白背飞虱的种内和种间效应[J].生态学报, 2001, 21(4):629-638.
    54武予清,郭予元.棉花单宁-黄酮类化合物对棉铃虫的抗性潜力[J].生态学报, 2001, 21(2):286-289.
    55陈巨莲,倪汉祥,孙京瑞.主要次生物质对麦蚜的抗性阈值及交互作用[J].植物保护学报, 2002, 29(1):7-12.
    56牛吉山.植物和小麦蛋白激酶的研究现状[J].西北植物学报, 2003, 23 (1):143-150.
    57 Lawton M. A., Yamamoto R. T. Molecular cloning of plant transcripts encoding protein kinase homologs[J]. Proc. Natl. Acad. Sci. USA, 1989, 86 (9):3140-3144.
    58 Ferreira P. C., Hemerly A. S., Villarroel R., et. al. InzéD. The Arabidopsís functional homolog of the p34cdc2 protein kinase[J]. Plant Cell, 1991, 3 (5):531-540.
    59 Walker J. C, Zhang R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica[J]. Nature, 1990, 345 (6277):743-746.
    60 Mizuno S., Osakabe Y., Maruyama K., et. al. Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana[J]. Plant Journal, 2007, 50 (5):751-766.
    61 Morillo S. A., Tax F. E. Functional analysis of receptor-like kinases in monocots and dicots[J]. Curr. Opin. Plant Biol., 2006, 9 (5):460-469.
    62 Walker J. C. Structure and function of the receptor-like protein kinases of higher plants[J]. Plant Mol. Biol., 1994, 26 (5):1599-1609.
    63刘炜,毕玉平,李臻.Ⅰ型酪蛋白激酶的研究进展[J].西北植物学报, 2008, 28 (2):425-432.
    64 Yoshimura S., Yamanouchi U., Katayose Y., et. al. Expression of Xa1, a bacterialblight-resistance gene in rice, is induced by bacterial inoculation[J]. Proc. Natl. Acad. Sci. USA, 1998, 95 (4):1663-1668.
    65 Braun D. M., Walker J. C. Plant transmembrane receptors: new pieces in the signaling puzzle[J]. Trends Biochem Sci, 1996, 21 (2):70-73.
    66 HervéC., Serres J., Dabos P., et. al. Characterization of the Arabidopsis lecRK-a genes: members of a superfamily encoding putative receptors with an extracellular domain homologous to legume lectins[J]. Plant Molecular Biology, 1999, 39 (4):671-682.
    67 Song D., Li G., Song F., et. al. Molecular characterization and expression analysis of OsBISERK1, a gene encoding a leucine-rich repeat receptor-like kinase, during disease resistance responses in rice[J]. Mol. Biol. Rep., 2008, 35 (2):275-283.
    68 Ali G. S., Prasad K. V., Day I., et. al. Ligand-dependent reduction in the membrane mobility of flagellin sensitive, an Arabidopsis receptor-like kinase[J]. Plant Cell Physiol, 2007, 48 (11):1601-1611.
    69 Kobe B., Kajava A. V. The leucine-rich repeat as a protein recognition motif[J]. Curr. Opin. Struct. Biol., 2001, 11 (6):725-732.
    70 Torii K. U. Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways[J]. Int. Rev. Cytol., 2004, 234:1-46.
    71 Shiu S. H., Karlowski W. M., Pan R., et. al. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice[J]. Plant Cell, 2004, 16(5):1220-1234.
    72路梅,徐传雨,郭卫东.植物LRR类受体蛋白激酶的研究进展[J].浙江师范大学学报, 2006, 29 (3):322-325.
    73 Wang X., Zafian P., Choudhary M., et. al. The PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteins[J]. Proc. Natl. Acad. Sci. USA, 1996, 93 (6): 2598-2602.
    74 Hu X., Reddy A. S. Cloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein[J]. Plant Mol. Biol., 1997, 34 (6):949-959.
    75 Lease K., Ingham E., Walker J. C. Challenges in understanding RLK function[J]. Curr. Opin. Plant Biol., 1998, 1 (5):388-392.
    76 He Z. H., Cheeseman I., He D., et. al. A cluster of ve cell wall-associated receptor kinase genes, Wak1-5, are expressed in specic organs of Arabidopsis[J]. Plant Mol. Biol., 1999, 39 (6):1189-1196.
    77 He Z. H., He D., Kohome B. D. Requirement for the induced expression of a cell wallassociated receptor kinase for survival during the pathogen response[J]. Plant Journal, 1998, 14 (1):55-63.
    78 Decreux A., Thomas A., Spies B., et. al. In vitro characterization of the homogalacturonan-binding domain of the wall-associated kinase WAK1 using site-directed mutagenesis [J]. Phytochemistry, 2006, 67 (11):1068-1079.
    79 Carpita N., McCann M., Griffing L. R. The plant extracellular matrix: news from the cell’s frontier[J]. Plant Cell, 1996, 8 (9):1451-1463.
    80 Chen X., Shang J., Chen D., et. al. A B-lectin receptor kinase gene conferring rice blast resistance[J]. Plant Journal, 2006, 46 (5):794-804.
    81 HervéC., Dabos P., Galaud J. P., et. al. Characterization of an Arabidopsis thaliana gene that defines a new class of putative plant receptor kinases with an extracellular lectin-like domain[J]. J. Mol. Biol., 1996, 258 (5):778-788.
    82 Navarro-Gochicoa M. T., Camut S., Timmers A. C., et. al. Characterization of four lectin-like receptor kinases expressed in roots of medicago truncatula. structure, location, regulation of expression, and potential role in the symbiosis with sinorhizobium meliloti[J]. Plant Physiol., 2003, 133(4):1893-1910.
    83 Wasano N., Ohgushi A, Ohba M. Mannose-specific lectin activity of parasporal proteins from a lepidoptera-specific Bacillus thuringiensis strain[J]. Curr. Microbiol., 2003, 46(1) 43-46.
    84 Riou C., Herve C., Pacquit V., Dabos P., et. al. Expression of an Arabidopsis lectin kinase receptor gene, lecRK-a1, is induced during senescence, wounding and in response to oligogalacturonic acids[J]. Plant Physiol. Biochem., 2002, 40(8):431-438.
    85 Becraft P. W., Stinard P. S., McCarty D. R. CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation[J]. Science, 1996, 273 (5280):1406-1409.
    86 Jin P., Guo T., Becraft P. W. The maize CR4 receptor-like kinase mediates a growth factor-like differentiation response[J]. Genesis, 2000, 27 (3):104-116.
    87 Stein J. C., Howlett B., Boyes D. C., et. al. Molecular cloning of aputative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea[J]. Proc. Natl. Acad. Sci. USA, 1991, 88 (19):8816-8820.
    88 Goring D. R., Glavin T. L., Schafer U., et. al. An S receptor kinase gene in self-compatible Brassica napus has a 1-bp deletion[J]. Plant Cell, 1993, 5:531-539.
    89 Lei H. Y, Zhou B., Hong G. F., et. al. Characterization of a S-locus-relatedreceptor-like kinase cluster in rice chromosome 4[J]. Acta Botanica Sinica, 2002, 44 (11): 1346-1350.
    90 Dunning F. M., Sun W. X., Jansen K. L., et. al. Identication and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception[J]. Plant Cell, 2007, 19:3297-3313.
    91 Gómez-Gómez L., Boller T. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis[J]. Mol. Cell, 2000, 5 (6):1003-1011.
    92 Song W. Y., Wang G. L., Chen L. L., et. al. A receptor-like protein kinase encoded by the rice desease resistance gene, Xa21[J]. Science, 1995, 270:1804-1806.
    93 Sun X., Cao Y., Yang Z., et. al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein[J]. Plant Journal. 2004, 37 (4):517-527.
    94 Zhang X. R. Leucine-rich repeat receptor-like kinases in plants[J]. Plant Mol. Biol. Rep., 1998, 16(4):301-311.
    95 Stone J. M., Walker J. C. Plant protein kinase families and signal transduction[J]. Plant physiol., 1995, 108 (2):451-457.
    96 Becraft P. W. Receptor kinases in plant development[J]. Trends in Plant Science, 1998, 3 (10):384-388.
    97 Hunter T. Protein kinases and phosphatases: The ying and yang of protein phosphorylation and signaling[J].Cell, 1995, 80 (2):225-236.
    98马媛媛,甘睿,王宁宁.植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能[J].植物生理与分子生物学学报, 2005, 31 (4): 331-339.
    99 Farkas I., Dombrádi V., Miskei M., et. al. Arabidopsis PPP family of serine/threonine phosphatases[J]. Trends in Plant Science, 2007, 12 (4):169-176.
    100孔令安,汪矛,林金星.蛋白质可逆磷酸化调节植物细胞离子跨膜运动研究进展[J].西北植物学报, 2008, 28 (7):1491-1499.
    101 Felix G., Grosskopf D. G., Regenass M., et. al. Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells[J]. Proc. Natl. Acad. Sci. USA, 1991, 88(19):8831-8834.
    102 Smith R. D., WalKer J. C. Plant protein phosphatases[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 101-125.
    103 Eckardt N. A. Brassinosteroid perception and signaling: heterodimerization and phosphorylation of receptor-like kinases BRI1 and BAK1[J]. Plant Cell, 2005,17(6):1638-1640.
    104 Wang X., Goshe M. B., Soderblom E. J., et. al. Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis brassinosteroid-insensitive1 receptor kinase[J]. Plant Cell, 2005, 17 (6):1685-1703.
    105 Horn M. A., Walker J. C. Biochemical properties of the autophosphorylation of RLK5, a receptor-like protein kinase from Arabidopsis thaliana[J]. Biochim Biophys Acta. 1994, 1208(1):65-74.
    106 Park C. J., Peng Y., Chen X., et. al. Rice XB15, a protein phosphatase 2c, negatively regulates cell death and Xa21-mediated innate immunity[J]. Plos. Biol., 2008, 6 (9):1910-1926.
    107 Wang Y. S., Pi L. Y., Chen X., et. al. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance[J]. Plant Cell, 2006, 18 (12):3635-3646.
    108 Sangho J., Amy E. T., Steven E. C. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase[J]. Plant Cell, 1999, 11:1925-1933.
    109 Song W. Y., Pi L. Y., Wang G. L., et. al. Evolution of the rice Xa21 disease resistance gene family[J]. Plant Cell, 1997, 9 (8):1279-1287.
    110 Lee S. W., Han S. W., Bartley L. E., et. al. From the academy: colloquium review. unique characteristics of Xanthomonas oryzae pv.oryzae AvrXa21 and implications for plant innate immunity[J]. Proc. Natl. Acad. Sci. USA, 2006, 103 (49):18395-18400.
    111 Ying Peng, Bartley L. E., Chen X. W., et. al. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonasoryzae pv. oryzae in rice[J]. Mol. Plant, 2008, 1 (3):446-458.
    112 Eulgem T., Somssich I. E. Networks of WRKY transcription factors in defense signaling[J]. Curr. Opin. Plant Biol., 2007, 10 (4):366-371.
    113 Robatzek S. Vesicle trafficking in plant immune responses[J]. Cellular Microbiol, 2007, 9 (1):1-8.
    114 Robatzek S., Chinchilla D., Boller T. Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis[J]. Genes Dev., 2006, 20(5): 537-542.
    115 Li X., Lin H., Zhang W., et. al. Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors[J]. Proc. Natl. Acad. Sci. USA, 2005, 102 (36):12990-12995.
    116 Chisholm S. T., Coaker G., Day B., et. al. Host-microbe interactions: shaping theevolution of the plant immune response[J]. Cell, 2006, 124(4):803-814.
    117 Gozzo F. Systemic acquired resistance in crop protection: from nature to a chemical approach[J]. J. Agric. Food Chem., 2003, 51(16):4487-4503.
    118 Bonas U, Lahaye T. Plant disease resistance triggered by pathogen-derived molecules: refined models of specific recognition[J]. Curr. Opin. Microbiol, 2002, 5 (1):44-50.
    119石军,龙美西,曲广林,等.稻瘟病菌无毒基因研究进展[J].中国生物工程杂志, 2006, 26 (12):112-116.
    120 Glazebrook J., Rogers E. E., Ausubel F. M. Use of Arabidopsis for genetic dissection of plant defense responses[J]. Annu. Rev. Genet., 1997, 31:547-569.
    121 Dodds P. N., Lawrence G. J., Catanzariti A. M., et. al. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes[J]. Proc. Natl. Acad. Sci. USA, 2006, 103 (23):8888-8893.
    122 Gozzo F. Systemic acquired resistance in crop protection: from nature to a chemical approach[J]. J. Agric. Food Chem., 2003, 51 (16):4487-4503.
    123 Chen K., Fan B., Du L., Chen Z. Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis[J]. Plant Mol. Biol., 2004, 56:271-283.
    124 Chen K, Du L., Chen Z. Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis[J]. Plant Mol Biol, 2003, 53 (1-2):61-74.
    125张林青,程智慧,孟焕文,等.大蒜叶片活性氧及保护酶系对白腐病菌粗毒素胁迫的响应[J].西北植物学报, 2008, 28 (5):974-978.
    126罗银玲,宋松泉.植物线粒体、活性氧与信号转导[J].西北植物学报, 2004, 24(4):737-747.
    127 Liu Y., Schiff M., Czymmek K., et. al. Autophagy regulates programmed cell death during the plant innate immune response[J]. Cell, 2005, 121(4):567-577.
    128 Delaney T. P., Uknes S., Vernooij B., et. al. A central role of salicylic acid in plant disease resistance[J]. Science, 1994, 266(5188):1247-1250.
    129 Malamy J., Carr J. P., Klessig D. F., et. al. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection[J]. Science, 1990, 250:1002-1004.
    130 Verberne M. C., Verpoorte R., Bol J. F., et. al. Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance[J]. Nat. biotechnol.,2000, 18 (7):779-783.
    131王神云,曹家树.拟南芥霜霉病抗性分子机制研究进展[J].植物保护, 2006, 32 (5):16-20.
    132 Li J., Smith G. P., Walker J. C. Kinase interaction domain of kinase-associated protein phosphatase, a phosphoprotein-binding domain[J]. Proc. Natl. Acad. Sci. USA, 1999, 96(14):7821-7826.
    133 Schweighofer A., Hirt H., Meskiene I. Plant PP2C phosphatases: emerging functions in stress signaling[J]. Trends Plant Sci., 2004, 9(5):236-243.
    134 Gómez-Gómez L., Bauer Z., Boller T. Both the extracellular leucine rich repeat domain and the kinase activity of FSL2 are required for flagellin binding and signaling in Arabidopsis[J]. Plant Cell, 2001, 13(5):1155-1163.
    135 Ding Z., Wang H., Liang X., et. al. Phosphoprotein and phosphopeptide interactions with the FHA domain from Arabidopsis kinase-associated protein phosphatase[J]. Biochemistry, 2007, 46(10):2684-2696.
    136 Felton G., Korth K. L. Trade-offs between pathogen and herbivore resistance[J]. Current Opinion Plant Biology, 2000, 3:309-314.
    137 Kunke B. N. Cross talk between signaling pathways in pathogen defense[J]. Current Opinion in Plant Biology, 2002, 5:325-331.
    138 Lou Y. G., Cheng J. A. Role of rice volatiles in the foraging behaviour of cyrtorhinus lividipennis reuter[J]. Entomologica Sinica, 2001, 8(3):240-250.
    139 Dicke M., Sabelis M. W., Takabayashi J., et al. Plant strategies of manipulating predator-prey interactions through allelochemicals: Prospects for application in pest control[J]. J. Chem. Ecol., 1990, 16(11):3091-3118.
    140 Shiojiri K., Takabayashi J., Yano S., et al. Infochemically mediated tritrophic interaction webs on cabbage plants[J]. Population Ecology, 2001, 43:23-29.
    141陈华才.挥发物在水稻-二化螟-稻纵卷叶螟-二化螟绒茧蜂-螟蛉绒茧蜂相互关系中的作用[D].浙江大学博士学位论文, 2002.
    142 De Moraes C. M., Lewis W. J., ParéP. W., et al. Herbivore-infested plants selectively attract parasitoid[J]. Nature, 1998, 393: 570-573.
    143陈华才,沈群超,娄永根,等.水稻挥发物对二化螟幼虫趋性行为的影响[J].中国水稻科学, 2004, 18(5): 473-475.
    144娄永根.信息化合物在稻虱缨小蜂寄主选择行为中的作用[D].浙江大学博士学位论文, 1999.
    145王霞.不同取食习性害虫和β-葡萄糖苷酶对水稻体内重要防御相关信号分子含量的影响[D].浙江大学硕士学位论文, 2006.
    146 Van Poecke R. M. P., Dicke M. Indirect defence of plants against herbivores:using Arabidopsis thaliana as a model plant[J]. Plant Biology, 2004, 6(4): 387-401.
    147 Hartlieb E, Anderson P, Hasson B S. Appetive learning of odours with different behavioural meaning in moths[J]. Physiol. Behav., 1999, 67(5):671-677.
    148 Renwick J. A. A., Chew F. S. Oviposition behavior in Lepidoptera[J]. Annu. Rev. Entomol., 1994, 39:377-400.
    149 Schultz J. Z. Many factors influence the evolution of herbivore diets, but plant chemistry is central[J]. Ecology, 1988, 69:896-897.
    150王四宝,周弘春,苗雪霞,等.松褐天牛触角感器电镜扫描和触角电位反应[J].应用生态学报, 2005, 16(2):317-322.
    151余海忠.二化螟触角感受器类型及其GOBP2基因保守区的克隆与序列分析[D],浙江大学硕士学位论文, 2004.
    152 Kaissling K. E. Chemo-electrical transduction in insect olfactory receptor[J]. J. Ann. Rev. Neurosci, 1986, 9:121-145.
    153 Douglas M. L., James A K,Ronald G. R. Electroantennogram response of alfalfa seed chalcid, Bruchopagus roddi(Hymenopera: Eurytomidae) to host-and nonhost-plant volatiles[J]. J. Chem. Ecol, 1992, 18(3):333-352.
    154 Rober A. R., Douglas M. L., Eran P. Electroantennogram response of Hyles lineate(Sphingidae:Lepidoptera) to volatiles from Clarkia breueri(Onagraceae) and other moth-pollinated flowers[J]. J. Chem., 1996, 22(10):1735-1766.
    155 Deng J. Y., Wei H. Y., Huang Y. P., et al. Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants[J]. J. Chem. Ecol., 2006, 30:2037-2045.
    156 Fang Y. L., Zhang Z. N. Influence of host-plant volatiles components on oviposition behavior and sex pheromone attractiveness to Helicoverpa armigera[J]. Acta Entomologica Sinica, 2002, 45(1):63-67.
    157 Deng J. Y., Wei H. Y., Huang Y. P., et al. EAG and behavioral responses of Helicoverpa armigera males to volatiles from poplar leaves and their combination with sex pheromone[J]. J. Zhejiang Univ. SCI. 2004, 5(12):1577-1582.
    158左文.水稻挥发物与二化螟性信息素对二化螟的协同作用[D],浙江大学硕士学位论文,2007.
    159 Reddy G. V., Guerrero A. Behavioral responses of the diamondback moth, Plutella xylostella, to greem leaf volatiles of Brassica oleracea subsp. Capitata[J]. J. Agric.Food Chem, 48(12):6025-6029.
    160 Light D. M., Flath R. A., Buttery R. G., et al. Host plant green-leaf volatiles synergize the synthetic sex pheromones of the corn ear-worm and the codling moth(Lepidoptera)[J]. Chemoecology, 1993, 4:145-152.
    161 Bellas T. E., Bartell R. J. Dose-response relationship for two components of the sex pheromone of light brown apple moth Epiphyas postvitiana[J]. Chem. Ecol., 1983, 9:715-726.
    162 Howes P. E., Stevens J. M., Jones O. Insect pheromones and their use in pest management. Chapman & Hall, 1997, 103-132.
    163张家兴.水稻条纹叶枯病成灾原因初探[J].西北农林科技大学学报(自然科学版), 2005, 33:65-67.
    164刘芳,娄永根,程家安.稻株挥发物在调节褐飞虱、白背飞虱种内种间关系中的作用[J].中国水稻科学, 2002, 16(2):162-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700