用户名: 密码: 验证码:
软土卸荷力学特性及软弱地层中基坑稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国大中城市的发展,城市能够利用的土地资源迅速减少,迫使城市开始往三维空间发展,城市地下空间的开挖利用越来越受到重视,城市轨道交通及城市地下空间综合开发利用项目在国内各大城市开展。而我国大中城市主要分布在沿海和河流中下游及湖泊附近地区,主要地基基础为软土,因此,开展各种开挖条件下软土力学特性研究对城市的地下空间开发利用具有十分重要的意义。其次,基坑工程作为地下空间开发的一个重要手段,对软弱地层中基坑工程的稳定性深入开展研究迫在眉睫,因此,进行软土基坑试验研究以及数值分析,探讨基坑工程的变形、安全、稳定,同样具有十分重要的理论和实际意义。鉴于此,本文定义土体只要有一个方向的应力减小就为卸荷,针对珠三角州相沉积的典型灰黑色淤泥质软土及软土开挖工程进行了系统研究,主要研究内容与成果如下:
     1.为分析开挖工程中土体的侧向卸荷行为,对原状土样进行了侧向卸荷条件下的三轴剪切试验,结果表明:(1)侧向卸荷下土体的强度明显小于轴向加荷下的土体强度,即土体在侧向约束减小后所能承受的剪应力将降低;(2)在侧向卸荷时由于土体产生负孔隙水压力,使得有效应力强度反而低于总应力强度,与轴向加荷条件下的强度规律相反;(3)侧向卸荷条件下软土在p-q平面上的屈服条件满足Drucker-Prager模型的屈服条件;(4)建立侧向卸荷条件下的卸荷变形模量计算公式。
     2.为分析开挖工程中施工过程或施工间歇对基坑稳定的影响,进行了不同卸荷路径下三轴卸荷流变试验,结果表明:(1)若土体为侧向卸荷而轴向荷载不变,此时土体的卸荷流变变形表现为压缩变形;即使在偏应力较小时,土体的总变形较小,但蠕变变形仍不可忽略;随着偏应力的进一步增大,应变随着偏应力的施加迅速发展直至土样产生鼓型破坏;(2)若土体为轴向卸荷或轴向侧向同时卸荷,则土体在仅发生轴向卸荷时产生明显的滞后回弹变形,且随平均固结压力的增大愈显著;而土体在轴向与侧向均卸荷路径下,土体产生剪切变形,无明显的流变特征,但在该路径下土体出现了负孔压,且卸荷压力越大,负孔压极值越大;(3)不论是何种卸荷路径,应变率与时间的双对数关系均为线性关系,因此,可建立软土卸荷流变模型为(?)=bt~m,其中b与m为流变参数,与卸荷路径、应力水平相关。
     3.为分析开挖工程中土体的回弹行为,进行了不同卸荷路径、不同预压荷载条件下的一维压缩回弹试验,结果表明:(1)含水量、卸荷路径下对软土回弹模量的影响不大,而卸荷比、预压荷载越大,土体回弹将越明显;若卸荷比一定,则回弹变形与预压荷载成反比;(2)孔隙比、预压荷载与荷载之间存在相应的经验关系;(3)土体的回弹变形存在临界卸荷比R=0.8,当R<0.8,土体的回弹率很小;(4)次回弹系数随卸荷比增大而增大;(5)土体的回弹模量具有时效性,随卸荷比、时间、预压荷载而不断变化,回弹模量随着时间的增长而迅速减小,约在10min处达到稳定值。
     4.为分析开挖工程中土体的渗透特性,进行了不同卸荷条件下的渗透试验,结果表明:(1)土体在不同初始固结压力下的逐级卸荷时,渗透系数将随卸荷比不同而随之变化,当卸荷比R<0.8时,渗透系数变化不大,当R>0.8时,渗透系数开始随着土体的卸荷比增大而迅速增大;(2)卸荷路径对饱和软粘土的渗透特性基本没影响,但渗透系数受初始固结压力影响较大,初始固结压力越大,卸至同一级固结压力下的渗透系数反而越小。
     5.为分析开挖工程的破坏特征,针对一软弱基坑进行了模拟开挖及支护全过程的离心模型试验,试验中分别考虑了基坑的不同支护方式以及软土的强度等影响因素,获得了各种条件下的变形和破坏的最直观描述、以及深厚软土层中基坑工程稳定的基本条件。试验表明:(1)在有挡土墙无支撑支护情况下,随着基坑开挖深度的加大,基坑将由于挡土墙与坑侧土体变形过大而发生倾覆破坏,此时,坑侧土体大面积开裂,严重影响基坑的周边环境;挡土墙向坑内倾斜与坑侧土体发生侧向卸荷是坑侧土体发生沉降的主要原因;基坑开挖而引起的土体卸荷回弹变形是造成坑底土体隆起的主要原因;(2)在有挡土墙有支撑支护情况下,软土的强度对基坑的稳定性影响很大;随着基坑开挖深度的加大,基坑将由于坑底土体隆起变形过大、挡土墙向坑外倾斜、第1排支撑失去作用而使得基坑整个支护结构失稳破坏;造成基坑坑侧土体沉降的主要原因是挡土墙底部土体向坑内流动,同时这也是坑底土体产生隆起变形的主要原因之一;土体产生卸荷回弹变形是坑底土体发生隆起变形的另一主要原因。
     6.为了分析基坑开挖卸荷造成的周边土体应力偏转问题,对应力偏转造成的变形、强度问题进行探讨:(1)对开挖卸荷后基坑周边土体应力场进行理论分析,通过引入应力矢量比概念,建立考虑主应力轴偏转的应力矢量本构关系;(2)通过对不同大主应力方位角下软粘土剪切试验可知,大主应力发生偏转后,土体的应力-应变仍为双曲线型,可进行归一化处理;土体的强度将降低,且变形模量减小,表明在基坑工程中若不考虑应力的偏转,将降低工程的安全性;(3)建立土体初始变形模量随大主应力方位角变化的折减公式。
     7.基于前述室内试验结果和土工离心模型试验结果,对土工离心模型试验的原型基坑进行数值计算,结果表明:(1)不考虑应力偏转对土体变形与强度的影响下,计算所得到的变形规律与实测变形规律有相似性,但变形较小;在数值计算中,最大回弹位移发生在整个基坑的中部,而离心试验中,坑底最大回弹位移发生在所进行试验的坑底的中部;坑侧土体的流变效应明显于坑底土体;软土基坑开挖卸荷后,基坑周边土体将发生不同程度的应力偏转;(2)为考虑应力偏转对土体变形的影响,对每一计算步后的变形模量进行折减,结果表明,考虑应力偏转效应后,基坑周边土体变形明显增大,且流变效应相对明显。
Available land in cities decreases rapidly with the development of cities,which forces the cities to develop toward three-dimensional spaces.The development of underground space becomes more and more important.The exploiture of railway traffic and underground space of big cities have been carried out.The big cities of our nation mainly distributed at coastland, middle or downward position of rivers and lake land,where soft soil is the main foundation subsoil.Therefore,the research of soft soil unloading behavior has a significant meaning to the exploiture of subterranean space in big cities.Besides,foundation ditch project is a key tool in underground space exploiture,and further research to the stability of foundation ditch project in weak underground becomes urgent.Therefore,it is important both in theoretical and practical meaning that we take experiments and numerical analysis to soft soil,discuss the deformation, safety and stability of foundation ditch project.This thesis carries out a systematic study on the typical grayer silt-like soft soil at triangle area and soft soil excavation.The main results are listed as follows:
     1.In order to analyze the lateral unloading behavior of soil excavating,triaxial-shear tests were taken to the intact sample.The results indicated that:(1) Soil that unloading a lateral load obviously had a lower strength than that undertaken a axial load,that is to say,the shear stress of soil decreased with the decrease of lateral restriction;(2) The effective stress strength was lower than the total stress strength because minus pore water pressure were produced under lateral unloading,which was opposite to the stress law under axial-loading condition;(3) Under the condition of lateral unloading,yielding condition of soil at p-q plane meet the yielding condition of Drucker-Prager model;(4) Calculation expressions of unloading deformation modulus under lateral unloading was established.
     2.In order to analyze the influence of construction process or intermission to the stability of foundation,triaxial unloading rheological tests under different unloading paths were carried out. The results indicated that:(1) The unloading rheological deformation of the soil was shown to be compress deformation if the soil undergone a lateral unloading while the axial loading was kept as a constant;The total deformation of the soil was slight under a small deviator stress,but the creep could not be ignored;The deformation developed rapidly when further increase the deviator stress,and drum-like destroy occurred;(2) Obvious hysteresis rebound deformation was observed,which increased obviously with the increase of average consolidation pressure;Shear deformation of the soil was observed if the soil was undergone both axial and lateral unloading; Without obvious rheological characters,minus pore pressure appeared which increased with the increase of unloading pressure;(3) There was a linear relationship between deformation ratio and logarithm of time whatever the unloading path was.A rheology model to the unloading of soft soil was built to be(?)=bt~m,where b and m are rheological parameters in relationship with unloading path and stress.
     3.In order to analyze the rebound behavior in excavating project,tests under different unloading paths and various pre-loading conditions were carried out.The results indicated that: (1) Water content and unloading path had little influence to the rebound modulus of soft soil; Rebound was obvious with the increase of unloading ratio and pre-loading;(2) Experiential relation was found between void ratio,pre-loading and loading;(3) There was a critical unloading ratio R=0.8 in soil rebound deformation.When R<0.8,the soil rebound ratio was low; (4) Secondary rebound coefficient increased with the increase of unloading ratio;(5) The soil rebound modulus was time dependent which varied with unloading ratio,time and pre-loading; Rebound modulus decreased with the increase of time,reaching a stable value at about 10 min.
     4.In order to analyze the permeability character of soil in excavating project,permeability test under various unloading conditions were carried out.The results indicated that:(1)When soil was unloaded at different pre-solidified pressure,permeability coefficient varied with the change of unloading ratio;When unloading ratio R<0.8,permeability coefficient varied slightly;when R>0.8,permeability coefficient increased rapidly with the increase of unloading ratio;(2) The unloading path had little influence to the permeability character of saturated soft clay.The permeability character was greatly influenced by initial consolidation pressure.The greater the pre-solidified pressure,the smaller the permeability coefficient under the same solidified pressure.
     5.In order to analyze the destroy character in excavating project,centrifugal model tests in the whole simulative excavation and support process were carried out.Factors such as support mode and soft soil strength were considered.Intuitionistic description of deformation and destruction under various conditions and basic conditions in the stability of foundation project in deep soft soil clay were obtained.The results indicated that:(1) With the increased depth of excavation,retaining wall and lateral soils deformation of the foundation ditch were too much, so the foundation ditch had overturn failure;At this time,and also cause a huge crack of the soil around the excavation,which would influence the surroundings of the foundation ditch;The retaining wall inclined toward the foundation ditch and soil around the foundation ditch had a lateral unloading were the main reasons for the settlement occurs on lateral soils;The basal heave deformation of soil under the foundation ditch were main caused by the soil unloading rebound deformation;(2) In the retaining wall supporting with bracing,strength of soft soil on the foundation ditch of a great influence on the stability;With the increased depth of excavation, basal heave had excessive deformation,retaining wall to the excavation outside the tilt,No.1 platoon support lost its effect,so the foundation ditch was damage caused by the entire supporting structure failure;the main factor that caused the settlement of the foundation ditch lateral soils was the flow of soil under the retaining wall toward the excavation,which was also one of the reasons that cause the basal heave deformation under the excavation;Another reason which caused the basal heave deformation under the excavation was the unloading rebound deformation of the soil after the excavating of the soil above the excavation.
     6.The deformation caused by stress deflection and strength problems were discussed in order to analyze the deflection of surrounding soil caused by foundation excavating unloading: (1) Theoretical analysis was carried out to the surrounding soil after foundation excavating unloading;Through the introduction of stress vector ratio,stress vector constitutive relationship was built considering primary stress axial deflection;(2) Through the shear tests of soft soil under different primary stress azimuth angles,we could get the conclusion that after the primary stress deflection,the relationship between stress and strain was hyperbola,which was unitary; The strength and the deformation modulus of the soil decreased,which indicated that the security of the project was decreased if the stress deflection of the foundation project was neglected;(3) The reduction formula on the relation between soil initial deformation modulus and the primary stress azimuth angles was built.
     7.Numeric simulation was carried out to archetypal foundation in centrifugal model tests based to the test results and centrifugal model results obtain above.The results indicated that:(1) Without the influence of stress deflection to soil deformation and strength,the deformation law calculated was similar to the results measured,but the deformation was small;The biggest displacement happen in the middle of the whole foundation in numeric simulation,while in centrifugal tests the biggest displacement happen in the middle of the foundation measured; Rheology effect of the soil on the side of the foundation was more obvious than the soil under the foundation;The surrounding soil of the foundation had various deformation deflection after foundation excavating unloading;(2) The reduction of deformation modulus was carried out aider every calculation in order to consider the influence of stress deflection to soil deformation; The results indicated that when the stress deflection effect was considered,the soil deformation around foundation increased greatly and rheology effect became obvious.
引文
[1]刘国彬,侯学渊.软土的卸荷模量[J].岩土工程学报.1996,18(6):18-23.
    [2]刘国彬,侯学渊.软土的卸荷应力.应变特性[J].地下工程与隧道.1997,2:16-23.
    [3]何世秀,韩高升,庄心善等.基坑开挖卸荷土体变形的试验研究[J].岩土力学.2003,24(1):17-20.
    [4]郑刚,颜志雄,雷华阳等.天津市区第一海相层粉质黏土卸荷变形特性的试验研究[J].岩土力学.2008,29(5):1237-1242.
    [5]何世秀,朱志政,杨雪强.基坑土体侧向卸荷真三轴试验研究[J].2005.,26(6):869-872.
    [6]庄心善.深基坑开挖土体的卸荷试验研究及有限元分析[D].武汉理工大学博士论文.2005,11.
    [7]李守德,张土乔,王保田,陆志发.天然地基土在基坑开挖侧向卸荷过程中的模量计算[J].土木工程学报.2002,35(5):71-74.
    [8]葛卫春.基坑侧向卸荷应力路径及挡墙侧向变形研究[D].河海大学硕士学位论文.2001,1.
    [9]宰金珉,张云军,王旭东等.卸荷状态下黏性土的变形和强度试验研究[J].岩土工程学报.2007,29(9):1409-1412.
    [10]周健,王浩,蔡宏英,黄茂松.软土卸荷孔压特性的试验与理论计算分析[J].岩土工程学报.2002,24(5):556-559.
    [11]王绪民,何世秀、朱志政.软土卸荷孔压特性的试验研究[J].工程勘察.2006,10:17-21.
    [12]陈永福,曹名葆.上海地区软粘土的卸荷-再加荷变形特性[J].岩土工程学报.1990,12(2):9-18.
    [13]Mesri,G.& Ali,S.Undrained shear strength of glacial clay overconsolidated by desiccation[J].Geotechnique.1999,49(2):181-198.
    [14]Ladd,C.C.,Foott,R.,Ishihara,K.,Schlosser,F.& Poulos,H.G.Stress deformation and strength characteristics[C].In Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering,Tokyo,Japan,1977,2:421-494.
    [15]刘熙媛,闫澍旺,窦远明等.模拟基坑开挖过程的试验研究[J].岩土力学.2005,26(1):97-101.
    [16]Pio-Go Hsieh,Chang-Yu Ou,and Hui-Tzu Liu.Basal heave analysis of excavations with consideration ofanisotropic undrained strength of clay[J].Canadian Geotechnical Journal.2008,45:788-799.
    [17]程玉梅.卸荷状态下土工程性质变化机理探讨及试验研究[D].同济大学硕士学位论文.1999,12.
    [18]程相华.卸荷士体的强度特征[J].佳木斯大学学报(自然科学版).2000,18(3):234-238.
    [19]秦爱芳,刘绍峰,胡中雄.基坑软土强度变化特征及坑底施工安全控制[J].地下空间.2003,23(1):40-44.
    [20]孟凡丽,樊良本.深基坑中卸荷土体抗剪强度损失的研究[J].浙江建筑.2004,21(1):17-19.
    [21]秦爱芳,胡中雄,彭世娟.上海软土地区受卸荷影响的基坑工程被动区土体加固深度研究[J].岩土工程学报.2008,30(6):935-940.
    [22]潘林有,胡中雄.深基坑卸荷回弹问题的研究[J].岩土工程学报.2002.24(1):101-104.
    [23]常青,余湘娟,董卫军.软土卸荷次回弹变形特性研究[J].河海大学学报(自然科学版).2006,34(4):444-446.
    [24]师旭超,汪稔,韩阳.卸荷作用下淤泥变形规律的试验研究[J].岩土力学.2004,24(8):1259-1262
    [25]胡其志,何世秀,杨雪强.基坑开挖软土流变特性的试验研究[J].湖北工学院学报,2003,18(3):1-3.
    [26]傅艳华.基坑工程中土流变特性试验与数值模拟研究[D].南京工业大学硕士学位论文.2005,1.
    [27]刘国斌,贾付波.基坑回弹时间效应的试验研究[J].岩石力学与工程学报.2007,26(s1):3040-3044.
    [28]Olson,R,E..State of the art:Consolidation testing[R].Consolidation oF soils,Testing and Evaluation,ASTM STP 892,Yong,R,N,and Townsend,F.C.,Eds,Philadelphia,American Society for Testing and Material,7-10.
    [29]Moriwaki,T..Umehara,K..Method for determining the coefficient of permeability of clays[J].Geotechnical Testing Journal.2003,26(1):47-56.
    [30]Tavenas,F.,Leblond,P.,Jean P.,Leroueil,S..The permeability of natural of natural soft clays.Part Ⅰ:Methods of laboratory measurement[J].Canadian Geotechnical Journal.1983,20(4):629-644.
    [31]Been,K.,Sills,G.C..Self-weight consolidation of soft soils:an experimental andtheoretical study[J].Geotechniaque.1981,31(4):519-535.
    [32]Imail,G.Experimental studies on sendimentation mechanism and sediment formationof clay materials[J].Soil and Foundations.1981,21(1):7-20.
    [33]Fox,P.J.,Baxter,C.D.P..Consolidation properties of soil surries from hydraulic consolidation test[J].Journal of Geotechnical and Geoenvirnmental Engineerin.1997,123(8):770-776.
    [34]庄迎春.软土非单调压缩固结试验与理论研究[D].浙江大学.2005,1.
    [35]齐添.软土—维非线性固结理论与试验对比研究[D].浙江大学.2008,5.
    [36]叶正强,李爱群,杨国华,黄镇等.粘性土的渗透规律研究[J].东南大学学报.1999,29(5):121-125.
    [37]董邑宁.饱和粘土渗透特性的试验研究[J].青海大学学报.1999,17(1):6-9.
    [38]顺中华,高广远,王结虎.结构性对上海软土渗透系数影响的试验研究[J].探矿工程.2004(5):1-3.
    [39]赵维柄,施建勇.软土固结与流变.河海大学出版社[M].南京.1996,1l:2.
    [40]杨光华.深基坑支护结构的实用计算方法及其应用[M].地质出版社.北京.2005,5:48.
    [41]梁令枝,童华炜.广州软土工程特性对比研究[J].山西建筑.2007,33(35):101-102
    [42]曾国熙,潘秋元,胡一峰.软粘土地基基坑开挖性状的研究[J].岩土工程学报.1988,10(3):13-22
    [43]李守德.深基坑工程计算理论研究[D].河海大学硕士学位论文.2000,1.
    [44]刘维宁,张弥,华成.开挖作用对基坑周围地层工程性质的影响[J].岩石力学与工程学报.2002,21(1):60-64.
    [45]马石城.基坑开挖的弹塑性与流变分析及其应用[D].湖南大学博士学位论文.2001,5.
    [46]H.Matsuoka,Y.Suzuki,et al.A Constitutive Model for Soils Evaluating Principal Stress Rotation and Its Application to Some Deformation Problems[J].Soils and Foundations.1990,30(1):142-154.
    [47]刘元雪.含主应力轴旋转的土体一般应变关系[D].后勤工程学院博士学位论文.1997,7.
    [48]史宏彦.无粘性土的应力矢量本构模型[D].西安理工大学博士学位论文.2000,1.
    [49]Zdravkovic L,Jardine R J.The effect on anisotropy of rotating the principal stress axes during consolidation[J].Geotechnique,2001,51(1):69-83.
    [50]Towhata I,Ishihara K.Undrained strength of sand undergoing cyclic rotation of principal stress axes [J].Soils and Foundations,1985,25(2):135-147.
    [51]Wijewickreme,Dharma;Vaid,Yoginder P..Experimental observations on the response of loose sand under simultaneous increase in stress ratio and rotation of principal stresses[J].Canadian Geotechnical Journal.2008,45(5):597-610.
    [52]沈扬.考虑主应力方向变化的原状软粘土试验研究[D].浙江大学博士学位论文.2007.
    [53]沈扬,周建,龚晓南,刘汉龙.主应力轴循环旋转对超固结黏土性状影响试验研究[J].岩土工程学报,2008,30(10):1514-1519.
    [54]Terzaghi,K.Theoretical soil mechanics,Wiley,New York.1943.
    [55]Bjerrum,L.,and Eide.Stability of strutted excavations in clay[J].Geotechnique.1956,6:115-128.
    [56]Chang M F.Basal stability analysis of braced cuts in clay[J].Journal of Geotechnical and Geoenvironment Enigineering.ASCE.2000,126(3):276-279.
    [57]绉广电.基于一个上限分析分析方法的深基坑抗隆起稳定分析[J].岩土力学.2004,25(12):1873-1878.
    [58]Faheem H,Cai F,Ugai K,Hagiwara T.Two-dimensional base stability of excavations in soft soils using FEM[J].Computers and Geotechnics.2003,30(2):141-163.
    [59]Faheem H,Cai F,Ugai K,Hagiwara T.Three-dimensional base stability of rectangular excavations in soft soils using FEM[J].Computers and Geotechnics.2004,31:67-74.
    [60]Chen,S.L.;Lee,S.C.;Gui,M.W..Effects of rock pillar width on the excavation behavior of parallel tunnels[J].Tunneling & Underground Space Technology.2009,24(2):148-154.
    [61]Clough,G.W.,and Hansen,L.A.Clay anisotropy and braced wall behavior[J].J.Geotech.Eng.Div.,Am.Soc.Civ.Eng..1981,107(7):893-913.
    [62]Ukritchon B,Whittle A J,Sloan,S.W.Undrained stability of braced excavations in clay[J].Journal of Geotechnical and Geoenvironmental Engineering.ASCE.2003,129(8):738-755.
    [63]Davis,E.H.,and Christian,J.T..Bearing capacity of anisotropic cohesive soil[J].J.Soil Mech.Found.Div.,Am.Soc.Civ.Eng..1971,97(5):753-769.
    [64]韩国城,连镇营,姚仰平.一个适用于深基坑开挖的三维各向异性模型[J].水利学报.2002,11:14-19.
    [65]黄茂松,廖俊展,魏星,王卫东.软土应力各向异性及其对深基坑工程的影响[J].地下空间.2005, 1(4):502-505.
    [66]边亦海.基于风险分析的软土地区深基坑支护方案选择[D].同济大学.2007,5.
    [67]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社.1997.
    [68]夏明耀.多支撑地下连续墙入土深度的模拟试验研究[J].大坝观测与土工测试.1984.3:25-28.
    [69]张国霞,张乃瑞,张凤林.病房楼工程基坑回弹和地基沉降的观测分析[J].土木工程学报,1980,1(3):11-16.
    [70]张乃瑞,张凤林.北京部分高层建筑基坑回弹与整体变形分析-高层建筑地下结构及基坑支护[M].北京:宇航出版社.1994(8):248-254.
    [71]沈滨,张莉对大面积深基坑开挖回弹的分析与预估一高层建筑地下结构及基坑支护[M].北京:宇航出版社.1994(8):255-262.
    [72]陈永福.深基坑开挖回弹计算探讨[c].首届全国岩土工程博士学术讨论论文集,1990.
    [73]刘国彬,侯学渊.软土基坑隆起变形的残余应力法[J].地下工程与隧道.1996,2:2-7.
    [74]刘国斌,刘金元,徐全庆.基坑开挖引起的土体力学特性变化的试验研究[J].岩石力学与工程学报.2000,19(1):112-116.
    [75]LONG M.Database for retaining wall and ground movements due to deep excavations[J].Geotech and Geoenvir Engrg.2001,127:203-224.
    [76]窦华港,焦莹.深基坑基底回弹变形计算方法分析及上程验证.天津城市建设学院学报.2008.14(3):180-183.
    [77]刘小建,贾坚.地铁隧道上方基坑卸荷回弹及控制的试验和探讨[J].地下工程与隧道.2008,2:41-44.
    [78]Terzaghi,K.Theoretical Soil Mechanics[M].John Wiley& Sons,Inc..New York:1943.
    [79]M.S.Capse.Surface Settlement adjacent to Braced opened cuts[J].Proc.,ASCE.1966,92(4),51-59.
    [80]Peek,R.B.,Deep Excavation and Turmelings in Soft Grounf[C].Proc.7~(th) Int.Conf.on Soil Mech.And Found.Engin..State-of-the Art Reports.1966,3:225-290.
    [81]Imae Ishihare,K.Relations between process of cutting and uniqueness of solutions[J].Soils and Foundation.1970,10(3):50-65.
    [82]C.Y.OU,P.G.Hsieh and D.C.Chiou.Characteristics of ground surface settlement during excavation[J]Can.Geotech.J.1993,30.
    [83]C.Y.OU,P.G.Hsieh.Prediction of Ground Settlement Caused by Excavation[J].Paper submitted to GT.ASCE,1996.
    [84]Laefer,Debra Fern.Prediction and assessment of ground movement and building damage induced by adjacent excavation[D].University of Illinois at Urbana-Champaign,Ph.D..2001,36-553.
    [85]朱瑞钧,高谦,齐干.深层搅拌桩支护条件下基坑周边建筑物沉降[J].北京科技大学学报.2006,28(8):721-724.
    [86]Il'ichev,V.A.;Nikiforova,N.S.;Koreneva,E.B..Method for calculating bed deformations of buildings near deep excavations[J].Soil Mechanics & Foundation Engineering.2006,43(6):189-196.
    [87]商卫东,聂庆科,白冰,吴刚.深基坑开挖过程及空间效应影响的数值模拟[J].探矿工程(岩土钻掘工程).2009,1:34-37.
    [88]谢秀栋.软土地区深基坑施工变形安全性状的时间特性研究[D].同济大学博士论文.2007.11.
    [89]Clough GW.,Duncan J.M.Finite element analyses of retaining wall behavior[J].J.Soil Mech.Found.Div.,ASCE,1971,97(12):1657-1673.
    [90]H.D.Liu,C.C.Wang.Stress-strain-time funcation of clay[J].Journal of Geotechnical and Geoenvirmental Engineering.1998,4:289-296.
    [91]侍倩.流变性地层中的深基坑开挖的环境保护[D].武汉大学博士学位论文.2001,10.
    [92]傅艳华.基坑工程中土流变特性试验与数值模拟研究[D].南京工业大学硕士学位论文.2005.1.
    [93]N.Phienwej,P.K.Thakur,E.J.Cording.Time-Dependent Response of Tunnels Considering Creep Effect[J].International Journal of Geomechanics.2007,7:296-306.
    [94]张冬梅,黄宏伟,王箭明.软土隧道地表长期沉降的粘弹性流变与固结耦合分析[J].岩石力学与工程学报.2003,(S1):2359-2362.
    [95]袁静,龚晓南,刘兴旺,益德清.软土各向异性三屈服面流变模型[J].岩土工程学报.2004,1:88-94.
    [96]华北水利水电学院研究生部.GBJ 145-90,土的分类标准[S],北京:中国计划出版社,1991.
    [97]李榴芬.珠江三角洲软土微结构的扫描电镜研究[J].中山大学学报.2001,40(4):102-105.
    [98]周翠英,牟春梅.珠江三角洲软土分布及其结构类型划分[J].中山大学学报.2004,43(6):81-84.
    [99]庄心善,赵鑫,何世秀等.排水条件下卸荷土体变形特性的真三轴试验研究[J].岩土力学.2007,28(7):1387-1390.
    [100]Roscoe K H,Schofield A N,Thurairajah.Yielding of clays in state wetter than critical[J].Geotechnique.1963,13.
    [101]何俊,肖树芳.结合水对海积软土流变性质的影响[J].吉林大学学报(地球科学版).2003,33(2):204-207.
    [102]付艳斌.考虑卸载扰动状态的3D弹粘塑性本构模型及其应用[D].同济大学博士学位论文.2007,10.
    [103]吴世明,陈龙珠.饱和土的泊松比及含气量对它的影响[J].水利学报.1989,1:37-43.
    [104]王立忠,李玲玲.结构性软土非线弹性模型中泊松比的取值[J].水利学报.2006,37(2):150-159.
    [105]徐志伟,赵江倩.围压增大条件下淤泥土弹性模量及侧向变形特性的真三轴试验研究[J].岩土工程技术.2000,4:226-229.
    [106]孔益振,邵龙潭.基于局部与整体变形测量的粉土泊松比试验研究[J].岩土工程学报.2006,28(8):1033-1038.
    [107]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [108]龚晓南.高等土力学[M].杭州:浙江大学出版社,2006.
    [109]李成全等.自压式三轴渗透仪的研制[J].辽宁工程技术大学学报.2006,25(S):124-125.
    [110]曹文炳,李克文等.研究粘性土释水和渗透特性的多用途渗透固结试验装置[J].水文地质工程地质.1986,(4):44-47.
    [111]曹文炳,万力等.水位变化条件下粘性土渗流特征试验研究[J].水文地质工程地质.2006,(2):118-122.
    [112]谢康和.潇山饱和软粘土的渗透性试验研究[J].岩土工程学报.2005,27(5):591-594.
    [113]邢建营.土工离心模型试验技术的研究和应用[D].西北农林科技大学硕士论文.陕西.2005.
    [114]左东启.相似理论20世纪的演进和21世纪的展望[J].水利水电科技进展.1997,2:10-15.
    [115]Biot.A,General Theory of Three-Dimensional Consolidation[J],J.of Applied Phys.,1941,12.
    [116]徐光明,章为民.离心模型中粒径效应和边界效应研究[J],岩土工程学报.1996,18(3):80-86.
    [117]Ovesen.N.K.The Use of Physical Models in Design:the Scaling Law Relationships[A].7~(th)European Conf.on Soil Mechanics and Foundation Engineering.Brighton[C],1979,4:318-323.
    [118]多贺谷宏三,Scott.R.F.,纲干寿夫.Scale Effect in Anchor Pullout Test by Centrifuge Technique[A],土质工学会论文报告集[C],1988,28(3).
    [119]白冰,周健.土工离心模型试验技术的一些进展[J],大坝观测与土工测试,2001,25(1):36-39.
    [120]包承刚,饶锡保.土工离心模型试验原理[J].长江科学院院报.1998,15(2):2-7.
    [121]Malushitsky.Y.N.The Centrifuge Model Testing of Waste-heap Embankments[D].London:Cambridge University Press.1975:5-11.
    [122]Santamarina.J.C,Goodings.D.J,Centrifuge Modeling:a Study of Similarity[J].Geotechnical Testing Jr.1989,12(2):163-166.
    [123]Ovesen.N.K..The Use of Physical Models in Design:the Scaling Law Relationships[A].7~(th)European Conf.on Soil Mechanics and Foundation Engineering.Brighton[C].1979,4:318-323.
    [124]侯瑜京.高土石坝离心模型试验技术及位移反分析研究[D].中国水利水电科学研究院博士论文.1996.
    [125]宰金珉,宰金璋.高层建筑基础分析与设计[MI.北京:中国建筑工业出版社.1993.
    [126]胡蒙达.深基坑工程开挖土体移动的准解析解研究[D]同济大学博士学位论文.2000,5.
    [127]Kung,Gordon Tung-Chin,Hsiao,Evan Cheng-Liang,Juang,C.Hsein.Evaluation of a simplified small-strain soil model for analysis of excavation-induced movements[J].Canadian Geotechnical Journal.2007,44(6):726-736.
    [128]Gr(a|¨)be,P.J.,Clayton,C.R.I..Effects of Principal Stress Rotation on Permanent Deformation in Rail Track Foundations[J].Journal of Geotechnical & Geoenvironmental Engineering.2009,135(4):555-565.
    [129]Lade,Poul V.,Nam,Jungman,Won Pyo Hong.Shear banding and cross-anisotropic behavior observed in laboratory sand tests with stress rotation[J].Canadian Geotechnical Journal.2008.45(1):74-84.
    [130]Yang,Z.X.;Li,X.S.;Yang,J..Undrained anisotropy and rotational shear in granular soil[J]. Geotechnique.2007,57(4):371-384.
    [131]史宏彦,白琳.平面应变条件下土的非共轴变形特性[J].广东工业大学学报.2007,24(3):84-87.
    [132]史宏彦,谢定义,汪闻韶.平面应变条件下主应力轴旋转产生的应变[J].岩土工程学报.2001,23(2):162-166.
    [133]冉龙,胡琦.粉砂地基深基坑渗透破坏研究[J].岩土力学.2009,30(1):241-245.
    [134]张志勇.分层开挖基坑影响建筑物沉降的数值模拟[J].山西建筑.2009,35(3):127-128.
    [135]Kirtas,Emmanouil;Rovithis,Emmanouil;Pitilakis,Kyriazis.Subsoil Interventions Effect on Structural Seismic Response.Part Ⅰ:Validation of Numerical Simulations[J].Journal of Earthquake Engineering.2009,13(2):155-169.
    [136]Tian,Yinghui;Cassidy,Mark J..Modeling of Pipe-Soil Interaction and Its Application in Numerical Simulation[J].International Journal of Geomechanics.2008,8(4):213-229.
    [137]Bergado,Dennes T.,Teerawattanasuk,Chairat.2D and 3D numerical simulations of reinforced embankments on soft ground[J].Geotextiles & Geomembranes.2008,26(1):39-55.
    [138]Ko.Yung-Yen;Hsu,Shang-Yi;Chen,Cheng-Hsing.Analysis for seismic response of dry storage facility for spent fuel[J].Nuclear Engineering & Design.2009,239(1) 158-168.
    [139]Kim,Nam-Il;Fu,Chung C.;Kim,Moon-Young.Dynamic stiffness matrix of non-symmetric thin-walled curved beam on Winkler and Pasternak type foundations[J].Advances in Engineering Software.2007,38(3):158-171.
    [140]赵杰,邵龙潭.深基坑土钉支护的有限元数值模拟及稳定性分析[J].岩土力学.2008,29(4):983-989.
    [141]黄茂松,宋晓宇,秦会来.K_0固结黏土基坑抗隆起稳定性上限分析[J].岩土工程学报.2008,30(2):250-254.
    [142]陈福全,吕艳平,刘毓氚.内撑式支护的软土基坑开挖抗隆起稳定性分析[J].岩土力学.2008,29(2):365-369
    [143]Hibbitte,Karlsson,Sorenson,INC.ABAQUS / Standard User's Manual[S].2002.
    [144]沈细中.深基坑工程基本过程数值模拟及实时优化研究[D].武汉大学博士学位论文,2004.
    [145]王金昌,陈页开.ABAQUS在土木工程中的应用[M].浙江大学出版社.杭州.2006.6.
    [146]Hibbit,Karlsson& Sorensen,Inc.ABAQUS Theory manual[S].2005.
    [147]J.Carlos Santamarina,Deborah J.Goodings.Centrifuge Modeling:A Study of Similarity[J].Geotechnical Testing Journal.1989,12(2):163-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700