用户名: 密码: 验证码:
土坡中抗滑桩抗震加固机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗滑桩是边坡加固的常用措施之一,地震作用及其诱发饱和地基液化往往导致加固结构破坏及滑坡;因此,研究边坡内抗滑桩抗震加固机理具有重要的学术意义与实用价值。本文研制了微混凝土抗滑模型桩,进行了一系列抗滑桩加固边坡的动力离心模型试验,开发了大变形三维动力固结有限元程序并对模型试验相应的原型进行了数值模拟分析,取得了以下主要研究成果:
     1.研制了更加严格满足相似关系的微混凝土抗滑模型桩,使之可以较好地反映原型钢筋混凝土桩动力响应和破坏特点,克服了采用高强度替代材料制作的模型桩在相似关系方面存在的问题,拓宽了微混凝土模型桩的应用范围。
     2.根据动力离心模型试验结果研究了无水条件下的边坡抗滑桩抗震加固效果及动力响应特点:桩径从小到大变化时,抗滑桩由静力断桩破坏到静力稳定动力断桩,再到桩体呈弹性动力响应,边坡变形和自振周期相应地由大逐渐减小,加固效果逐渐增强,抗滑桩内弯矩时空分布发生了本质性的变化。高桩位可更有效地发挥抗滑桩承载能力,抑制了坡顶地震变形,但坡脚位移相对较大;中桩位时坡顶位移较大,但坡脚位移较小。
     3.根据动力离心模型试验结果分析了饱和地基条件下无加固边坡与抗滑桩加固边坡的地震动力响应特点:前者由于饱和地基液化导致坡脚滑动,诱发边坡整体产生较大变形;后者虽然坡脚产生局部滑动,但由于抗滑桩加固效果良好,边坡变形相对较小,加固边坡整体较为稳定。与无水时相比,有水时抗滑桩动力附加弯矩增幅较大;与低水位时相比,高水位条件下发生了滑坡和断桩;表明水位条件对边坡抗滑桩受力及加固效果的影响较为显著。
     4.利用Pastor-Zienkiewicz III广义塑性本构模型和饱和砂土固液两相体耦合动力固结理论,开发了大变形动力固结三维有限元程序。首先利用该程序对典型模型试验相应的原型进行了模拟,通过数值计算结果与试验结果的对比验证了所开发程序的可靠性。然后通过数值计算拓展了位移和超静孔压分布等动力响应信息,结合试验结果深入研究了地震过程中桩-土运动相互作用规律以及抗滑桩抗震加固机理。计算还可预测边坡抗滑桩动力断桩及断桩时刻等。
Earthquake-induced slope failures are popular in China and all over the world, and the stabilizing pile is one of the most common tools to prevent landslides. Therefore, the aseismic reinforcing mechanism of stabilizing piles in slope is an important topic in geotechnical earthquake engineering.
     In this paper, model concrete piles were produced, and a series of dynamic centrifuge model tests on pile-reinforced slopes were carried out, as well as a computer code was developed to analyze the three-dimensional dynamic consolidation problems. On the basis of the results of centrifuge modeling and numerical simulation, the aseismic reinforcing mechanism of stabilizing piles in slope was investigated. The main work and results are summarized as follows.
     1. A model concrete with similar mechanical properties as common concrete was designed to produce model piles. This kind of model piles is suitable for small scale model tests and can satisfy more strictly with the similarity criteria. Therefore, these model piles can reflect properly the dynamic response and failure characteristics of prototype reinforced concrete piles and overcome the model scale contradiction between the model and prototype resulting from the higher strength alternative materials, which are commonly used to make model piles.
     2. According to the results of dynamic centrifuge modeling, the aseismic effect and dynamic response of stabilizing piles in slope were investigated. Along with increasing the dimension of cross section of pile, the stable state of piles changes from statically failing to statically stable and dynamically failing then to dynamically stable, the deformation and nature period of the reinforced slope decreases, and the distribution of bending moment along pile changes essentially. This implies that the aseismic effect of stabilizing pile relies strongly on the dimension of cross section of pile. When the piles are installed near the crest of slope, the bearing capacity of piles can be mobilized sufficiently, while the deformation of the crest of slope is reduced effectively with the relatively large deformation of toe of slope. In contrast, when the piles are installed in the middle part of slope, the deformation of the crest of slope is bigger with the smaller deformation near the toe of slope.
     3. The dynamic behaviors of plain and pile-stabilized slopes with saturated subgrade were analyzed on the basis of dynamic centrifuge tests. In the former slope, the large deformation is induced by the slide of the toe of slope because of liquefaction of saturated subgrade during earthquake. The latter one maintains stable globally with smaller deformation because of the effective reinforcement of piles, although the toe of slope slides locally due to liquefaction of saturated subgrade. In contrast with the reinforced slope without water, the excess dynamic bending moment in piles increase sharply on condition that the subgrade is saturated. When the water level is high, landslide occurs and the piles break. This indicates that the water level has an important influence on the dynamic behavior and stabilizing effect of piles.
     4. A computer code for simulating three-dimensional dynamic consolidation with large deformation was developed based on the Pastor-Zienkiewicz III constitutive model for sand and Biot’s dynamic consolidation theory. The results of numerical simulation for the prototypes of some typical model tests, such as excess pore pressure, the response acceleration and the bending moments in piles during earthquake agreed well generally with those of experiments, so that the reliability of the numerical program went through the benchmark in the complicated condition. Then, by combination of the fields of deformation, excess pore pressure and moments of pile obtained form the calculation and the results of centrifuge modeling, the characteristics of the kinematic interaction between pile and soil and the aseismic reinforcing mechanism of stabilizing piles in slope were investigated. Moreover, the numerical analysis can predict the stable state of the stabilizing piles and the moment when the piles break during earthquake.
引文
[1]章在墉.地震危险性分析及应用.上海:同济大学出版社, 1996.
    [2]李忠生.地震危险区-黄土滑坡稳定性研究.北京:科学出版社, 2004.
    [3] The Great Hanshin Earthquake Disaster [OL]. http://gees.usc.edu/GEES/.
    [4] Preliminary Reports of the Taiwan-US Geotechnical Earthquake Engineering Reconnaissance Team [OL]. http://gees.usc.edu/GEES/.
    [5]黄河新闻网首页>本网专题>南亚地震>现场目击>正文克什米尔地震[OL].[2005-10-10]. http://www.sxgov.cn/.
    [6]佟恩宠,施耀新,曾圣福.唐山大地震天津市工程震害.天津:天津科学技术出版社出版, 1984.
    [7]沈聚敏,周锡元,高小旺,刘晶波.抗震工程学.北京:中国建筑工业出版社, 2000.
    [8]范立础.桥梁抗震.上海:同济大学出版社, 1997.
    [9]王良琛.混凝土坝地震动力分析.北京:地震出版社, 1981.
    [10]戈里坚布拉特(苏),蔡之瑞,陆干文译.水工道路与特种结构抗震设计.北京:地震出版社, 1981.
    [11]顾淦臣.土石坝地震工程.南京:河海大学出版社, 1989.
    [12]李国豪.桥梁结构稳定与振动.北京:中国铁道出版社, 1992.
    [13]李国豪.工程结构抗震动力学.上海:上海科技出版社, 1980.
    [14]郑永来,杨林德,李文艺,周健.地下结构抗震.上海:同济大学出版社, 2005.
    [15]山西新闻网首页>山西晚报>山西新闻>307国道太旧高速交通生命线灾害[OL]. [2006-03-28].http://www.daynews.com.cn/.
    [16] Ito T, Matsui T. Methods to estimate lateral force acting on stabilizing piles. Soils Found, 1975, 15(4): 43-59.
    [17] Ito T, Matsui T, Hong W P. Design method for stabilizing piles against landslide - one row of piles. Soils Found, 1981, 21(1): 21–37.
    [18] Ito T. Matsui T, Hong W P. Extended design method for multi-row stabilizing piles against landslide. Soils Found, 1982, 22(1): 1-13.
    [19] Poulos H G. Design of reinforcing piles to increase slope stability. Canadian Geotechnical Journal, 1995, 32(5): 808-818.
    [20] Lee C Y, Hull T S, Poulos H G. Simplified pile-slope stability analysis. Computers and Geotechnics, 1995, 17(1): 1-16.
    [21] Hassiotis S, Chameau J L, Gunaratne M. Design method for stabilization of slopes with piles. Journal of Geotechnical and Geoenvironmental Engineering. 1997, 123(4): 314-323.
    [22] Ausilio E, Conte E, Dente G. Stability analysis of slopes reinforced with piles.Computers and Geotechnics, 2001, 28(8): 591–611.
    [23]张友良,冯夏庭,范建海,方晓睿.抗滑桩与滑坡体相互作用研究.岩石力学与工程学报, 2002, 21(6): 839-842.
    [24]高永涛,张友葩,吴顺川.土质边坡抗滑桩机理分析.北京科技大学学报, 2003, 25(2): 117-123.
    [25]王建锋.抗滑桩阻力上下限解法.岩土工程学报, 2003, 25(4): 455-458.
    [26]戴自航.抗滑桩滑坡推力和桩前滑体抗力分布规律的研究.岩石力学与工程学报, 2002, 21(4): 517~521.
    [27]周德培,肖世国,夏雄.边坡工程中抗滑桩合理桩间距的探讨.岩土工程学报, 2004, 26(1): 132-135.
    [28]胡晓军,王建国.边坡加固工程中抗滑桩间距的确定.河海大学学报:自然科学版, 2007, 35(3): 330-333.
    [29]李仁平,陈仁朋,陈云敏.阻滑桩加固土坡的极限设计方法.浙江大学学报:工学版, 2001, 35(6): 618-622.
    [30]雷文杰,郑颖人,冯夏庭.滑坡治理中抗滑桩桩位分析.岩土力学, 2006, 27(6): 950-954.
    [31]王年香.被动桩与土体相互作用研究综述.水利水运科学研究, 2000, 3: 69-76.
    [32]于玉貞,鵜飼恵三,井田寿朗.抑止杭効果の三次元弾塑性FEMによる評価.第31回地盤工学研究発表会,日本,北海道.1996, (31): 396-397.
    [33] Cai F, Ugai K. Numerical Analysis of the stability of a slope reinforced with piles. Soils and foundations. 2000, 40(1): 73-84.
    [34] Won J, You K, Jeong S, Kim S. Coupled effects in stability analysis of pile–slope systems. Computers and Geotechnics, 2005, 32 (4): 304-315.
    [35]韦立德,杨春和,高长胜.基于三维强度折减有限元的抗滑桩优化探讨.岩土工程学报, 2005, 27(11): 1350-1352.
    [36]李荣建,于玉贞,李广信.抗滑桩加固三维非饱和土边坡整体稳定性分析.岩土力学, 2008, 29 (4): 968-972.
    [37] Wolf J P. Dynamic soil-structure interaction. Englewood Cliffs, Prentice-Hall, 1985.
    [38] Zhang C H, Wolf J P. Dynamic soil-structure interaction: current research in China and Switzerland. Amsterdam, New York: Elsevier, 1998.
    [39]房营光.岩土介质与结构动力相互作用理论及应用.北京:科学出版社, 2005.
    [40]孙树民.土-结构动力相互作用研究进展.中国海洋平台, 2001, 16(5): 31-37.
    [41]窦立军,杨柏坡,刘光和.土-结构动力相互作用几个实际应用问题.世界地震工程, 1999, 15(4): 62-68.
    [42]张建民,张嘎.土体与结构物动力相互作用研究进展.岩石力学与工程学报, 2001, 20(s1): 854-865.
    [43]吴从师,徐泽沛,陈昕.爆破地震作用下重力式挡土墙的稳定分析.岩石力学与工程学报, 2003, 22 (11): 1939-1942.
    [44] Huang C C, Chen Y H. Seismic Stability of Soil Retaining Walls Situated on Slope. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(1): 45-57.
    [45]李红军,迟世春,林皋.高心墙堆石坝坝坡加筋抗震稳定分析.岩土工程学报, 2007, 29(12): 1881-1887.
    [46] Ausilio E, Conte E, Dente G. Seismic stability analysis of reinforced slopes. Soil Dynamics and Earthquake Engineering, 2000, 19(3): 159–172.
    [47] Nouri H, Fakher A, Jones C J F P. Development of Horizontal Slice Method for seismic stability analysis of reinforced slopes and walls. Geotextiles and Geomembranes, 2006, 24(3): 175-187.
    [48] Ling H I, Leshchinsky D, Perry E B. Seismicdesignand performance of geosynthetic reinforced soil structures . Geotechnique, 1997, 47(5): 933-952.
    [49] Michalowski R L, You L. Displacements of reinforced slopes subjected to seismic loads. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(8): 685-694.
    [50]高伟农,高明.非线性土体桩土相互作用对高桩码头抗震设计影响的分析.港工技术, 1996, 4: 30-41,48.
    [51]衣伟.考虑桩土相互作用高桩码头单桩地震反应.港口工程, 1997, 4: 30-33.
    [52]年廷凯,栾茂田,郑德凤,崔春义.抗滑桩锚固深度的极限分析下限方法.水利学报, 2007, 38(6): 743-748.
    [53]姚熊亮,戴绍仕.港口工程结构物抗震.哈尔滨:哈尔滨工程大学出版社, 2004.
    [54]水运工程抗震设计规范JTJ 225-98,北京:人民交通出版社, 1999.
    [55] Finn W D L, Fujita N. Piles in liquefiable soils: seismic analysis and design issues. Soil Dynamics and Earthquake Engineering, 2002, 22(9-12): 731-742.
    [56]张建民.水平地基液化后大变形对桩基础的影响.建筑结构学报, 200,22(5): 75-78.
    [57]陈立新,王士川.抗滑桩的弹塑性理论分析.工业建筑, 1997, 27(7): 28-33.
    [58]胡庆安,夏永旭,赵子胜.抗滑桩滑坡治理工程数值模拟研究.长安大学学报(建筑与环境科学版), 2003, 20(4): 8-12.
    [59]张建华,谢强,张照秀.抗滑桩结构的土拱效应及其数值模拟.岩石力学与工程学报, 2004, 23(4): 699-703.
    [60]张建勋,陈福全,简洪钰.被动桩中土拱效应问题的数值分析.岩土力学, 2004, 25(2):174-178,184.
    [61]陈福全,侯永峰,刘毓氚.考虑桩土侧移的被动桩中土拱效应数值分析.岩土力学2007, 28(7): 1333-1337.
    [62] Chen C Y, Martin G R. Soil–structure interaction for landslide stabilizing piles. Computers and Geotechnics, 2002, 9(5): 363-386.
    [63] Martin G R, Chen C Y. Response of piles due to lateral slope movement. Computers & Structures, 2005, 83(8-9): 588-598.
    [64] Xu K J, Poulos H G. 3-D elastic analysis of vertical piles subjected to“passive”loadings. Computers and Geotechnics, 2001, 28(5): 349-375.
    [65] Miao L F, Goh A T C, Wong K S, Teh C I. Three-dimensional finite element analyses of passive pile behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(7): 599-613.
    [66]梁青槐.土-结构动力相互作用数值分析方法的评述.北方交通大学学报, 1997, 21(6): 690-694.
    [67]肖晓春,迟世春,林皋,约翰·艾法罗.地震荷载下桩土相互作用简化计算方法及参数分析.大连理工大学学报, 2002, 42(6): 719-723.
    [68] Maheshwari B K K, Truman Z, Naggar M H E, Gould P L. Three-dimensional nonlinear analysis for seismic soil–pile-structure interaction. Soil Dynamics and Earthquake Engineering, 2004, 24(4): 343-356.
    [69] Takewaki I, Kishida A. Efficient analysis of pile-group effect on seismic stiffness and strength design of buildings. Soil Dynamics and Earthquake Engineering, 2005, 25(5): 355-367.
    [70] Sivathasan K, Li X S, Muraleetharan K K, Yogachandran C, Arulanandan K. Application of three numerical procedures to evaluation of earthquake-induced damages. Soil Dynamics and Earthquake Engineering, 2000, 20(5-8): 325-339.
    [71] Seed H B, Knneth L L, Faiz I B. Dynamic analysis of the slide in the lower San Fernando Dam During the earthquake of the Februay 9 1971. ASCE, 1975, Proc. No.GT9.
    [72]徐志英,沈珠江.地震液化的有效应力二维动力分析方法.华东水利学院学报, 1981. 9(3): 1-14.
    [73]周健,徐志英.土(尾矿)坝的三维有效应力的动力反应分析.地震工程和工程振动, 1984, 4(3): 60-70.
    [74]徐志英.土坝地震孔隙水压力产生、扩散和消散的有限元法动力分析.华东水利学院学报, 1981, 4: 1-16.
    [75]徐志英,周健.土坝地震孔隙水压力产生、扩散和消散的三维动力分析.地震工程与工程振动, 1985, 5(4): 58-72.
    [76]盛虞,卢盛松,姜朴.土工建筑物动力固结的耦合振动分析.水利学报, 1989, 12:31-42.
    [77] Klar A, Baker R, Frydman S. Seismic soil–pile interaction in liquefiable soil. Soil Dynamics and Earthquake Engineering, 2004, 24 (8): 551-564.
    [78] Klar A, Frydman S, Baker R. Seismic analysis of infinite pile groups in liquefiable soil. Soil Dynamics and Earthquake Engineering, 2004, 24(8): 565-575.
    [79]张建民,王刚.考虑地基液化后大变形的桩-土动力相互作用分析.清华大学学报(自然科学版) 2004, 44(3): 429-432.
    [80] Biot M A. General theory of three-dimensional consolidation, J. Appl. Phys., 1941, 12:155-164.
    [81] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid, J. acoust. Soc. Am., 1956, 28: 168-191.
    [82] Hardin B O, Drnevich V P. Shear modulus and damping in soils: measurement and parameter effects. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 1972, 6(98)
    [83]谢定义.土动力学.西安:西安交通大学出版社, 1988.
    [84]张克绪.土动力学.北京:地震出版社, 1989.
    [85]吴世明.土动力学.北京:中国建筑工业出版社, 2000.
    [86]周健,白冰,徐建平.土动力学理论与计算.北京:中国建筑工业出版社, 2001.
    [87] Dafalias Y E, Popov E P. A model of nonlinearly hardening materials for complex loading. Acta Mech., 1975, 21(3): 173-192.
    [88] Dafalias Y E, Herrmann L R. A bounding surface soil plasticity model. Int. Symp. Soils Cyclic Transient Loading, 1980, 1: 335-345.
    [89] Prevost J H. A simple plasticity theory for frictional cohesionless soils. Soil Dynamics and Earthquake Engineering, 1985, 4(1): 9-17.
    [90] Wang Z L, Dafalias Y F, Shen C K. Bounding surface hypoplasticity model for sand. Journal of Engineering Mechanics, 1990, 116(5): 983-1001.
    [91] Mroz Z, Zienkiewicz O C. Uniform formulation of constitutive equaitons for clays and sands, Mechanics of Engineering Material, Desai, C. S. and Gallagher, R. H. (eds), Willey, 1984, ch.22: 415-449.
    [92] Zienkiewicz O C, Mroz Z. Generalized plasticity formulation and application to geomechanics.Mechanics of Engineering Material, Desai, C. S. and Gallagher, R. H. (eds), Willey, 1984, ch.33: 655-679.
    [93] Zienkiewicz O C, Leung K H, Pastor M. Simple model for transient soil loading in earthquake analysis: I. Basic model and its application, International Journal for Numerical and Analytical Methods in Geomechanics, 1985,(9): 453-476.
    [94] Pastor M, Zienkiewicz O C. Leung K H. Simple model for transient soil loading in earthquake analysis: II. Non-associative models for sands, International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9 (5): 477-498.
    [95] Pastor M, Zienkiewicz O C, Chan A H C. Generalized plasticity and the modeling of soil behavior. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, Vol.14: 151-190.
    [96] Zienkiewicz O C, Chan A H C, Pastor M, Schrefler B A, Shiomi T. Computational Geomechanics with Special Reference to Earthquake Engineering[M]. New York: John Wiley & Sons, 1998.
    [97] Zienkiewicz O C, Taylor R L. Finite Element Method, 4th edition, Vol.2:238. (2005) .
    [98] Zienkiewicz O C, Shiomi T. Dynamic behavior of saturated porous media: the generalized Biot formulation and its numerical solution. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8: 71-96.
    [99]黄茂松,李进军.饱和多孔介质土动力学理论与数值解法.同济大学学报:自然科学版2004, 32(7): 851-856.
    [100]赵成刚,闫华林,李伟华,李亮.考虑耦合质量影响的饱和多孔介质动力响应分析的显式有限元法.计算力学学报, 2005,22(5): 555-561.
    [101]章根德,宁书城.地震载荷作用下土-结构相互作用的数值分析.地震学报, 1997, l9(4): 393-398.
    [102]王刚,张建民.波浪作用下某防沙堤的动力固结有限元分析.岩土力学, 2006, 27(4): 555-560.
    [103]吴敏敏.重力式码头震动响应规律研究[硕士学位论文].北京:清华大学水利水电工程系, 2006.
    [104]刘光磊.饱和地基中地铁地下结构地震反应机理研究. [博士学位论文].北京:清华大学土木工程系, 2006.
    [105]明海燕,李相菘. Lower San Fernando土坝破坏及加固的完全耦合分析.岩土工程学报2002 , 24(3): 294-300.
    [106]吴兴征,栾茂田,李相菘.复杂加载路径下堆石料动力本构模型及数值模拟.世界地震工程, 2001, 17 (01): 9-14 .
    [107]刘汉龙,吉合进.大型沉箱式码头岸壁地震反应分析.岩土工程学报, 1998, 20(2): 26-30.
    [108]汪明武,井合进,飞田哲男.栈桥式构筑物抗震性能动态离心模型试验的数值模拟.岩土工程学报, 2005, 27(7): 738-741.
    [109] Popescu R, Prevost J H, Deodatis G, Chakrabortty P. Dynamics of nonlinear porous media with applications to soil liquefaction. Soil Dynamics and Earthquake Engineering, 2006, 26(6-7): 648-665.
    [110]邵生俊.砂土的物态本构模型及应用.西安:陕西科学技术出版社, 2001.
    [111]林皋.土一结构动力相互作用.世界地震工程, 1991, 7(2): 4-21.
    [112]翟阳,韩国城.边坡对土坝稳定影响的振动台模型试验研究.烟台大学学报(自然科学与工程版), 1996, 4: 67-71.
    [113]孔宪京,刘君,韩国城.面板堆石坝模型动力破坏试验与数值仿真分析.岩土工程学报, 2003, 25(1): 26-30.
    [114]刘小生,王钟宁,汪小刚,赵剑明,刘启旺.面板坝大型振动台模型试验与动力分析.北京:中国水利水电出版社,知识产权出版社, 2005.
    [115]王志华,刘汉龙,陈国兴,高玉峰.土-结构相互作用效应对结构基底地震动影响的试验研究.地震工程与工程振动, 2005, 25(3): 132-137.
    [116]陈国兴,王志华,宰金珉.土与结构动力相互作用体系振动台模型试验研究.世界地震工程, 2002, 18(4): 47-54.
    [117]楼梦麟,王文剑,马恒春,朱彤.土-桩-结构相互作用体系的振动台模型试验.同济大学学报, 2001, 29(7): 763-768.
    [118]肖晓春,林皋,迟世春.桩-土-结构动力相互作用的分析模型与方法.世界地震工程, 2002, 18(4): 123-130.
    [119] Tokimatsu K, Suzuki H, Sato M. Effects of inertial and kinematic interaction on seismic behavior of pile with embedded foundation. Soil Dynamics and Earthquake Engineering, 2005, 25(7-10): 753-762.
    [120]孟上九,刘汉龙,袁晓铭,刘添华.可液化地基上建筑物不均匀震陷机制的振动台试验研究.岩石力学与工程学报, 2005, 24(11): 1978-1985.
    [121] Adachi Y, Miura K, Mihara M, Urano K. Model Shaking Table Test on the Damage to Pile Foundation in Earthquake-Induced Lateral Flow of Ground with Non-Liquefied Surface Layer. Proceedings of the International Offshore and Polar Engineering Conference, 2003: 1303-1308.
    [122] Cubrinovski M, Kokusho T, Ishihara K. Interpretation from large-scale shake table tests on piles undergoing lateral spreading in liquefied soils.Soil Dynamics and Earthquake Engineering, 2006, 26(2-4): 275-286.
    [123] Wu Z G, Han G C, Zhang D F. Dynamic model test studies of pile supported piers. Proc Second Int Offshore Polar Eng Conf, 1992: 371-375.
    [124]杨明,姚令侃,王广军.昔格达地层滑坡抗滑桩加固离心模型试验研究.公路, 2006, 11: 1-5.
    [125]张良,魏永幸.基于离心模型试验的斜坡软弱土地基路堤加固方案研究.铁道工程学报, 2004, 1: 73-76,64.
    [126] Goh A T C, Teh C I, Wong K S. Analysis of piles subjected to embankment induced lateral soil movements. Journal of Geotechnical and Geoenvironmental Engineering, 1997,123(9): 792-801.
    [127] Wei R L, Tu Y M. Preliminary study on interaction between pile-supported pier and bank slope. Centrifuge 91, 1991: 193.
    [128] Mezazigh S, Levacher D. Laterally loaded piles in sand: Slope effect on P-Y reaction curves: Canadian Geotechnical Journal, 1998, 35(3): 433-441.
    [129]杨明,姚令侃,王广军.抗滑桩宽度与桩间距对桩间土拱效应的影响研究.岩土工程学报, 2007, 9(10): 1477-1482.
    [130] Schofield A N. Dynamic and earthquake geotechnical centrifuge modelling. // Proc. Int. Conf. Recent Adv. Geotech. Earthquake Engng Soil Dyn, (1981)Rolla 3: 1081-1100.
    [131]王年香,章为民.混凝土面板堆石坝动态离心模型试验研究.岩土工程学报, 2003, 25(4): 504-507.
    [132] Kutter B L, James R G. Dynamic centrifuge model tests on clay embankments. Geotechnique, 1989, 39(1): 91-106.
    [133] Hayashi H, Nishikawa J, Taniguchi K. Seismic behavior of road embankment. Centrifuge 98, 1998: 243-248.
    [134] Madabhushi S P G, Haigh S K, Subedi B R. Seismic behavior of steep slopes. A A Balkema, Proc. Physical Modeling in Geotechnics-ICPMG’02. Rotterdam, 2002: 489-494.
    [135] Ng C W W, Li X S, Van Laak P A, et al. Centrifuge modeling of loose fill embankment subjected to uni-axial and bi-axial earthquakes. Soil Dynamics and Earthquake Engineering, 2004, 24(4): 305-318.
    [136]于玉贞,邓丽军,李荣建.砂土边坡地震动力响应离心模型试验.清华大学学报:自然科学版, 2007, 47(6): 789-792.
    [137] Muraleetharan K K, Arulanandan K. Dynamic behavior of earth dams containing stratified soils. Proceedings of the International Conference centrifuge 91, Boulder,1991: 401-408.
    [138] Lee F H, Schofield A N. Centrifuge modeling of sand embankments and islands in earthquakes. Geotechnique, 1988, 38(1): 45-58.
    [139] Zeng X, Arulanandan K. Modeling lateral sliding of slope due to liquefaction of sand layer. Journal of Geotechnical Engineering, 1995, 121(11): 814-816.
    [140] Taboada-Urtuzuastegui V M, Martinez-Ramirez G, Abdoun T. Centrifuge modeling of seismic behavior of a slope in liquefiable soil. Soil Dynamics and Earthquake Engineering, 2002, 22(9-12): 1043-1049.
    [141] Ghosh B, Madabhushi S P G. Centrifuge modelling of seismic soil structure interaction effects. Nuclear Engineering and Design, 2007, 237(8): 887-896.
    [142] Boulanger R W, Curras C J, Kutter B L, et al. Seismic soil-pile-structure interaction experiments and analyses. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 750-759.
    [143] Taji Y, Sato M, Yanagisawa E. Modeling of a prototype soil-pile-structure system during seismic ground liquefaction. Centrifuge 98, 1998: 283~288.
    [144]苏栋,李相菘等.可液化土中单桩地震响应的离心机试验研究.岩土工程学报, 2006, 28(4): 423-427.
    [145]汪明武, Tetsuo T, Susumu I.强震动条件下的桩土相互作用动态土工离心试验研究.岩石力学与工程学报, 2005, 24(s2): 5555-5560.
    [146] Abdoun T, Dobry R. Evaluation of pile foundation response to lateral spreading. Soil Dynamics and Earthquake Engineering, 2002, 22(9-12): 1051-1058.
    [147] Abdoun T, Dobry R. Pile response to lateral spreads: centrifuge modeling.Journal of Geotechnical and Geoenvironmental engineering, 2003, 129(10): 869-878.
    [148] Finn W D L. A study of piles during earthquakes: issues of design and analysis. Bulletin of Earthquake Engineering. 2005, 3:141-234. Springer 2005.
    [149] Brandenberg S J, Boulanger R W, Kutter B L,Chang D. Behavior of pile foundations in laterally spreading ground during centrifuge tests. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1378-1391.
    [150] Brandenberg S J, Boulanger R W, Kutter B L, Chang D. Observations and analysis of pile groups in liquefied and laterally spreading ground in centrifuge tests. ASCE, Geotechnical Special Publication, 2006, No.145: 161-172.
    [151] Boulanger R W, Tokimatsu K. Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground. ASCE, Geotechnical Special Publication, 2006, No.145: 328.
    [152] Knappett J A, Gopal M S P. Modelling of liquefaction-induced instability in pile. ASCE, Geotechnical Special Publication, 2006, No.145: 255-267.
    [153] Roessig N, LiliSitar, Nicholas. Centrifuge model studies of the seismic response of reinforced soil slopes.Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(3): 388-400.
    [154] Tufenkjian M R, Vucetic M. Dynamic failure mechanism of soil-nailed excavation models in centrifuge. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(3): 227-235.
    [155] Ling H I, Liu H B, Kaliakin V N, Leschchinsky D. Analyzing dynamic behavior of geosynthetic-reinforced soil retaining walls. Journal of Engineering Mechanics, 2004, 130(8): 911-920.
    [156] Satoh H, Ohbo N, Yoshizako K. Dynamic test on behavior of pile during lateral ground flow. Centrifuge 98, 1998: 327-332.
    [157]于玉贞,邓丽军.抗滑桩加固边坡地震响应离心模型试验.岩土工程学报, 2007, 29 (9): 1320-1323.
    [158] Lee C J. Centrifuge modeling of the behavior of caisson-type quay walls during earthquakes. Soil Dynamics and Earthquake Engineering, 2005, 25(2): 117-131.
    [159] Dewoolkar M M, Ko H Y, Park R Y S, et al. Seismic behavior of cantilever retaining walls with liquefiable backfills. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(5): 424-435.
    [160] Takahashi A, Takemura J, Kawaguchi Y, et al. Stability of piled pier subjected to lateral flow of soils during earthquake. Centrifuge 98, 1998: 365-370.
    [161] Takahashi A, Takemura J. Liquefaction-induced large displacement of pile-supported wharf. Soil Dynamics and Earthquake Engineering, 2005, 25(11): 811-825.
    [162] Sabnis G M, Harris H G, White R N, Mirza M S. Structural Modeling and Experimental Techniques. Prentice-Hall, 1983.
    [163]李德寅,王邦楣,林亚超.结构模型实验.北京:科学出版社, 1996.
    [164]杨俊杰.相似理论与结构模型试验.武汉:武汉理工大学出版社, 2005.
    [165]龙驭球.弹性地基梁的计算.北京:人民教育出版社, 1981: 6-23.
    [166]黄义,何芳社.弹性地基上的梁、板、壳.北京:科学出版社, 2005: 26-48.
    [167] MorGain结构快速设计程序. Version2006. http//www. MorGain.com.
    [168] Lee F H. Centrifuge modeling of earthquake effects on sand embankments and islands. PhD thesis. Cambridge University. 1985.5.
    [169] Kamon M, Mimura M, Matsuda S, et al. Experimental studies on the seismic response of a gravity caisson quay wall. Centrifuge 98, Tokyo, 1998: 333-338.
    [170] Satoh T, Tsurugasaki K, Nagata T, et al. Deformation of caisson type quay wall during earthquake. Centrifuge 98, Tokyo, 1998: 339~344.
    [171] Katona M G, Zienkiewicz O C. A unified set of single step algorithms, Part 3: the Beta-m method, a generalization of the Newmark scheme. International Journal of Numerical Methods in Engineering, 1985, 21: 1345-1359.
    [172] Li Q. Development of a New Finite Element Program for Liquefaction Analysis of Soils and Its Application to Seismic Behavior of Embankments on Sandy Ground. PhD thesis. Gunma University. Japan, 1999.3.
    [173] Arulanandan K, Scott R F. Proceedings of verification of numerical procedures for the analysis of soil liquefaction problems, volume 1. Netherlands: A.A.Balkema Publishers, 1993.
    [174] Zienkiewicz O C, Chan A H C, Pastor M, Schrefler B A, Shiomi T. Computational Geomechanics with Special Reference to Earthquake Engineering. New York: John Wiley & Sons, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700