用户名: 密码: 验证码:
泥沙颗粒吸附磷的规律及微观形貌变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
社会经济的快速发展,同时带来突出的水环境污染问题。天然水体中存在泥沙运动,特别是我国大江大河的泥沙输沙量较大,泥沙在污染物的迁移和转化过程中担任着非常重要的角色。泥沙对氮、磷等污染物的吸附改变了水体中污染物的浓度,又使泥沙自身形貌和输移特性发生变化,研究泥沙与污染物之间的相互作用是解决这些问题的科学基础。
     本文从微观角度出发,对泥沙吸附磷的规律及其形貌变化进行了探讨,采用的研究手段和主要结论包括以下几个方面。
     通过先进的扫描电镜对泥沙颗粒的微观形貌观测发现:天然状态下的泥沙颗粒表面形貌十分复杂,常附着大量污染物质,与清洗干净的泥沙差异较大。
     为比较干净泥沙与被污染泥沙的差别,研究以KH2PO4溶液为吸附剂,完成了在不同吸附剂浓度和泥沙浓度条件下的室内静态吸附实验,并采用气体吸附法观测吸附后泥沙颗粒表面的孔隙特征,发现颗粒表面1-10nm的孔隙在受污染前后体积变化最明显。随着污染程度的加重,泥沙比表面积减小,孔体积减小,平均孔径增大,在污染过程中孔径较小的孔隙逐渐被填充。进一步又采用能量弥散X射线能谱仪(EDS)对吸附后泥沙的表面元素进行分析,统计结果显示,泥沙颗粒表面的磷元素分布与颗粒表面的微结构有较好的相关关系。
     分析泥沙颗粒吸附磷的规律可见:吸附包括了物理吸附和化学吸附两个方面,其中物理吸附速度很快,是个可逆过程;而化学吸附比较缓慢,属于不可逆过程。在水流剪切力的不断作用下,能够稳定吸附在颗粒表面的磷酸根离子大多应是与颗粒表面通过化学作用结合的离子,因此吸附平衡时污染物应大多集中在水流剪切力较小的孔隙之中,导致这部分孔隙被大量填充。
     在电镜实验观测的基础上,论文用数学方法描述了清洗泥沙颗粒的形状和表面结构,并用概率统计的方法构建了数学泥沙的研究平台。该平台可以表征泥沙颗粒的三维形貌,同时也能反映出泥沙颗粒表面上每个微区的磷吸附规律。用该平台结合吸附动力学方程可以用来完善已有的水沙和水质数学模型,完善后的模型已经应用到北运河流域和岩滩水库的污染物迁移及泥沙输移计算之中,并取得了满意的计算效果,表明该模型具有较好地应用前景。
One of the consequences of rapid economic development in China over the past twenty years has been a significant increase in aquatic pollution. There is a large amount of sediment transported in natural aquatic systems, especially in China’s big rivers. Sediment particles, therefore, play an important role in the migration and transformation of pollutants. The adsorption of nitrogen, phosphorous and other pollutants on sediment particles changes not only the concentration of pollutants in the water but also the surface micro-topography and transportation characteristics of the sediment particles themselves. More and better research into the interaction between sediments and pollutants is the key to solving these pollution problems.
     This dissertation discusses on a microscopic level the adsorption law of phosphorus and the changes that phosphorus produces on sediment particle surfaces. The methods and results are as follows.
     The study used an advanced scanning electron microscope (SEM) to observe the surface micro-topography of sediment particles. From the investigation, it was discovered that the surfaces of natural particles are very complex. Often they are heavily coated with pollutants. These polluted surfaces show notable differences compared to clean particles.
     In order to compare the surfaces of clean particles to polluted particles, the study performed some laboratory experiments using KH2PO4 solution as the adsorbent. Then a series of adsorption experiments were conducted on sediments with various degrees of initial phosphorus. The sediment particle surface pores which have adsorbed phosphorous iron were measured using the gas adsorption method. Based on our experiments, the study discovered that pores ranging in size from 1 to 10nm show significant changes after the particles are polluted. As the pollution levels increase, the specific particle surface area and pore volume decrease and the average pore size inversely increases. Small sized pores, it was found, gradually filled as the sediments were polluted. We used an energy dispersion spectrometer (EDS) to analyze the chemical elements on the particle surface. The statistical results of our analysis indicate a close causal relationship between the phosphorus distribution on the particle surface and its micro-topography.
     There are two complementary processes at work in the adsorption of phosphorous iron on particle surfaces—physical adsorption and chemical adsorption. Physical adsorption is a reversible process which occurs rapidly, whereas chemical adsorption is an irreversible process which occurs slowly. As an effect of constant flow shear stress, the phosphorous iron that is stably adsorbed on the particle surface combined with the particle surface through a chemical reaction. Where the flow shear stress is lower, pollutants, therefore, gather in pores as the reaction reached equilibrium. This gathering action causes the pores to fill.
     Based on our SEM observations, we used mathematical methods to describe the form and texture of the clean surface particles. From these mathematically derived results, we built a research platform. This platform calculated not only the three dimensional topography of sediment particles but also the interaction processes between the particle surface micro-area and the phosphorous iron. Combining this platform and the adsorption kinetics equations, we were able to refine an existent one dimensional numerical model for water, sediment and water quality by adding modules to it to make it more powerful and to improve its predictive accuracy. The study applied the model to simulate pollutant migration and sediment transportation respectively in the Beiyun River and the Yantan Reservoir. We were able to obtain verifiable results using this model and methodology. This model demonstrated strong potential for describing the pollution processes which contaminate clean sediments in China’s river systems.
引文
[1]国家环境保护总局. 2006年中国环境状况公报[EB/OL]. (2007-06-05) [2008-03-15]. http://www.mep.gov.cn/ztbd/sjhjr/2007hjr/tpbd56/index.htm.
    [2]白振光,王成伟,李冠伦.我国水污染状况及控制对策.舰船防化, 2006(S):15-17.
    [3]长江流域水资源保护局.事故频发中国水污染“老账未结又添新账”[EB/OL]. (2007-07-30) [2008-03-15]. http://www.ywrp.gov.cn/Html/sthjbh/103206772.html.
    [4] Wentworth C K. A laboratory and field study of cobble abrasion. J. Geol., 1919, 40:507-521.
    [5] Wadell H. Volume, Shape and Roundness of Rock Particles. J. Geol., 1932, 40:443-451.
    [6] Folk R L, Ward W C. Brazos River Bar: A study in the significance of grain size parameters. Journal of Sedimentary Petrology, 1957, 27:3-27.
    [7] Wettimuny R, Penumadu D. Application of Fourier Analysis to Digital Imaging for Particle shape Analysis. Journal of Computing in Civil Engineering, ASCE, 2004, 18(1):2-9.
    [8] Muller G. Methods in sedimentary petrology. Stuttgart: E. Schweizerbartsche Verlagsbuchhandlung, 1967.
    [9]王兴奎,邵学军,李丹勋.河流动力学基础.北京:中国水利水电出版社, 2002.
    [10] Mandelbrot B B. The fractal geometry of nature. San Francisco: Freeman, 1982.
    [11] Pfeifer P, Avnir D. Chemistry in Non-integer Dimensions Between Two and Three, I. Fractal Theory of Heterogeneous Surfaces. Journal of Chemical Physics, 1983, 79(7):3558-3565.
    [12]张济忠.分形.北京:清华大学出版社, 1995.
    [13]谢和平.分形几何:数学基础与应用.重庆:重庆大学出版社, 1991.
    [14] Avnir D, Farin D, Pfeifer P. Molecular fractal surface. Nature, 1984, 308:261-263.
    [15] Neimark A V. Calculating surface fractal dimensions of adsorbents. Adsorption Science and Technology, 1990, 7(4):210-219.
    [16] Yin Y B. Adsorption isotherm on fractally porous materials. Langmuir, 1991, 7:216-217.
    [17] Neimark A V, Unger K K. Method of discrimination of surface fractality. Journal of Colloid and Interface Science, 1993, 158:412-419.
    [18] Neimark A V. Determination of the surface fractal dimensionality from the results of an adsorption experiment. Russian Journal of Physical Chemistry, 1990, 64:2593-2605.
    [19]傅雪海,秦勇,薛秀谦.煤储层孔、裂隙系统分形研究.中国矿业大学学报(自然科学版), 2001, 30(3):225-228.
    [20] Patricia T, Nora Y K C, H K C, et al. Limitation of Determination of Surface Fractal Dimension Using N2 Adsorption Isotherms and Modified Frenkel-Halsey-Hill Theory. Langmuir, 2003, 19(7):2632-2638.
    [21] Kalumbu M, James A R, Lin J S. Comparison of techniques for determining the fractal dimensions of clay minerals. Clays and Clay Minerals, 1996, 44:677.
    [22] Chakraborti R K, Atkinson J F, Van Benschoten J E. Characterization of alum floc by image analysis. Environmental Science and Technology, 2000, 34(18):3969-3976.
    [23] Perfect E, Kay B D. Application of fractals in soil and tillage research: a review. Soil and Tillage Research, 1995, 36:1-20.
    [24] Rice J A, Tomb C Z, K M. Applications of light and X-ray scattering to characterize the fractal properties of soil organic matter. Geoderma, 1999, 88:251-264.
    [25] Sokolowska Z, Sokolowski S. Influence of humic and acid on surface fractal dimension of kaolin: analysis of mercury porosimetry and water vapour adsorption data. Geoderma, 1999, 88:233-249.
    [26] Dathe A, Eins S, Niemeyer Y, et al. The surface fractal dimension of the soil-pore interface as measured by image analysis. Geoderma, 2001, 103:203-229.
    [27]赵振国.用吸附数据对硅胶表面的分形分析.高等学校化学学报, 2003, 24(11):2051-2055.
    [28]赵振国.介孔吸附剂表面分形分析.化学学报, 2004, 62(2):219-223.
    [29]赵振国.吸附法研究固体表面的分形性质.大学化学, 2005, 20(4):22-28.
    [30]王毅力,刘杰,石宝友,等.颗粒活性炭吸附染料时的表面分形分析.安全与环境学报, 2006, 6(3):92-95.
    [31]杜白雨,王毅力,石宝友,等.不同尺度下颗粒活性炭表面分形特征的研究.计算机与应用化学, 2006, 23(12):1231-1238.
    [32]黄正宏,康飞宇,梁开明,等.用氮气吸附研究活性炭纤维的分维.炭素技术, 2000(4):40-42.
    [33]朱文魁,张文全,唐志红,等.气体吸附法研究活性炭表面分形维数.炭素, 2004(2):12-15.
    [34]盛永刚,徐耀,李志宏,等.气体吸附法测定二氧化硅干凝胶的分形维数.物理学报, 2005, 54(1):221-226.
    [35]刘显东,陆现彩,侯庆锋,等.基于吸附等温线的表面分形研究及其地球科学应用.地球科学进展, 2005, 20(2):201-206.
    [36]晁晓波,赵文谦,邱大洪.表面分形原理在研究泥沙吸附乳化油特性中的应用.水利学报, 1997(9):1-5.
    [37]李洪,李嘉,李克锋,等.泥沙的分形表面和分形吸附模型.水利学报, 2003, 3:14-18.
    [38]赵旭,王毅力,郭瑾珑,等.颗粒物微界面吸附模型的分形修正——朗格缪尔(Langmuir)、弗伦德利希(Freundlich)和表面络合模型.环境科学学报, 2005, 25(1):52-57.
    [39]王毅力,芦家娟,周岩梅,等.沉积物颗粒表面分形特征的研究.环境科学学报, 2005, 25(4):457-463.
    [40]王毅力,李乐勇,邓式阳,等.图象法确定底泥颗粒物的表面分形维数(Ds).环境化学, 2005, 25(4):457-463.
    [41] Dirk H B. An evaluation of fractal dimensions to quantify changes in the morphology of fluvial suspended sediment particles during baseflow conditions. Hydrological process, 1997, 11:415-426.
    [42] Dirk H B, Stone M. Fractal dimensions of suspended solids in streams: comparison of sampling and analysis techniques. Hydrological process, 1999, 13:239-254.
    [43] Dirk H B, Stone M, Levesque M J. Fractal dimensions of individual flocs and floc populations in streams. Hydrological process, 2000, 14:653-667.
    [44] Stone M, Krishnappan B G. Fractal dimensions of cohesive sediment during settling in steady state flow with different initial sediment concentrations. Can. J. Civ. Eng., 2005, 32:658-664.
    [45]洪国军,杨铁笙.黏性细颗粒泥沙絮凝及沉降的三维模拟.水利学报, 2006, 37(2):172-177.
    [46]李富根,熊祥忠,赵明,等.黏性泥沙絮凝体结构观测与分形维数估算.人民黄河, 2006, 28(2):31-33.
    [47]杨铁笙,李富根,梁朝皇.粘性细颗粒泥沙静水絮凝沉降生长的计算机模拟.泥沙研究, 2005(4):14-20.
    [48]杨铁笙,熊祥忠,詹秀玲,等.粘性细颗粒泥沙絮凝研究概述.水利水运工程学报, 2003(2):65-77.
    [49]杨铁笙,詹秀玲,庞东明,等.图像处理技术用于泥沙颗粒分析的研究.中国粉体技术, 1999, 5(6):13-19.
    [50]杨铁笙,张正红.泥沙淤积物颗粒排列结构的分形模式研究.应用基础与工程科学学报, 1994, 2(2-3):152-156.
    [51]杨铁笙,熊育武,詹秀玲.整数阶与非整数阶曼德勃罗集的研究.科技导报, 1995(1):19-20.
    [52] Hochella M F, Moore J N, Golla U, et al. A TEM study of samples from acid mine drainage system: Metal-mineral association with implications for transport. Geochimica et Cosmochimica Acta, 1999, 63(19/20):3395-3406.
    [53] Berkel J V, Beckett R. Determination of adsorption characteristics of the nutrient orthophosphate to natural colloids by sedimentation field-flow fractionation. Journal of Chromatography A, 1996, 733:105-117.
    [54] Palumbo B, Bellanca A, Neri R, et al. Trace metal partitioning in Fe-Mn nodules from sicilian soils, Italy. Chemical Geology, 2001, 173:257-269.
    [55] Donald A M. The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nature, Progress Article, 2003, 2:511-516.
    [56] Buzio R, Boragno C, Biscarini F, et al. The contact mechanics of fractal surfaces. Nature, Letters, 2003, 2:233-236.
    [57] House W A, Dension F H. Exchange of inorganic phosphate between river waters and bed-sediments. Environ. Sci. Technol., 2002, 36(20):4295-4301.
    [58] Chandan C, Sivakumar K, Masad E, et al. Application of Imaging Techniques to Geometry Analysis of Aggregate Particles. Journal of Computing in Civil Engineering, 2004, 18(1):75-82.
    [59] Al-rousan T, Masad E, Tutumluer E, et al. Evaluation of image analysis techniques for quantifying aggregate shape characteristics. Construction and Building Materials, 2007, 21:978-990.
    [60] Y W, Piper D J W, Vilks G. Surface textures of turbidite sand grains, Laurentian Fan and Sohm Abyssal Plain. Sedimentology, 1982, 29(5):727-736.
    [61] Durian D J, Bideaud H, Duringer P, et al. What Is in a Pebble Shape? Physical Review Letters 97, 2006, 028001:1-4.
    [62] Durian D J, Bideaud H, Duringer P, et al. The shape and erosion of pebbles. Physical Review E 75, 2007, 021301:1-9.
    [63]李建明,林汉同,朱光熹,等.材料三维表面微观形貌的布朗运动分形度量.华中理工大学学报, 1995, 23(1):95-98.
    [64]董学仁,岳云龙,张仲,等.粉体颗粒表面的定量描述.中国粉体技术, 2000, 6(3):1-2.
    [65]张军,林汉同,朱耀庭,等.球墨电子显微图像分形及应用.华中理工大学学报, 1992, 20(5):1-6.
    [66]李华北,赵杰文.基于Markov随机场的猪肉糜微结构图像模拟.农业机械学报, 2001, 32(2):62-65.
    [67]周宏伟,谢和平, Skima K.粗糙表面分维计算的立方体覆盖法.摩擦学学报, 2000, 20(6):455-459.
    [68]全书海.基于表面灰度图像的加工表面形貌分形特征研究[博士学位论文].武汉理工大学机电工程学院, 2002.
    [69]李昊宇,徐小波,李伟.基于光度立体法的黑瓜子表面三维重建研究[EB/OL]. (2006-02-13) [2007-06-10]. http://www.paper.edu.cn/paper.php?serial_number=200602 -67 .
    [70]朱平,陈丙森,唐伟.金属断裂表面的三维重建和定量分析.中国体视学与图像分析, 1997, 2(1):1-5.
    [71]朱平,陈丙森.基于特征的扫描电镜立体对三维重建.电子显微学报, 1997(1):49-56.
    [72]刘栋,颜云辉,张坚,等.金属断口表面定量测量与三维重建.仪器仪表学报, 2004, 25(4).
    [73]汤鸿霄,钱易,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理(上卷水体颗粒物).北京:中国环境科学出版社, 2000.
    [74] Horowitz A J. A Primer on Sediment-Trance Element Chemistry, 2nd edition. MI: Lewis Publishers, 1991.
    [75] Brunauer S. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 1938, 60:309-319.
    [76] Dzombak D A, Morel F M M. Surface Complexation Modeling: Hydrous Ferric Oxide. New York: John Wiley and Sons, 1990.
    [77] Greenland D J, Quirk J P. Determination of the total specific surface areas of soils by adsorption of cetyl pyridinium bromide. J. Soil Sci., 1964, 15:178-191.
    [78]张洪有,李玉生,陈开敏,等.用Ar作吸附质的BET法测定固体比表面积.化学通报, 1980(10):21-25.
    [79]王琪,朱铮真,李耀明.多孔物质的孔隙结构和吸附性质的研究.北京化工大学学报(自然科学版), 1984(1):88-97.
    [80]商连弟,李园园. X-氧化铝比表面积的测定.化学世界, 1986(4):164-167.
    [81]陈晓立,任家瑛.一种计算多孔固体表面积的新方法.离子交换与吸附, 1988, 4(5):337-341.
    [82]严继民,张启元,高敬琮.吸附与凝聚:固体的表面与孔.北京:科学出版社, 1986.
    [83]赵振国.界面化学基础.北京:化学工业出版社, 1996.
    [84]高敬琮.吸附、比表面与孔隙率.北京:化学工业出版社, 1981.
    [85]代伟伟,刘义新.改性坡缕石粘土的全孔分布研究.岩石矿物学杂志, 2005, 24(6):526-530.
    [86]刘杰. JMS-CCDAF-NF对腐殖酸的去除及絮凝体表面分形的研究[硕士学位论文].北京:北京林业大学环境科学, 2006.
    [87]戴劲草,萧子敬,黄继泰.多孔粘土复合材料的孔结构和孔径分布.复合材料学报, 2001, 18(2):18-21.
    [88] Stumm W. Chemistry of the solid-water interface. New York: John Wiley and Sons, Inc, 1992.
    [89]张志忠.长江口细颗粒泥沙基本特性研究.泥沙研究, 1996(1):67-73.
    [90] Grahame D C. The electrical double layer and the theory of electrocapillarity. Chem. Rev., 1947, 41:441-501.
    [91]于天仁.土壤的电化学性质及其研究法.北京:科学出版社, 1976.
    [92] Van Olphen H. An introduction to clay colloid chemistry for clay technologists, geologists and soil scientists. New York: John Wiley and Sons, 1977.
    [93]张中路,张仁佑.胶体与表面化学导论.北京:化学工业出版社, 1989.
    [94]王果庭.胶体的稳定性.北京:科学出版社, 1990.
    [95] Kavanaugh M C, Leckie J O. Particulates in water. Washington DC: American Chemical Society, 1980.
    [96] Stumm W. Aquatic surface chemistry. New York: John Wiley and Sons, Inc, 1987.
    [97] Stumm W. Aquatic chemical kinetics. New York: John Wiley and Sons, Inc, 1990.
    [98] Buffle J, Van Leeuwen H P. Environmental Particles, V1, V2. Chelsea MI: Lewis Publishers, 1992.
    [99] Huang C P, O'melia C R, Morgan J J. Aquatic chemistry: interfacial and interspecies processes. Washington DC: American Chemical Society, 1995.
    [100] Jorgense S E, Groiniec M J. Mathematical submodels in water quality systems. New York: Elsevier Science Publishers BV, 1989.
    [101]叶常明.多介质环境污染研究.北京:科学出版社, 1997.
    [102]黄岁梁.泥沙运动在重金属污染物迁移转化中的作用[博士学位论文].北京:水利水电科学研究院, 1994.
    [103]吕平毓,黄文典,李嘉.河流悬移质对含磷污染物吸附试验研究.水利水电技术, 2005, 36(10):93-96.
    [104]吕平毓,王晓青,张士君,等.长江三峡库区泥沙对总磷的吸附试验//黄真理.中国环境水力学2004.北京:中国水利水电出版社, 2004.
    [105]袁东海,张孟群,高士祥,等.几种粘土矿物和粘粒土壤吸附净化磷素的性能和机理.环境化学, 2005, 24(1):7-11.
    [106]李敏,王光谦,倪晋仁,等.长江口沉积物对磷酸盐吸附的等温模型.清华大学学报(自然科学版), 2005, 45(9):1026-1029.
    [107]赵文谦,晁晓波,黄勤生.泥沙吸附石油的数学模型与试验研究.水利学报, 1997(12):50-57.
    [108]李崇明,赵文谦.河流泥沙吸附石油的实验研究.重庆环境科学, 1997, 19(5):39-44.
    [109]李崇明,赵文谦,罗麟.泥沙吸附石油的实验研究.四川联合大学学报(工程科学版), 1997, 1(4):34-40.
    [110]李崇明,赵文谦,罗麟.河流泥沙对石油的吸附、解吸规律及影响因素的研究.中国环境科学, 1997, 17(1):23-26.
    [111]杨敏,豆小敏,张昱.固液界面吸附机制与模型.环境科学学报, 2006, 26(10):1581-1585.
    [112]汤鸿霄.微界面水质过程的理论与模式应用.环境科学学报, 2000, 20(1):1-9.
    [113] Hiemstra T, Van Riemsdijk W H. A surface Structural Approach to Ion Adsorption: The Charge Distribution (CD) Model. Journal of Colloid and Interface Science, 1996, 179(2):488-508.
    [114] Hiemstra T, Venema P, Van Riemsdijk W H. Intrinsic Proton Affinity of Reactive Surface Groups of Metal (Hydr)oxides: The Bond Valence Principle. Journal of Colloid and Interface Science, 1996, 184(2):680-692.
    [115] Jeanine S G, Hiemstra T, Van Riemsdijk W H. Competitive interaction between phosphate and citrate on goethite. Environ. Sci. Technol., 1998, 32:2119-2123.
    [116] Zhao H S, Stanforth R. Competitive adsorption of phosphate and arsenate on goethite. Environ. Sci. Technol., 2001, 35:4753-4757.
    [117] Hiemstra T, Van Riemsdijk W H. Surface Structural Ion Adsorption Modeling of Competitive Binding of Oxyanions by Metal (Hydr)oxides. Journal of Colloid and Interface Science, 1999, 210(1):182-193.
    [118] Rietra R P, Hiemstra T, Van Riemsdijk W H. Comparison of Selenate and Sulfate Adsorption on Goethite. Journal of Colloid and Interface Science, 2001, 230(2):384-390.
    [119] Antelo J, Avena M, Fiol S, et al. Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface. Journal of Colloid and Interface Science, 2005, 285(2):476-486.
    [120] Tinsley I J. Chemical concepts in pollutant behavior. New York: John Wiley and Sons Inc, 1979.
    [121]徐明岗.土壤离子吸附.土壤肥料, 1997(6):3-7.
    [122]李敏,韦鹤平,王光谦,等.长江口、杭州湾水域沉积物对磷吸附行为的研究.海洋学报, 2004, 26(1):132-136.
    [123]陈淑珠,钱红,张经.沉积物对磷酸盐的吸附与释放.青岛海洋大学学报, 1997, 27(3):413-418.
    [124]胡智弢,孙红文,谭媛.湖泊沉积物对N和P的吸附特性及影响因素研究.农业环境科学学报, 2004, 23(6):1212-1216.
    [125]黄文典.河流悬移质对污染物吸附及生物降解影响试验研究[博士学位论文].四川大学水力学及河流动力学, 2005.
    [126]高丽,杨浩,周健民,等.滇池沉积物磷酸盐吸附和矿物学特征的研究.农业环境科学学报, 2004, 23(2):259-262.
    [127]王圣瑞,金相灿,庞燕.不同营养水平沉积物在不同pH下对磷酸盐的等温吸附特征.环境科学学报, 2005, 18(1):53-58.
    [128]刘敏,候立军,许世远,等.长江河口潮滩表层沉积物对磷酸盐的吸附特性.地理学报, 2002, 57(4):397-406.
    [129]李敏,倪晋仁,王光谦,等.环境因素对长江口水域沉积物吸附磷酸盐的影响研究.应用基础与工程科学学报, 2005, 13(1):19-25.
    [130]徐明德,韦鹤平,李敏,等.长江口泥沙与沉积物对磷酸盐的吸附和解吸研究.太原理工大学学报, 2006, 37(1):48-51.
    [131]藏小平,邱波,曾金凤.长江三峡水体中氮、磷的分布特点及赋存形态研究//黄真理.中国环境水力学.北京:中国水利水电出版社, 2002.
    [132]王晓燕,王一峋,王晓峰,等.密云水库小流域土地利用方式与氮磷流失规律.环境科学研究, 2003, 16(1):30-33.
    [133]刘素美,张经.沉积物中磷的化学提取分析方法.海洋科学, 2001, 25(1):22-25.
    [134]朱广伟,秦伯强.沉积物中磷形态的化学连续提取法应用研究.农业环境科学学报, 2003, 22(3):349-352.
    [135]孙境蔚.沉积物磷的分级提取方法及提取相的共性分析.环境科学与技术, 2007, 30(2):111-115.
    [136]李悦,乌大年,薛永先.沉积物中不同形态磷提取方法的改进及其环境地球化学意义.海洋环境科学, 1998, 17(1):15-20.
    [137]徐明德,韦鹤平,李敏,等.长江口泥沙和沉积物中磷酸盐存在形态的研究.四川环境, 2006, 25(1):52-55.
    [138]高效江,陈振楼,许世远,等.长江口滨岸潮滩沉积物中磷的环境地球化学特征.环境科学学报, 2003, 23(6):711-715.
    [139]刘敏,许世远,侯立军,等.长江口滨岸潮滩沉积物中磷的存在形态和分布特征.海洋通报, 2001, 20(5):10-17.
    [140]朱广伟,秦伯强,高光,等.长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系.环境科学学报, 2004, 24(3):381-388.
    [141]李敏,韦鹤平,王光谦,等.长江口、杭州湾水域沉积物中磷的化学形态分布特征.海洋学报, 2004, 26(2):125-131.
    [142]林荣根,吴景阳.黄河口沉积物中无机磷酸盐的存在形态.海洋与湖沼, 1992, 23(4):387-395.
    [143]金相灿,王圣瑞,庞燕.太湖沉积物磷形态及pH值对磷释放的影响.中国环境科学, 2004, 24(6):707-711.
    [144]扈传昱,潘建明,刘小涯.珠江口沉积物中磷的赋存形态.海洋环境科学, 2001, 20(4):21-25.
    [145]高丽,杨浩,周健民,等.滇池沉积物磷的释放以及不同形态磷的贡献.农业环境科学学报, 2004, 23(4):731-734.
    [146]李晶.官厅水库沉积物中磷状态分布和矿物成分研究及其意义[硕士学位论文].中国地址大学矿物学(北京), 2005.
    [147]李慧韫,张天胜.磷和水体富营养化.日用化学品科学, 2002, 25(5):12-14.
    [148] Thomas H A. Pollution load capacity of streams. Water and Sewage Works, 1948, 95:409.
    [149] Dobbins W E. BOD and oxygen relationships in streams. J Sanit Eng Div ASCE, 1964, 90(SA3):53-78.
    [150] Lin Y H, Li Q. Study on the heavy metal speciation modeling in aquatic system of Le An River. Journal of Environment Science, 1992, 4(3):100-108.
    [151]高兴斋.河流重金属迁移模型的沉降与再悬浮系数研究.环境科学学报, 1986(1).
    [152] Shrestha P L. An integrated model suit for sediment and pollutants transport in sallow lake. Advances in Engineering Software, 1996, 27:201-212.
    [153]褚君达,徐惠慈.河流底泥冲刷沉降对水质影响的研究.水利学报, 1999(11):42-47.
    [154]何用,李义天,郜会彩,等.泥沙污染水质模型研究.四川大学学报(工程科学版), 2004, 36(6):12-17.
    [155]刘启贞,李九发,陆维昌,等.河口细颗粒泥沙有机絮凝的研究综述及机理评述.海洋通报, 2006, 25(2):74-80.
    [156] Irion G. Minerals in rivers//Degens E T, Kempe S, Richey J E. Biogeochemistry of Major World Rivers. Chichester: John Wiley and Sons, 1991. 264-281.
    [157]陈志和.泥沙吸附重金属离子后表面形貌变化及结构特征研究[博士学位论文].北京:清华大学水利水电工程系, 2008.
    [158]郑方,章毓晋.数字信号与图像处理.北京:清华大学出版社, 2006.
    [159]章萧,董艳雪,赵文娟,等.数字图像处理技术.北京:冶金工业出版社, 2005.
    [160]周启鸣,刘学军.数字地形分析.北京:科学出版社, 2006.
    [161]毋河海,龚健雅.地理信息系统(GIS)空间数据结构与处理技术.北京:测绘出版社, 1997.
    [162] Phillips G M, Taylor J.数值分析的理论及其应用.熊西文等,译.上海:上海科学技术出版社, 1972.
    [163]梅向明,黄敬之.微分几何.北京:高等教育出版社, 1988.
    [164]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理和方法.北京:科学出版社, 2005.
    [165]国家环境保护局.水质总磷的测定钼酸铵分光光度法(GB/T11893-1989).中国标准出版社第二编剧部编.中国环境保护标准汇编水质分析方法.北京:中国标准出版社, 2001.
    [166] Avnir D, Jaroniec M. An Isotherm Equation for Adsorption on Fractal Surfaces of Heterogeneous Porous Materials. Langmuir, 1989, 5:1431-1433.
    [167] Jaroniec M. Evaluation of the Fractal Dimension from a Single Adsorption Isotherm. Langmuir, 1995, 11:2316-2317.
    [168] Pfeifer P, Wu Y J, Cole M W. Multilayer Adsorption on a Fractally Rough Surface. Physical Review Letters, 1989, 62(17):199-2000.
    [169] Venkatraman A, Fan T, Walawender W R. The Influence of the Temperature of Calculation on the Surface Fractal Dimensions of Ca(OH)2-derived Sorbents. Journal of Colloid and Interface Science, 1996, 182:578-585.
    [170] Meczislaw H, Ludmila K, Yakov P. Soil pore surface properties in managed grasslands. Soil & Tillage Research, 2000, 55:63-70.
    [171]王富耻.材料现代分析测试方法.北京:北京理工大学出版社, 2006.
    [172] Lopex P, Lluch X, Morgui J A. Adsorption of phosphorus on sediments of the Balearic Islands (Spain) related to their composition. Estuarine, Coastal and Shelf Science, 1996, 42:185-196.
    [173]陈庆强,孟翊,周菊珍,等.长江口细颗粒泥沙絮凝作用及其制约因素研究.海洋工程, 2005, 23(1):74-82.
    [174]崔清晨译.化学海洋学(第七卷).北京:海洋出版社, 1985.
    [175] Burton J D, Liss P S. Estuarine chemistry. New York: Academic press, 1976.
    [176]王保栋.河口细颗粒泥沙的絮凝作用.黄渤海海洋, 1994, 12(1):71-76.
    [177]夏福兴, Eisma D.长江口悬浮颗粒有机絮凝研究.华东师范大学学报(自然科学版), 1991(1):70.
    [178] Tipping E, Ohnstad M. Colloid stability of iron oxide particles from a freshwater lake. 1984, 308:266-268.
    [179] Mayer L M. Aggregation of colloid iron during estuarine mixing: kinetics mechanism and seasonality. Geochimica et Cosmochimica Acta, 1982, 46(12):2527-2535.
    [180] Lijklema L. Interaction of orthophosphate with iron III and aluminum hydroxides. Environ. Sci. Technol., 1980, 14:537-541.
    [181]辛勤.固体化学催化剂研究方法.北京:科学出版社, 2004.
    [182]苏金明,王永利. MATLAB图形图像.北京:电子工业出版社, 2005.
    [183]张丽春,方红卫,府仁寿.一维非恒定非均匀泥沙数学模型研究.泥沙研究, 1998(3):81-85.
    [184]方红卫,王光谦.一维全沙泥沙输移数学模型及其应用.应用基础与工程科学学报, 2000, 8(2):154-164.
    [185]陈前海,方红卫,王光谦.三门峡库区一维非恒定非均匀泥沙输移数学模型.水科学进展, 2004, 15(2):160-164.
    [186]张德茹,梁志勇.不均匀沙细颗粒泥沙粒径对絮凝的影响试验研究.水利水运科学研究, 1994(1, 2):11-17.
    [187]吉俊峰,牛占,和瑞勇.激光法与传统法粒度级配回归模型的建立.人民黄河, 2007, 29(5):76-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700