用户名: 密码: 验证码:
泥沙吸附重金属铜离子后表面形貌及结构特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然水体中的泥沙颗粒具有复杂的表面形貌,水体中的各种污染物质容易与其发生吸附-解吸作用,并随着泥沙颗粒的输移而迁移转化。污染物质被泥沙颗粒吸附后,一方面改变了水体中污染物浓度及污染物在泥沙颗粒表面的分布规律,以至影响水质模型的各种参数;另一方面,泥沙吸附污染物质后,其表面形貌也随之发生改变,使得自身的力学运动特性发生变化。泥沙颗粒对于污染物的吸附总量过去已有广泛地研究,但污染物被泥沙颗粒吸附后泥沙颗粒表面形貌的变化及污染物质在其表面的分布特性还缺乏研究,而这是研究泥沙颗粒与污染物质相互作用关系的基础。
     细颗粒泥沙的表面形貌及泥沙吸附重金属铜离子后的形貌改变是本论文研究的重点。研究手段主要包括电镜实验和吸附实验两个方面,其中电镜实验是通过拍摄干净泥沙和污染泥沙颗粒的外形轮廓和表面形貌,获得泥沙颗粒的形貌结构和表面特征;吸附-脱附实验是得到大量污染泥沙的研究样本。研究方法则采用统计方法与傅立叶形状分析方法,对各类泥沙形貌进行表述,定量分析天然沙、干净泥沙与污染泥沙的差异。
     通过上述研究表明:(1)泥沙颗粒的表面形貌十分复杂,基于傅立叶形状分析方法而建立的“数学泥沙”平台具有空间分析的能力,通过该平台可以提取、计算和分析泥沙颗粒的表面信息,是研究泥沙颗粒与污染物质相互作用关系的基础;(2)重金属铜离子被泥沙颗粒吸附后,颗粒表面有铜离子的聚积、其孔隙结构被铜离子所填充,颗粒的形貌和结构发生改变,包括表面积、总孔体积和孔径分布等结构特征,这些变化又将对泥沙运动产生影响;(3)通过X射线显微分析技术所提供的铜离子吸附后在泥沙颗粒表面的分布结果显示:铜离子的吸附点位主要位于泥沙颗粒的边脊和凹谷区域,这些区域的吸附能力与其表面的曲率有较好的相关关系。
The sediment particles in natural water have a complex surface morphology. Contaminants in water during transportation have been transformed with the sediment in the adsorption/desorption process. In the adsorption process, the concentration and distribution of contaminants on sediment particle surfaces changes, and parameters of water quality model are also influenced. On the other hand, the mechanisms of sedimentation are influenced because the sediment morphology changes. Research on sediments and pollutants in water emphasize the adsorption amount, but sediment particle morphology and the location of contaminants on the particle surface are the real foundation of sediment adsorption research. These factors have not been closely studied.
     This dissertation focuses on sediment morphology and especially morphology changes after copper ions are adsorbed. The field-emission scanning electron microscope (FESEM) is utilized to determine the surface structure and characteristic sediment particle morphology. The adsorption/desorption test is applied then to provide the samples for experiment. The description and quantitative analysis of natural, clean and polluted sand are then analyzed using statistical and Fourier Shape Analysis (FSA).
     The results of the research indicate that: (1)“Mathematical Sand”, built by FSA, can present sediment morphology and has excellent spatial analysis ability. It provides the sediment surface data and as the basis for calculation and analysis. Therefore, Mathematical Sand becomes a platform for sediment adsorption research. (2) As a result of sediment copper ion adsorption, copper ions accumulate on sediment surfaces and fill the pore structure. The sediment morphology and structure, including the surface area, total pore volume, and pore diameter distribution, undergo significant changes. Those changes impact sediment transportation. (3) X-ray microanalysis technology shows that the copper ions are adsorbed easily in the ridges and valleys of particle surfaces. The adsorption capacity of those morphology characteristics shows a good correlation with the surface curvature.
引文
[1]钱宁,万兆惠.泥沙运动力学.北京:科学出版社, 1983.
    [2]陈静生.河流水质原理及中国河流水质.北京:科学出版社, 2006.
    [3]王家生,陈立,刘林,等.阳离子浓度对泥沙沉速影响实验.水科学进展, 2005, 16(2):169-173.
    [4]王家生,陈立,王志国,等.含离子浓度参数的粘性泥沙沉速公式研究.水科学进展, 2006, 17(1):1-6.
    [5]黄荣敏,陈立,王家生,等.金属离子浓度对泥沙淤积干重度影响试验研究.长江科学院院报, 2006, 23(3):5-8.
    [6]蔡启铭.太湖环境生态研究(一).北京:气象出版社, 1998.
    [7]秦伯强,胡维平,高光,等.太湖沉积物悬浮的动力机制及内源释放的概念性模式.科学通报, 2003, 48(17):1822-1830.
    [8]李荣发.滇池入湖河道底质污染及防治对策研究.环境科学导刊, 2006, 26(3):5-7.
    [9]毛建忠,王雨春,赵琼美,等.滇池沉积物内源磷释放初步研究.中国水利水电科学研究院学报, 2005, 3(3):229-233.
    [10] McNown J S, Malaika J and Pramanik R. Particle shape and settling velocity, Trans., 4th Meeting of Intern. Assoc. Hyd. Res., Bombay, India. 1951:511-522.
    [11] Schulz S F, Wilde R H and Albertson M L. Influence of shape on the fall velocity of sedimentary particles. M. R. D. Sediment Series, No.5, Missouri River Div., U. S. Corps of Engrs. 1954:161.
    [12] Dietrich W E. Settling velocity of natural particles. Water Resource Research, 1982, 18(6):1615-1626.
    [13] Jose′A. Jime′nez, Ole S. Madsen. A simple formula to estimate settling velocity of natural sediments. Journal of Waterway, Port, Coastal and Ocean Engineering, 2003, 129(2):70-78.
    [14] Ahrens J. A fall-velocity equation. Journal of Waterway, Port, Coastal and Ocean Engineering, 2000, 126(2):99-102.
    [15] Guo J. Logarithmic matching and its applications in computational hydraulics and sediment transport Journal of Hydraulic Research, 2002, 40(5):555-565.
    [16] Camenen Beno?t. Simple and general formula for the settling velocity of particles. Journal of Hydraulic Engineering, 2007, 133(2):229-233.
    [17] Wentworth C K. The shapes of beach pebbles. U.S. Geol. Surv. Prof. Pap.,1922(131-C):75-83.
    [18] Wentworth C K. A method of measuring and plotting the shapes of pebbles. In: The shapes of Pebbles. U.S. Geol. Surv. Bull., 1922(730-C):91-102.
    [19] Wentworth C K. A field study of the shapes of river pebbles. In: The shapes of pebbles. Bull. U.S. Geol. Surv. , 1922(730-C):103-114.
    [20] Zingg T. Beitrag zur schotteranalyse. Schweiz. Mineral. Petrogr. Mitt., 1935, 15:39-140.
    [21] Sneed E D and Folk R L. Pebbles in the Lower Colorado River, Texas: a study in particle morphogenesis. J. Geol., 1958, 66:114-150.
    [22] Krumbein W C. Measurement and geological signifi-cance of shape and roundness of sedimentary particles. J. Sed. Petrol., 1941, 11:64-72.
    [23] Wentworth C K. A laboratory and field study of cobble abrasion. J. Geol., 1919, 27:507-521.
    [24] Wadell H. Volume, shape, and roundness of rock particles. J. Geol., 1932, 40:443-451.
    [25] Russell R D and Taylor R E. Roundness and shape of Mississippi River sands. J. Geol., 1937, 45:225-267.
    [26] Pettijohn F J. Sedimentary Rocks. New York: Harper and Brothers, 1949.
    [27] Powers M C. A new roundness scale for sedimentary particles. J. Sed. Petrol., 1953, 23: 117-119.
    [28] Kuenen P H. Experimental abrasion of pebbles.Ⅱ. Rolling by currents. J. Geol., 1956, 64:336-368.
    [29] Dobkins J E, Folk R L. Shape development on Tahiti-Nui. J. Sed. Petrol., 1970, 40:1167-1203.
    [30] Janoo V C. Quantification of Shape, Angularity and Surface Texture of Base Course Materials. US Army Corps of Engineers Cold Regions Research and Engineering Laboratory, NH, Special Report 98-1, 1998:22.
    [31] Riley N A. Projection sphericity. J. Sed. Petrol., 1941, 11:94-97.
    [32] Blott S, Pye K. Particle shape: a review and new methods of characterization and classification. Sedimentology, 2007, 55(1):31-63.
    [33] Aschenbrenner B C. A new method of expressing particle sphericity. J. Sed. Petrol., 1956, 26:15-31.
    [34] Corey A T. Influence of Shape on Fall Velocity of Sand Grains [MSc Thesis]. Colorado A&M College. 1949.
    [35] Janke N C. Effect of shape upon the settling velocity of regular convex geometric particles. J. Sed. Petrol., 1966, 36:370-376.
    [36] Williams E M. A method of indicating pebble shape with one parameter. J. Sed. Petrol.,1965, 35:993-996.
    [37] Goüs M, Ipekci O N and Kokpinar M A. Effect of Particle Shape on Fall Velocity of Angular Particles. Journal of Hydraulic Engineering, 2001, 27(10):860-869.
    [38] Barrett P J. The shape of rock particles, a critical review. Sedimentology, 1980, 27: 291-303.
    [39] Benn D I, Ballantyne C K. The description and representation of particle shape. Earth Surf. Proc. Land., 1993, 18:665-672.
    [40] Briggs L I, McCulloch D S and Moser F. Hydraulic shape of sand particles. J. Sed. Petrol., 1962, 32:645-656.
    [41] Illenberger W K. Pebble shape (and size!). J. Sed. Petrol., 1991, 61:756-767.
    [42] Hundal H S, Rohani S and Wood H C, et al. Particle Shape Characterization Using Image Analysis and Neural Networks. Powder Technology, 1997, 91:217-227.
    [43] Fridrun Podczeck. A Shape Factor to Assess the Shape of Particles Using Image Analysis. Powder Technology, 1997, 93:47-53.
    [44] Wang L B, Lai J S and Frost J D. Fourier morphological descriptors of aggregate profiles. 2nd Int. Conf. on Image Technology Applications in Civil Engineering. 1997.
    [45] Wang L B, Wang X R and Mohammad L, et al. Unified method to quantify aggregate shape angularity and texture using Fourier Analysis. Journal of Materials in Civil Engineering, 2005, 17(5):498-504.
    [46] Kaye B H, Clark G G. Fractal description of extra terrestrial fine particles. Particle and Particle Systems Characterization, 1985, 4:143-148.
    [47] Kaye B H, Leblanc J E and Abbot P. Fractal description of the structure of fresh and eroded aluminum shot fine particles. Particle and Particle Systems Characterization, 1985, 4:56-61.
    [48] Clark N N. Three techniques for implementing digital fractal analysis of particle shape. Powder Technology, 1986, 46(1):45-52.
    [49] Qi W H, Wang M P and Liu Q H. Shape Factor of Nonspherical Nanoparticles. Journal of Materials Science, 2005, 40:2737-2739.
    [50]张济忠.分形.北京:清华大学出版社, 1995.
    [51]文志英.分形几何的数学基础.上海:上海科技教育出版社, 2000.
    [52]沙震.分形与拟合.杭州:浙江大学出版社, 2005.
    [53] Mandelbrot B B. The fractal geometry of nature. San Francisco: Freeman, 1982.
    [54]徐满才,史作清,何炳林.分形表面及其性能.化学通报, 1994, 3:10-14.
    [55] Feder J. Fractals. New York: Plenum Press, 1988.
    [56] Pfeifer P, Avnir D. Chemistry in noninteger dimensions between two and threeⅠ:fractal theory of heterogeneous surface. Journal Chemistry Physics, 1983, 79:3558-3565.
    [57] Pfeifer P, Avnir D. Chemistry in noninteger dimensions between two and threeⅡ: fractal surface of adsorbents Journal Chemistry Physics, 1983, 79:3566-3571.
    [58] Avnir D, Frin D and Pfeifer P. Molecular fractal surface. Nature, 1984, 308(15):261-263.
    [59] Avnir D. The fractal approach to heterogeneous chemistry: Surface, colloids, polymers. New York: Wily, 1989.
    [60] Pfeifer P, Obert M.“Fractal: Basic concepts and terminology”, The fractal approach to heterogeneous chemistry. New York: John Wily & Sons, 1989.
    [61] Fumiaki Kan?, Ikuo Abe and Hiroshi Kamaya, et al. Fractal model for adsorption on activated carbon surfaces: Langmuir and Freundlich adsorption. Surface Sciece, 2000, 467:131-138.
    [62]晁晓波,赵文谦,邱大洪.表面分形原理在研究泥沙吸附乳化油特性中的应用.水利学报, 1997, 9:1-5.
    [63]王毅力,芦家娟,周岩梅,等.沉积物颗粒表面分形特征的研究.环境科学学报, 2005, 25(4):457-463.
    [64]赵旭,王毅力,郭瑾珑,等.颗粒物微界面吸附模型的分形修正---朗格缪尔(Langmuir)、弗伦德利希(Freundlich)和表面络合模型.环境科学学报, 2005, 25(1):52-57.
    [65]陈静生主编,水环境化学.北京:高等教育出版社, 1987.
    [66]刘静宜,汪安璞,彭安,等.环境化学.北京:中国环境科学出版社, 1987.
    [67]何燧源,金云云.环境化学.上海:华东化工学院出版社, 1989.
    [68]朱文涛.物理化学下册.北京:清华大学出版社, 1995.
    [69] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 1918, 40:1361.
    [70] Freundlich H. Colloid and capillary chemistry. London: Methuen & Co. Ltd, 1926.
    [71]金相灿,徐南妮,吴淑岱,等.湘江悬浮沉积物对重金属的吸附、解吸动力学研究.环境中重金属研究文集.北京:科学出版社,1988.
    [72] Mellah A, Chegrouche S. The removal of zinc form aqueous solutions by natural bentonite. Water Research, 1997, 31(3):621-629.
    [73] Namasivayam C, Panganathan K. Removal of Cd(Ⅲ) from wastewater by adsorption on“waste”Fe(Ⅲ) / Cr(Ⅲ) HYDROXIDE. Water Research, 1995, 29(7):1734-1744.
    [74]孙卫玲,倪晋仁.泥沙吸附重金属研究中的若干关键问题.泥沙研究, 2002(6):53-69.
    [75]庄云龙,石秀春,张荣亮.重金属在沉积物系统中吸附行为的研究进展.四川环境,2002, 21(2):13-16.
    [76]禹雪中,钟德钰,李锦秀,等.水环境中泥沙作用研究进展及分析.泥沙研究, 2004(6): 75-81.
    [77] Fu G, Allen H E. Cadmium adsorption by oxic sediment. Water Research, 1992, 26(1):225-233.
    [78] Warren L A, Zimmerman A P. The influence of temperature and NaCl on cadmium, copper and zinc partitioning among suspended particulate and dissolved phases in an urban river. Water Research, 1994, 28(9):1921-1931.
    [79]冯元章.东河(成县段)中重金属形态的初探.环境科学, 1984, 8(6):69-86.
    [80]金相灿.黄河中游悬浮物对铜、铅和锌的吸附与释放的研究.中国环境科学, 1984, 4(4):54-57.
    [81] Barrow N J. A brief discussion on the effect of temperature on the reaction of inorganic ions with soil. Journal of Soil Science, 1992, 43(1):37-45.
    [82] Shuman L M. Zinc adsorption isotherms for soil clays with and without iron oxides removed. Soil Science Society of America Journal, 1976, 40(3):349-352.
    [83] Srivastava A, Srivastava P C. Adsorption-Desorption behavior of Zinc (Ⅱ) at Iron (Ⅲ) hydroxide-aqueous solution interface as influenced by pH and temperature. Environmental Pollution, 1990, 68(1):171-180.
    [84] Boekhold A E, Temminghoff E J M, et al. Influence of electrolyte composition and pH on cadmium sorption by an acid sandy soil. Journal of Soil Science, 1993, 44(1):85-96.
    [85]汤鸿霄,薛含斌,等.粘土矿物吸附镉污染物的基本特征.环境科学学报, 1981, 26(1):31-40.
    [86]武玫玲.土壤对铜离子的专性吸附及其特征的研究.土壤学报, 1989, 26(1):31-40.
    [87] Filius A, Streck T and Richer J. Cadmium sorption and desorption in limed topsoil as influenced by pH: isotherms and simulated leaching. Journal of Environmental Quality, 1998, 27(1):12-18.
    [88] Spark K M, Johnson B B and Wells J D. Characterizing heavy-metal adsorption on oxides and oxyhydroxides. European Journal of Soil Science, 1995. 46(4): p. 621-631.
    [89] Hansen A M, Maya P. Adsorption-desorption behaviors of Pb and Cd in Lake Chapala, Mexico. Environment International, 1997, 23(4):554-564.
    [90]罗道成,易平贵,陈安国.多孔质沸石颗粒对矿井水中Pb2+、Cu2+、Zn2+吸附性能的研究.水处理技术, 2003, 29(6):338-340.
    [91] Murray K S, Cauvel D, et al. Particle size and chemical control of heavy metals in bed sediment from the Rouge river southeastern Michigan. Environmental Science and Technology, 1999, 33(7):987-992.
    [92]黄岁樑.泥沙运动在重金属污染物迁移转化中的作用[博士学位论文].北京:水利水电科学研究院, 1993.
    [93]金相灿,王桂林.关于重金属吸附的泥沙效应.环境科学与技术, 1984(2):6-11.
    [94]周孝德.渭河泥沙对重金属污染物吸附的实验研究.第五届中日河工坝工会议论文集, 1989.
    [95]方涛,张晓华,肖邦定,等.水体悬移质对重金属吸附规律研究—以长江宜昌段为例.长江流域资源与环境, 2001, 10(2): 185-192.
    [96]金相灿主编.沉积物污染化学.北京:中国环境科学出版社, 1992.
    [97] Hayes J A, Leckie K F. Geochemical process at mineral surface. Washington DC: American Society, ACS Symposium Series 323, 1986.
    [98] Mckinley J P, Jenne E A. Experimental investigation and review of the“solids concentration”effect in adsorption studies. Environmental Science and Technology, 1991, 25(12):2082-2087.
    [99]李洪,李嘉,李克锋,等.泥沙的分形表面和分形吸附模型.水利学报, 2003(3):14-18.
    [100]王毅力,于富玲,王东升,等.颗粒活性炭吸附染料的类分形动力学特征的研究.环境科学学报, 2005, 25(5):643-649.
    [101]于富玲,王毅力,郭瑾珑,等.颗粒活性炭吸附染料过程的分形特征研究.安全与环境学报, 2005, 5(1):23-26.
    [102] Mahnke M, M?gel H J. Fractal analysis of physical adsorption on material surfaces. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, 216:215-228.
    [103]谢云霞.多重分形表面的吸附模型.四川理工学院学报(自然科学版), 2006, 19(3): 107-110.
    [104]王毅力,杨君,于富玲,等.不同染料化合物在颗粒活性炭上的分形吸附规律.环境化学, 2005, 24(3):334-337.
    [105]周材敬,金相灿.河流中重金属迁移的数学模型.中国环境科学, 1985, 5(1):25-30.
    [106]金相灿,王桂林.湘江重金属迁移转化模型研究.中国环境科学, 1987, 7(6):10-15.
    [107]林玉环,李琪.河流水体中重金属形态模型研究.环境化学, 1992, 11(6):35-42.
    [108]黄岁樑,万兆惠,等.冲积河流重金属污染物迁移转化数学模型研究.水利学报, 1995(1):47-56.
    [109]陈俊和,陈小红.水库三维Fe、Mn迁移模型.水科学进展, 1999(3):14-19.
    [110]周孝德.河流中重金属迁移转化数学模型.环境水力学.武汉:武汉水利电力大学出版社, 1999.
    [111]何用,李义天,郜会彩,等.泥沙污染水质模型研究.四川大学学报, 2004, 36(6):12-17.
    [112]吕升奇.利用泥沙治理水体污染的初步分析[硕士学位论文].南京:河海大学, 2004.
    [113]褚君达,徐惠慈.河流底泥冲刷沉降对水质影响的研究.水利学报, 1999(11):42-47.
    [114] Goodhew P J, Humphreys J, Beanland R. Electron microscopy and analysis. London: Taylor & Francis, 2001.
    [115] Joseph Goldstein, et al. Scanning electron microscopy and x-ray microanalysis. New York: Kluwer Academic/Plenum Publishers, 2003.
    [116]付洪兰.实用电子显微镜技术.北京:高等教育出版社, 2004.
    [117]郭素枝.扫描电镜技术及其应用.厦门:厦门大学出版社, 2006.
    [118]陈明洪.泥沙颗粒吸附磷的规律及微观形貌的变化研究[博士学位论文].北京:清华大学水利水电工程系, 2008.
    [119]王文军,王文华,黄亚冰,等.生物膜的研究进展.环境科学进展, 1998, 7(5):43-51.
    [120]王文军,王文华,张学林,等.水环境中生物膜对污染物环境化学行为的影响.环境科学进展, 1999, 7(6):58-65.
    [121]唐婳,刘国生,谢志雄,等.细菌生物膜的结构及形成机制研究进展.氨基酸和生物资源, 2006, 28(3):30-33.
    [122] Gleyzes C, Tellier S and Astruc M. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends in Analytical Chemistry, 2002, 21(6-7):451-467.
    [123] Weaver J. Applications of discrete and continuous Fourier Analysis. New York: John Wiley and Sons Inc., 1983.
    [124] E Lestre Pete. Fourier descriptors and their applications in Biology. Cambridge: Cambridge University Press, 1997.
    [125] Sven Loncaric. A survey of shape analysis techniques. Pattern Recognition, 1998, 31(8):983-1001.
    [126]应义斌.水果形状的傅里叶描述子研究.生物数学学报, 2001, 16(2):234-240.
    [127]赵广涛, Zhou Wei, E William,等.付里叶形状分析方法及其在地质学中的应用.中国海洋大学学报, 2004, 34(3):429-436.
    [128]茆诗松主编.统计手册.北京:科学出版社, 2003.
    [129]曼德尔布洛特著.分形对象:形、机遇和维数.北京:世界图书出版公司, 1999.
    [130] Jun Kigami. Analysis on Fractals. Cambridge: Cambridge University Press, 2001.
    [131]陈玉华,王勇,李新梅.分形理论在材料表界面研究中的应用现状及展望.表面技术, 2003, 32(5):8-11.
    [132]李水根.分形.北京:高等教育出版社, 2004.
    [133]武生智,魏春玲,马崇武,等.沙粒粗糙度和粒径分布的分形特性.兰州大学学报(自然科学版), 1999, 35(1):53-56.
    [134]章萍.基于显微观测及图像处理的煤粉颗粒检测.武汉:华中科技大学热能工程系, 2004.
    [135]杨志远,曲建林,周安宁.超细煤粉颗粒形状分形维数与球磨工艺的研究.煤炭学报, 2004, 29(3):342-345.
    [136]李金萍,盖国胜,郑洲顺,等.粉体颗粒的分形表征与分维计算.有色矿冶, 2005, 21(增刊):92-94.
    [137] Avnir D, Jaroniec M. An Isotherm Equation for Adsorption on Fractal Surfaces of Heterogeneous Porous Materials. Langmuir, 1989(5):1431-1433.
    [138] Jaroniec M. Evaluation of the Fractal Dimension from a Single Adsorption Isotherm. Langmuir, 1995(11):2316-2317.
    [139]李鱼,董德明,刘亮,等.自然水体生物膜及其在水环境中的作用.环境科学动态, 2004(4):16-19.
    [140]沈岩柏,朱一民,魏德洲,等.硅藻土对诺卡氏菌的吸附作用.东北大学学报(自然科学版), 2005, 26(2):183-185.
    [141]田铮,肖华勇,等.随机数学基础.北京:高等教育出版社, 2005.
    [142]蔡菲,蔡珣,史同广,等.一种基于形状特征的图像检索方法.计算机应用与软件, 2005, 22(12):98-99.
    [143]胡江萍.应用傅立叶分析方法描述混凝土集料形状.建材技术与应用, 2006(6):1-4.
    [144]范春年,陈建坤,傅德胜.一种二维极坐标傅里叶描述子在图像检索中的应用.计算机工程与应用, 2004, 24:77-79.
    [145]王逸飞,陈雁秋.用于二维形状描述圆周分解法.计算机科学, 2006, 33(11):228-232.
    [146]段立娟.形状特征的编码描述研究综述.计算机科学, 2007, 34(8):215-218.
    [147]高华,王雅琴.基于计算机视觉的农产品形状分级研究.计算机工程与应用, 2004, 14:227-228.
    [148]魏升,刘南生,刘明友.基于图像二维小波多尺度分解傅里叶变换轮廓术.光学与光电技术, 2007, 15(4):32-35.
    [149]郭仁忠.空间分析.北京:高等教育出版社, 2001.
    [150]李志林,朱庆.数字高程模型.武汉:武汉大学出版社, 2003.
    [151]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法.北京:科学出版社, 2005.
    [152]周启铭,刘学军.数字地形分析.北京:科学出版社, 2006.
    [153]王劲峰.空间分析.北京:科学出版社, 2006.
    [154]李晶.官厅水库沉积物中磷的状态分布和矿物成分研究及其意义.北京:中国地质大学, 2005.
    [155]江龙.胶体化学概论.北京:科学出版社, 2002.
    [156] Axe L, Anderson G E. Sr diffusion and reaction within Fe oxides: Evaluation of the rate limiting process for sorption. Journal of Colloid and Interface Science, 1995(175):157-165.
    [157] Christophi C A, Axe L. Competition of Cd, Cu, and Pb adsorption on goethite. Journal of Environmental Engineering, 2000, 126(1):66-74.
    [158] Wood J D. The Geomorphological Characterisation of Digital Elevation Model. UK: University of Leicester, 1996.
    [159] Hochella M F, Eggleston C M and Elings V B, et al. Mineralogy in two dimensions; scanning tunneling microscopy of semiconducting minerals with implications for geochemical reactivity. American Mineralogist, 1989(11-12):1233-1246.
    [160]近藤精一,石川达雄,安部郁夫.吸附科学.北京:化学工业出版社, 2005.
    [161]赵振国.吸附作用应用原理.北京:化学工业出版社, 2005.
    [162] Everett D H, Powl J C. Adsorption in slit-like and cylindrical micropores in the Henry’s law region. J. Chem. Soc., Faraday Trans, 1976, 1(72):619.
    [163] Hajnos M, Korsunskaia L and Pachepsky Y. Soil pore surface properties in managed grasslands. Soil and Tillage Research, 2000, 55(1-2):63-70.
    [164] Grzegorz Józefaciuk, Attila Muranyi and Alicja Szatanik-Kloc, et al. Changes of surface, fine pore and variable charge properties of a brown forest soil under various tillage practices. Soil and Tillage Research, 2001, 59(3-4):127-135.
    [165]王毅力,李乐勇,邓式阳,等.图像法确定底泥颗粒物的表面分形维数(Ds).环境化学, 2006, 25(4):400-404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700