用户名: 密码: 验证码:
紧致型电磁带隙结构和双负媒质结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紧致型电磁带隙结构和双负媒质结构都是近年来提出的新型电磁材料,在微波和光学领域都有巨大的应用前景。电磁带隙结构一般是具有周期性的介电结构,它有一个显著的特点是可以人为地控制电磁波的运动,频率落在带隙中的电磁波是禁止传播的。紧致型电磁带隙结构本身具有窄带特性,这种带宽瓶颈使其应用大多局限于窄带天线或器件上。本文提出级联型的电磁带隙结构,用以展宽其带宽或实现双带工作,并将其应用于天线,抑制天线的后向辐射,减小单元之间的互耦,消除相控阵天线的扫描盲区。双负媒质结构的理论和应用研究刚刚起步,本文将其应用于波导天线及其阵列中,用以提高天线的增益。本文的主要工作可以概括为:
     1.通过无限周期的单元模型,使用周期边界条件,研究了Mushroom-like EBG结构的5个结构参数(金属面片宽度、缝隙宽度、基板介电常数、基板厚度、金属过孔半径)对表面波带隙和反射相位带隙的影响,并通过加载螺旋线圈增大EBG结构的带隙宽度。
     2.分析了不均匀EBG结构的传输特性和反射相位。使用直接传输方法分析有限周期EBG结构的带隙,建立了EBG结构在波导中的等效电路,提出了使用不同参数级联的方法用以展宽带隙,分别使用不同过孔半径和周期尺寸的EBG结构级联,级联后EBG结构的带隙范围基本覆盖原来均匀结构各自产生的带隙。并实验加工和测量了均匀过孔半径和不同过孔半径级联的EBG结构,实验结果与仿真数据吻合良好,验证了该方法的正确性。在反射相位特性方面,同样建立了分析有限周期EBG结构的模型,用不同面片大小的EBG结构级联构成巢穴型EBG结构,通过两种面片的混合,可以在两个频带获得同相反射特性。
     3.研究了EBG结构在微带天线中的应用。采用EBG结构与微带天线联合仿真的方法,准确确定EBG结构的带隙范围,EBG结构加载在两天线之间可以有效减小天线间的互耦,并将EBG结构加载在天线单元周围,可以有效减小天线的后向辐射,提高前向增益,改善了天线的辐射性能。设计加工了双频带微带天线,采用级联型方案构成双带EBG结构加载于两天线单元之间,仿真和实验结果表明,可以同时减小两个频带天线之间的互耦。
     4.分析了圆波导介质柱相控阵的扫描盲区现象,比较了阵中单元有源方向图和相控阵天线扫描特性的对应关系,并以15个单元的圆波导介质柱天线在E面排成均匀线阵,在扫描盲区出现的角度,有源方向图有尖而深的凹陷。将EBG结构应用于圆波导介质柱相控阵,可以有效抑制单元之间的耦合,消除相控阵的扫描盲区,扩大了扫描角的范围。
     5.以方形的SRR环和金属条带构成双负媒质结构单元,使用修正的NRW方法,通过放置双负媒质结构的二端口波导的散射参数,提取了等效的介电常数、磁导率和折射率,在所设计的工作频率,折射率接近于0,可以将原本发散的电磁波整理成趋近于覆层面法线方向的近似平面波,起到能量汇聚的功能。比较了双负媒质结构加载前后矩形波导天线及其阵列的增益方向图,数值仿真和测量结果表明,天线的前向增益得到显著的提高,同时对后向辐射也有一定的抑制效果。
Compact electromagnetic band-gap (EBG) structure and double negative (DNG) structure are new types of electromagnetic material presented recently, which have greatly potential applications on the field of microwave and optics. Generally, EBG structure is periodic metal-dielectric structure, whose distinct property is artificial control of the electromagnetic wave. The electromagnetic wave in the band-gap can not propagate. Compact electromagnetic band-gap structure has narrow bandwidth characteristic and mostly applied to narrow band-width antenna or equipment due to its bandwidth bottleneck. In this thesis, cascaded electromagnetic band-gap structure is presented to broaden the bandwidth or achieve dual band operation. The structure is applied to antenna in order to restrain the backward radiation, decrease mutual coupling between units and eliminate scan blindness of phased array antenna. The study on theory and application of DNG structure is at initial stage. The DNG structure is applied to waveguide antenna and arrays in this thesis to enhance the gain of antennas. The work of the author is mainly focused on:
     1. The effect of five configuration parameters of Mushroom-like EBG structure unit (including metal patch width, gap width, permittivity of dielectric board, thickness of dielectric board, metal via radius) on surface wave and reflection phase band-gap is studied based on unit model of infinite periods using periodic boundary condition (PBC). The inductance loops are integrated to EBG structure to broaden the band-gap width.
     2. The transmission characteristic and reflection phase of non-uniform EBG structure are analyzed. The direct transmission method is used to analyze the band-gap of finite periodic EBG structure. The equivalent circuit of EBG structure in waveguide is developed. The method of different parameters cascading is presented to broaden the band-gap. The EBG structures with different radius of via or periodic size are cascaded. The band-gap of the cascaded EBG structure almost covers the band-gap produced by the uniform structure respectively. The EBG structures with uniform radius of via and cascaded one are fabricated and measured. The experimental results are consistent with the simulation data, which proves the validity of the method. In the aspect of reflection property, the model to analyze finite periodic EBG is also founded. The nest-like EBG structure are presented using different patch size cascaded, which can obtain in-phase reflection phase in two frequency-bands simultaneously.
     3. The applications of EBG structure on microstrip antennas are studied. The band-gap of EBG structure is confirmed exactly by the method of united simulation with EBG structure and microstrip antennas. The EBG structure is integrated between two microstrip antennas to reduce the mutual coupling. The EBG structure is also integrated around the microstrip antenna unit to reduce the backward radiation, enhance forward gain and improve the radiation property. Dual-band microstrip antenna is designed and fabricated. The dual-band EBG structure using cascaded idea is integrated between two dual-band antenna units. The simulation and experimental results show that the mutual coupling of two dual-band antennas can be reduced in two operational frequency-bands simultaneously.
     4. The scan blindness of circular waveguide dielectric rod phased array is analyzed. The relation between the active element pattern of central unit and scan characteristics of phased array is compared. Fifteen units of circular waveguide dielectric rod antennas are arranged along the E plane to form linear array. In the angle of scan blindness, there are sharp and deep depression in the active element pattern. The EBG structure is applied to circular waveguide dielectric rod phased array to effectively restrain the mutual coupling between units, eliminate the scan blindness of phased array and increase the ability of the array to scan wider angular sectors.
     5. The DNG structure unit is composed of square split ring resonator (SRR) and strip wire (SW). The modified NRW method is used to extract the equivalent permittivity, permeability, and refractive index from the scattering parameters of the two-port waveguide with DNG structure. At the designed operating frequency, the refractive index approximates zero, which makes the nondirective electromagnetic wave tend to approximate plane wave along the normal direction of the superstrate and congregate the radiation energy. The gain patterns of the rectangular waveguide antenna and arrays with and without DNG structure are compared. Simulation and experimental results show that the forward gain of antenna is enhanced distinctly and backward radiation is somewhat restrained with the DNG structure.
引文
[1] Lai, T. Itoh, C. Caloz,“Composite Right/Left-Handed Transmission Line Metamaterails”, IEEE Microwave Magazine, vol. 5, no. 4, pp. 34-50, Sept. 2004.
    [2] T. Sergei,“Analytical Modeling in Applied Electromagnetics”, Artech House, Inc., 2002.
    [3] E. Yablonovitch,“Inhibited spontaneous emission in solid-state physics and electronics,”Phys. Rev. Lett., vol. 58, no. 20, pp. 2059-2062, 1987.
    [4] S. John,“Strong localization of photons in certain disorded dielectric superlattices,”Phys. Rev. Lett., vol. 58, no. 23 , pp. 2486-2489, 1987.
    [5] M. Yokoyama and S. Noda,“Palarization mode control of two-dimensional photonic crystal laser having a square lattice structure,”IEEE Journal of Quantum Electronic, vol. 39, no. 9, pp. 1074-1080, 2003.
    [6] O. Painter, et al.“Two-dimension photonic bandgap defect mode laser,”Scinece, vol.284, no.5421, pp. 1819-1821, 1999.
    [7] R. F. Cregan, et al.,“Single-mode photonic band gap guidance of light in air,”Science, vol. 285, no. 5433, pp. 1537-1539, 1999.
    [8] Y. Fink, et al.,“A dielectric omnidirectional reflector,”Science, vol. 282, no. 5394, pp. 1537-1539, 1998.
    [9] P. Russell, et al.,“Photonic crystal fibers,”Science, vol. 299, no. 5605, pp. 358-362, 2003.
    [10] A. Mekis, et al.,“High Transmission throuth sharp bends in photonic crystal waveguides,”Physical Review Letters, vol. 77, no. 18, pp. 3787, 1996.
    [11] A. Yariv, et al.,“Coupled-resonator optical waveguide: a proposal and analysis,”Optics Letter, vol. 24, no. 11, pp. 711-713, 1999.
    [12] S. H. Fan, P. R. Villeneuve and J. D. Joannopoulos,“Channal drop tunneling though localized states,”Physical Review Letter, vol. 80,no. 5,pp. 960-963,1998.
    [13] B. Ander and B. Jes,“Photonic Crystal Fiber,”Springer, 2003.
    [14] E. Yablonovitch, T. J. Gmitter, and K. M. Leung,“Photonic band structure: The face-centered-cubic case employing nonspherical atoms,”Physical Review Letter, vol. 67, no. 17, pp. 2295, 1991.
    [15] E. Ozbay, et al.,“Micromachined millimeter-wave photonic band-gap crystals,”Applied Physics Letters, vol. 64, no. 16, pp. 2059-2061, 1994.
    [16] S. Y. Lin, et al.,“High dispersive photonic bang-gap prism,”Optics Letter, vol. 21, no. 21, pp. 1771, 1996.
    [17] Y. Qian, V. Radisic, and T. Itoh,“Broad-band power amplifer using dielectric photonic bandgap structure,”IEEE Microw. And Guided Wave Lett., vol. 8, no. 1, pp. 13-14, 1998.
    [18] K. M. Ho, C. T. Chan, and C. M. Soukoulis,“Existence of a photonic gap in periodic dielectric structures,”Phys. Rev. Lett., vol. 65, pp.3152-3155, 1990.
    [19] S. G. Johnson and J. D. Joannopuulos,“Photonic Crystals: The Road from Theory to Practice,”Norwell: Kluwer Academic Publishers, 2002.
    [20] D. Sieverpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch,“High-impedance electromagnetic surfaces with a forbidden frequency band,”IEEE Trans.Microwave Theory Tech., vol. 47, pp. 2059-2074, Nov. 1999.
    [21] F. Yang, K. Ma, Y. Qian, and T. Itoh,“A uniplanar compact photonic-bandgap (UC-PBG) structure and its application for microwave circuit,”IEEE Trans.Microwave Theory Tech., vol. 47, no. 8, pp. 1509-1514, Aug. 1999.
    [22] L. Yang, et al.,“A novel compact Electromagnetic-Bandgap(EBG) structure and its application for microwave circuits,”IEEE Trans.Microwave Theory Tech., vol. 53, no. 1, pp. 183-189, Jan. 2005.
    [23] Y. Yao, X. Wang, and Z. Feng,“A novel dual-band compact Electromagnetic-Bandgap (EBG) structure and its application in multi-antennas,”IEEE, Antennas and Propagation Society International Symposium, pp. 1943-1946, July 2006.
    [24] O. Folayan and R. J. Langley,“Wideband reduced size electromagnetic bandgap structure,”Electronics Letters, vol. 41, no. 20, pp. 1099-1100, Sept. 2005.
    [25] C. R. Simovski and A. A. Sochava,“High-impedance surfaces based on self resonant grids analytical modeling and numerical simulations,”Progress In Electromagnetics Research, vol. 43, pp. 239-256, 2003.
    [26] C. R. Simovski, P. de Maagt, and I. V. Melchakova,“High-impedance surface having stable resonance with respect to polarization and incidence angle,”IEEE Trans. Antenna and Propag., vol. 53, no. 3, pp. 908-914, Mar. 2005.
    [27] D. J. Kern, et al.,“The design synthesis of multi-band artificial magnetic conductor using high impedance frequency selective surface,”IEEE Trans. Antenna and Propag., vol. 53, no. 1, pp. 8-17, Mar. 2005.
    [28] B. Q. Lin, Q. R. Zheng, and N. C. Yuan,“A novel planar PBG structure for size reduction,”IEEE Antenna and Wireless Propag. Lett., vol. 16, no. 5, pp. 269-271, May 2006.
    [29] I. Gallina, et al.,“Aperiodic-tiling-based mushroom-type high-impedance surface,”IEEE Antenna and Wireless Propag. Lett., vol. 7, pp. 54-57, 2008.
    [30] R. W. Ziolkowski and E. Heyman,“Wave propagation in media having negative permittivity and permeability,”Phys. Rev. E, vol. 64, no. 5, 2001.
    [31] V. G. Veselago,“The electrodynamics of substances with simultaneously negative values ofεandμ”, Soviet Physics USPEKI , vol. 10, no. 4, pp. 509-514, 1968.
    [32] R. Shelby, D. Smith, and S. Schultz,“Experimental vertification of a negative index of refraction,”Science, vol. 292, no. 5514, pp. 77-79, 2001.
    [33] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S.Schultz,“Composite Medium with Simultaneously Negative Permeability and Permittivity,”Phys.Rev.Lett., vol. 84, no.18, pp. 4184-4187, 2000.
    [34]冉立新等,“异向介质及其实验验证”,科学通报,vol. 48, no. 12, pp. 1271-1273, 2003.
    [35] I. V. Lindell, et al.,“BW media-media with negative parameters, capable of supporting backward waves,”Microwave and Optical Technology Letters, vol. 31, no. 2, pp. 129-133, 2001.
    [36] J. B. pendry, A. J. holden, W .J. Stewart ,and I. Youngs,“Extremely Low Frequency Plasmons in Metallic Mesostructures,”Phys.Rev.Lett., vol. 76, no. 25, pp. 4773-4776, 1996.
    [37] J. B. pendry, A. J. holden, D. J. Robbins, and W .J. Stewart,“Magnetism from Conductors and Enhanced Nonlinear Phenomena”IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, pp. 2075-2084, 1999.
    [38] L. X. Ran, et al.,“Beamshifting experiment for the characterization of left-handed properties,”Jounal of Applied Physics, vol. 95, no. 5, pp. 2238-2241, 2004.
    [39] J. T. Huangfu, et al.,“Experimental confirmation of negative refractive index of a metamaterial composed of Omega-lile metallic patterns,”Applied Physics Letter, vol. 84, no. 9, pp. 1537-1539, 2004.
    [40] H. S. Chen, et al.,“Left-handed materials composed of only S-shaped resonators,”Physical Review E, vol. 70, no. 5, 2004.
    [41] A. N. Grigorenko, et al.,“Nanofabricated media with negative permeability at visible frequency,”Nature, vol. 438, no. 7066, pp. 335-338, 2005.
    [42] X. P. Zhao, et al.,“Defect effect of split ring resonators in left-handed metamaterials,”Physics Letter A, vol. 346, no. 1-3, pp. 87-91, 2005.
    [43] F. L. Zhang, et al.,“Behavior of hexagon split ring resonator and left -handed metamaterials,”Chinese Physics Letters, vol. 21, no. 7, pp. 1330-1332, 2004.
    [44] J. F. Zhou, et al.,“Negative material using simple short wire pairs,”Phys. Rev. B, vol. 73, pp. 041101 1-4, 2006.
    [45] E. R. Brown, C. D. Parker, and E. Yablonovitch,“Radiation properties of a planar antenna on a photonic-crystal substrate,”J. Opt. Soc. Amer.B, Opt. Phys., vol. 10, pp. 404–407, Feb. 1993.
    [46] M. M. Sigalas, R. Biswas, and K. M. Ho,“Theoretical study of dipole antennas on photonic band-gap materials,”Microwave Opt. Technol. Lett., vol. 13, pp. 205–209, Nov. 1996.
    [47] H. Y. D. Yang, N. G. Alexopoulos, and E. Yablonovitch,“Photonic bandgap materials for high-gain printed circuit antennas,”IEEE Trans. Antenna Propagat., vol. 45, pp. 185–187, Jan. 1997.
    [48] R. F. J. Broas, D. F. Sievenpiper and E. Yablonovitch,“A high-impedance ground plane applied to cellphone handset geometry,”IEEE Trans. on Microwave Theory and Tech., vol. 49. pp. 1261-1265, July 2001.
    [49] M. Rahman and M. A. Stuchly,“Circularly polarized patch antenna with periodic structure,”IEE Proc. Microw. Antennas Propag., vol. 149, no. 3, pp. 141-146, 2002.
    [50] R. Coccioli, Fei-Ran Yang, Kuang-Ping Ma, and T. Itoh,“Aperture coupled patch antenna on UC-PBG substrate,”IEEE Trans. Microwave Theory Techniques, vol. 47, pp. 2123-2130, Nov.1999.
    [51] F. Yang and Yahya Rahmat-Samii,“Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications”, IEEE Trans.Antennas Propagat., vol. 51, pp. 2936-2946, Oct. 2003.
    [52] L. Zhang, J. A. Castaneda, and N. G. Alexopoulos,“Scan blindness free phased array design using PBG materials,”IEEE Trans. Antennas and Propaga., vol. 52, no. 8, pp. 2000-2007, Aug. 2004.
    [53] Zeev Iluz, Reuven Shavit, and Reuven Bauer,“Microstrip antenna phased arraywithelectromagnetic bandgap substrate,”IEEE Trans. Antennas and Propaga., vol. 52, no. 6, pp. 1446-1453, June 2004.
    [54] T. H. Liu,W. X. Zhang, M. Zhang, and K. F. Tsang,“Low profile spiral antenna with PBG substrate,”Electron. Lett., vol. 36, pp. 779–780, April 2000.
    [55] V. C. Sanchez, W. E. McKinzie III, and R. E. Diaz,“Broadband antennas over electronically reconfigurable artificial magnetic conductor surfaces,”in Proc. Antenna Applications Symp., pp. 70–83, Sept. 2001.
    [56] Z. Li and Y. Rahmat-Samii,“PBG, PMC and PEC ground planes: A case study of dipole antennas,”in Proc. Antennas Propagation Soc. Int. Symp., vol. 2, pp. 674–677, July 2000.
    [57] F. Yang and Y. Rahmat-Samii,“Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications,”IEEE Trans. Antennas Propagat., vol. 51, pp. 2691–2703, Oct. 2003.
    [58] D. Sievenpiper,“High-impedance electromagnetic surfaces,”Ph.D. dissertation, Univ. California, Los Angeles, CA, 1999.
    [59] H. Nakano, M. Ikeda, K. Hitosugi, J. Yamauchi, and K. Hirose,“A spiral antenna backed by an electromagnetic band-gap material,”in Proc. Antennas Propagation Soc. Int. Symp., vol. 4, pp. 482–485, June 2003.
    [60] Jodie M. Bell and Magdy F. Iskander,“A low-profile Archimedean spiral antenna using an EBG ground plane,”IEEE Antennas and Wireless Progag. Letter, vol. 3, pp. 223-226, 2004.
    [61] Taesun Kim and Chulhum Seo,“A novel photonic bandgap structure for l ow-pass filter of wide stopband”, IEEE Microwave Guided Wave Letters, vol.10, no.1, pp.13-15, 2000.
    [62] I. Rumsey, M. P. May and P. K. Kelly,“Photonic bandgap structure used as filters in microstrip circuits”, IEEE Microwave Guided Wave Lett., vol. 8, no. 10, pp. 336-339, 1998.
    [63] K. M. Shum, Q. Xue and C. H. Chan,“Novel microstrip ring hybrid incorporating a PBG cell”, IEEE Microwave Wireless Compo. Lett., vol. 6, pp. 258-260, 2001.
    [64] M. J. Hill, R. W. Ziolkowski and J. Paraolymerou,“A high-Q reconfigurable planar EBG cavity resonator”, IEEE Microwave Wireless Compo. Lett., vol. 6, pp. 255-257, 2001.
    [65] T. Yun and K. Chang,“One-dimensional photonic bandgap resonators and varactor tuned resonators”, IEEE MTT-S Digest, pp. 1629-1632, 1999.
    [66] V. Radisic, Y. Qian and T. Itoh,“Broadband power amplifier using dielectric photonic bandgap structure”, IEEE Microwave Guided Wave Lett., vol. 8, pp. 13-14, 1998.
    [67] C. Y. Hang, V. Radisic, Y. Qian, and T. Itoh,“High Efficiency Power Amplifier with novel PBG ground plane for harmonic tuning,”1998 IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 807-810, June 1998.
    [68] Jinho Yoon and Chulhun Seo,“Improvement of broadband feedforward amplifier using photonic bandgap”, IEEE Microwave Wireless Compo. Lett., vol. 11, no. 10, pp. 450-452, Nov. 2001.
    [69] Chulhun Seo,“A high-power amplifier using photonic bandgap and coplanar waveguide”, Microwave and Opt. Tech. Lett., vol. 36, no. 2, Jan. 2003.
    [70] F. Yang, Y. Qian, R. Coccioli and T. Itoh,“A novel low-loss slow-wave microstrip structure”, IEEE Microwave Guided Wave Lett., vol. 8, pp. 372-374 1998.
    [71] Y. Horri and M. Tsutsumi,“Suppression of the harmonic radiation from the PBG microstrip antenna”, IEEE MTT-S, pp. 724-727, 1999.
    [72] F. Yang, K. Ma, Y. Qian and T. Itoh,“A Novel TEM Waveguide Using Uni- planar Compact Photonic-Bandgap (UC-PBG) Structure”, IEEE Transactions on Microwave Theory and Tech., vol. 47, no. 11, Nov. 1999.
    [73] T. L. Wu, Y. Y. Lin, C. C. Wang, and S. T. Chen,“Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2935-2942, Sep. 2005.
    [74] T. L. Wu, C. C. Wang, Y. H. Lin, T. K. Wang, and G. Chang,“A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits,”IEEE Micro. Wireless Compon. Lett., vol. 15, no. 3, pp. 174-176, Mar. 2005.
    [75] X. H. Wang, B. Z. Wang, Y. H. Bi, and W. Shao,“A novel uniplanar compact photonic bandgap power plane with ultra-broadband supprsssion of ground bounce noise,”IEEE Micro. Wireless Compon. Lett., vol. 16, no. 5, pp. 267-268, May 2006.
    [76] J. Qin, O. M Ramahi,“Ultra-wideband mitigation of simultaneous switching noise using novel planar electromagnetic bandgap structures,”IEEE Micro. Wireless Compon. Lett., vol. 16, no. 9, pp. 487-489, Sept. 2006.
    [77] M. S. Zhang, Y. S. Li, C. Jia, L. P. Li, and J. Pan,“A double-surface electromagnetic bandgap structure with one surface embedded in power plane for ultra-wideband SSN suppression,”IEEE Micro. Wireless Compon. Lett., vol. 17,no. 10, pp. 706-708, Oct. 2007.
    [78] S. H. Joo, D. Y. Kim, and H. Y. Lee,“A S-bridged inductive electromagnetic bandgap power plane for suppression of ground bounce noise,”IEEE Micro. Wireless Compon. Lett., vol. 17, no. 10, pp. 709-711, Oct. 2007.
    [79] J. C.Iriarte,M. Paquay,I. Ederra,R. Gonzalo,P. de Maagt,“Reflection Properties of a planar structure combining AMC and PEC cells”, IWAT 07. International Workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications, pp. 516-519, Mar. 2007.
    [80] S. Enoch , G. Tayeb, P. Sabouroux, N. Guerin and P. Vincent,“A metamaterial for directive emission,”Phys. Rev. Lett., vol. 89, no. 21, pp. 213902:1-4, Nov. 2002.
    [81] R. W. Ziolkowski and A. Kipple,“Application of double negative metamaterials to increase the power radiated by electrically small antennas,”IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2626–2640, Oct. 2003.
    [82] S. N. Burokur, M. Latrach and S. Toutain,“Theoretical investigation of a circular patch antenna in the presence of a left-handed medium,”IEEE Antennas and Wireless Progag. Letter, vol. 4, pp. 183-186, 2005.
    [83] N. Engheta,“An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,”IEEE Antenna and Wireless Propga. Letter, vol. 1, no. 1, pp. 10-13, 2002.
    [84] G. V. Eleftheriades, A. K. Iyer and P. C. Kremer,“Planar nagetive refractive index media using periodically L-C loaded transmission lines,”IEEE Transaction on Microwave Theory and Tech., vol. 50, no. 12, pp. 2702-2712, 2002.
    [85] I. H. Lin, et al.“Arbitrary dual–band component using composite right/left-handed transmission lines,”IEEE Transaction on Microwave Theory and Tech., vol. 52, no. 4,pp. 1142-1149, 2004.
    [86] H. Okabe, C. Caloz and T. Itoh,“A compact enhanced-bandwith hybrid ring using an artificial lumped-element left-handed transmission-line section,”IEEE Transaction on Microwave Theory and Tech., vol. 52, no. 3, pp. 798-804, 2004.
    [87] Y. Horri, C. Caloz and T. Itoh,“Super-compact multilayered left-handed transmission line and diplexer application,”IEEE Transaction on Microwave Theory and Tech., vol. 52, no. 4, pp. 1527-1534, 2004.
    [1] Dan Sievenpiper, Lijun Zhang, R. F. Jimenez Broas, Nicholas G. Alexopolous, andE.Yablonovitch,“High-impedance electromagnetic surfaces with a forbidden frequency band,”IEEE Trans. Microwave Theory Techniques, vol. 47, pp. 2059-2074, Nov. 1999.
    [2] D. Sievenpiper,“High-impedance Electromagnetic Surfaces,”Ph. D. dissertation, Dep. Elect.Eng. Univ. California at Los Angeles, Los Angeles, CA, 1999.
    [3] R. E. Diaz, J. T. Aberle, and W. E. Mckinzie,“TM mode analysis of a Sievenpiper high-impedance reactive surface,”Antennas and Propagation Society International Symposium, vol. 1, pp. 327-330, 2000.
    [4] M. Rahman and M. A. Stuchly,“Transmission line-periodic circuit representation of planar microwave photonic bandgap structures,”Microwave and Optical Tech. Lett., vol. 30, no.1, pp. 15-19, July 2001.
    [5] S. A. Tretyakov and C. R. Simovski,“Dynamic model of artificial reactive impedance surfaces,”J. Electromagn. Waves and Appl., vol. 17, no. 1, pp. 131-145, 2003.
    [6] S. Clavijo, et al.,“Design methodology for Sievenpiper high-impedance surfaces: An artificial magnetic conductor for positive gain electrical small antennas,”IEEE Trans. Antenna Propagat., vol. 51, no. 10, pp. 2678-2690, Oct. 2003.
    [7] Li Long, Li Bin, Liu Haixia, and Liang Changhong,“Locally resonant cavity cell model of electromagnetic bandgap structures,”IEEE Trans. Antennas Propagat., vol. 54, no. 1, pp. 90-100, Jan. 2006.
    [8] R. Gonzalo, Peter de Maagt and Mario Sorolla,“Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap structures,”IEEE Trans. Microwave Theory Techniques, vol. 47, pp. 2131-2138, Nov. 1999.
    [9] F. Yang and Y. Rahmat-Samii,“Microstrip antennas integrated with electro- magnetic band-gap (EBG) structures: A low mutual coupling design for array applications”, IEEE Trans. Antennas Propagat., vol. 51, pp. 2939-2949, Oct. 2003.
    [10] T. H. Liu, W. X. Zhang, M. Zhang, and K. F. Tsang,“Low profile spiral antenna with PBG substrate”, Electron. Lett., vol. 36, no. 9, pp. 779-780, Apr. 2000.
    [11] F. Yang and Y. Rahmat-Samii,“Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications”, IEEE Trans. Antennas Propagat., vol. 51, pp. 2691-2703, Oct. 2003.
    [12] L. Brillouin,“Wave guides for slow waves”, J. App. Phys., vol. 19, pp. 1023, 1948.
    [13] R. Elliot,“On the theory of corrugated plane surfaces,”IRE Trans. Antennas.Propagat., vol. 2, pp. 71, 1954.
    [14] P. S. Kildal,“Artificially soft and hard surfaces in electromagnetics”, IEEE Trans. Antennas. Propagat., vol. 38, pp. 1537, 1990.
    [15] E. Yablonovitch, T. J. Gmitter, and K. M. Leung,“Photonic band structure: The face-centered-cubic case employing nonspherical atoms,”Physical Review Letter, vol. 67,no. 17,pp. 2295, 1991.
    [16] E. Ozbay, et al.,“Micromachined millimeter-wave photonic band-gap crystals,”Applied Physics Letters, vol. 64,no. 16, pp. 2059-2061,1994.
    [17] S. Y. Lin, et al.,“High dispersive photonic bang-gap prism,”Optics Letter, vol. 21, no. 21, pp. 1771, 1996.
    [18]梁昌洪,“PBG高阻表面的准静态等效媒质模型”,西安电子科技大学报告,西安,2004.
    [19]张国华,“谐振型微波光子晶体电磁特性研究及在天线中的应用”,国防科学技术大学博士论文,2005.
    [20]李龙,“广义电磁谐振与EBG电磁局域谐振研究及应用”,西安电子科技大学博士论文,2005.
    [1] D. Sieverpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch,“High-impedance electromagnetic surface with forbidden frequency band”, IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2059-2074, Nov. 1999.
    [2] D. Sievenpiper,“High-impedance electromagnetic surfaces,”Ph. D. dissertation, Dep. Elect. Eng. Univ. California at Los Angeles, Los Angeles, CA, 1999.
    [3] F. Yang and Y. Rahmat-Samii,“Reflection phase characterization of the EBG ground plane for low profile wire antenna applicaiton”, IEEE Trans. Antennas Propagat., vol. 51, pp. 2691-2703, Oct. 2003.
    [4] F. Yang,“EBG structure and reconfigurable technique in antenna designs: applications to wireless communications,”Ph.D. dissertation, University of California at Los Angles, 2002.
    [5] S. A. Tretyakov and C. R. Simovski,“Dynamic model of artificial reactive impedancesurfaces,”J. Electromagn. Waves and Appl., vol. 17, no. 1, pp. 131-145, 2003.
    [6] C. R. Simovski and A. A. Sochava,“High-impedance surfaces based on self-resonant grids analytical modeling and numerical simulations,”Progress inElectromagnetics Research, PIER43, pp. 239-256, 2003.
    [7] Michael A. Saville,“Investigation of conformal high-impedance ground planes,”M. S. dissertation, Dep. Electrical and Computer Engineering, Air Force Institute of Technology Air University, 2000.
    [8] R. Remski,“Analysis of PBG surfaces using Ansoft HFSS”, Microwave J. vol. 43, no. 9, pp. 190-198, Sept. 2000.
    [9] J. D. Shumpert,“Modeling of periodic dielectric structures (Electromagnetic crystals),”Ph. D. dissertation, Electrical Engineering in the University of Michigan, 2001.
    [10] Lijun Zhang,“Numerical characterization of electromagnetic band-gap materials and applications in printed antennas and arrays,”Ph. D. dissertation, University of California at Los Angles, 2000.
    [11]雷振亚,“射频/微波电路导论”,西安电子科技大学出版社,西安,2005.
    [12] R. E. Diaz, J. T. Aberle, and W. E. Mckinzie,“TM mode analysis of a Sievenpiper high-impedance reactive surface,”Antennas and Propagation Society International Symposium, vol. 1, pp. 327-330, 2000.
    [13] Fei-Ran Yang, Kuang-Ping Ma, Yongxi Qian, and T. Itoh,“A novle TEM waveguide using uniplanar compact photonic-bandgap structure,”IEEE Trans Microwave Theory and Tech., vol. 47, no. 11, pp. 2092-2098, Nov. 1999.
    [14] M. Rahman and M. A. Stuchly,“Transmission line-periodic circuit respresentation of planar microwave photonic bandgap structures,”Microwave Opt. Technol. Lett., vol. 30, no.1, pp.15-19, 2001.
    [15] Sergio Clavijo, R. E. Diaz, and W. E. Mckinzie,“Design methodology for Sievenpiper high-impedance surfaces: An artificial magnetic conductor for positive gain electrically small antennas,”IEEE Trans. Antennas Propagat., vol. 51, pp. 2678-2684, Oct. 2003.
    [16]李龙,“广义电磁谐振与EBG电磁局域谐振研究及应用”,西安电子科技大学博士论文,2005.
    [1]梁乐,梁昌洪,陈亮,苏子剑,“一种电磁带隙结构的快速分析方法”,强激光与粒子束,vol. 20, no. 5, pp. 793-796, May 2008.
    [2]樊明延,胡荣,郝清,张雪霞,冯正和,“二维电磁带隙结构研究的新方法”,红外与毫米波学报,vol. 22, no. 2, pp. 127-131, Apr. 2003.
    [3] L. Yang, et al.,“A novel compact Electromagnetic-Bandgap(EBG) structure andits application for microwave circuits,”IEEE Trans. Microwave Theory Tech., vol. 53, no. 1, pp. 183-189, Jan. 2005.
    [4] R. Coccioli, F. R. Yang, K. P. Ma, and T. Itoh,“Aperture-coupled patch antenna on UC-PBG substrate,”IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, pp. 2123-2130, Nov. 1999.
    [5] S. D. Roger,“Electromagnetic-bandgap layers for broad-band suppression of TEM modes in power planes,”IEEE Trans. Microwave Theory Tech., vol. 53, no. 8, pp. 2495-2505, Aug. 2005.
    [6] D. H. Lee, J. H. Kim, J. H. Jang, and W. S. Park,“Dual-frequency dual polarization antenna of high isolation with embedded mushroom-like EBG cell,”Microwave and Optical Tech. Lett., vol. 49, no. 7, pp. 1764-1768, July 2007.
    [7] Y. Horri,“A compact band elimination filter composed of a mushroom resonator embedded in a microstrip line substrate,”IEEE APMC proceeding, 2005.
    [8] Y. Yao, X. Wang, and Z. Feng,“A novel dual-band compact Electromagnetic-Bandgap (EBG) structure and its application in multi-antennas,”IEEE, Antennas and Propagation Society International Symposium, pp. 1943-1946, July 2006.
    [9] W. Wang, X. Y. Cao, W. Y. Zhou, and T. Liu,“A novel compact uni-planar electromagnetic bandgap(UC-EBG) structure,”International Conference on Microwave and Millimeter Wave Thechnology, 2008.
    [10] W. Wang, X. Y. Cao, R. Wang, and J. J. Ma,“A small dual-band EBG structure for microwave,”International Conference on Microwave and Millimeter Wave Thechnology, 2008.
    [11] S. Shahparnia and O. M. Ramahi,“Simultaneous switching noise mitigation in PCB cascaded high-impedance surface,”Electronics Letters, vol. 40, no. 2, Jan. 2004.
    [12] L. Liang, C. H. Liang, L. Chen, X. Chen,“A novel broadband EBG using cascaded mushroom-like structure,”Microwave and Optical Technology Letter, vol 50, no 8, pp. 2167-2170, Aug. 2008.
    [13] L. Liang, C. H. Liang, X. W. Zhao, Z. J. Su,“A Novel Broadband EBG Using Multi-period Mushroom-like Structure,”International Conference on Microwave and Millimeter Wave Technology, 2008.
    [14] S. A. Tretyakov and C. R. Simovski,“Dynamic model of artificial reactive impedance surfaces,”J. Electromagn. Waves and Appl., vol.17, no.1, pp. 131-145,2003.
    [15]张福顺,张进民编,“天线测量”,西安电子科技大学出版社,西安,1995.
    [1]钟顺时,“微带天线理论与应用”,西安,西安电子科技大学出版社,1991.
    [2] I. J.鲍尔, P.布哈蒂亚著;梁联倬,寇廷耀译,“微带天线”,北京,电子工业出版社, 1984.
    [3] D. Sievenpiper, J. Schaffner, B. Loo, G.. Tangonan, R. Harold, J. Pikulaki, and R. Garcia,“Electronic beam steering using varactor-tuned impedance surface”, Proc. IEEE AP-S Dig., vol. 1, pp. 174-177, July 2001.
    [4] A. S. Barlevy and Y. Rahmat-Samii,“Characterization of electromagnetic band-pass composed of multiple periodic tripods with interconnecting vias: Concept, analysis, and design,”IEEE Trans.Antennas Propagat., vol. 49, pp. 343-353, Mar. 2001.
    [5] F. Yang and Y. Rahmat-Samii,“Reflection phase characterization of the EBG ground plane for low profile wire antenna applicaiton”, IEEE Trans. Antennas Propagat., vol. 51, pp. 2691-2703, Oct. 2003.
    [6] J. M. Bell and M. F. Iskander,“A low profile Achimedean spiral antenna using an EBG ground plane”, IEEE Antenna and Wireless Propagat., vol. 3, pp. 223-226, 2004.
    [7] D. Sieverpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch,“High-impedance electromagnetic surface with forbidden frequency band”, IEEE Trans. Microwave Theory Tech., vol.47, pp. 2059-2074, Nov. 1999.
    [8] F. Yang, C. S. Kee and Y. Rahmat-Samii,“Step-like Structure and EBG structure to improve the performance of patch antenna on high dielectric substrate”, vol. 2 IEEE Antenna and Propgat. Society International Symposium, pp. 482-485, 2001.
    [9]付云起,“微波光子晶体及其应用研究”,国防科学技术大学博士论文,2004.
    [10]张国华,“谐振型微波光子晶体电磁特性研究及在天线中的应用”,国防科学技术大学博士论文,2005.
    [11] F. Yang and Yahya Rahmat-Samii,“Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications”, IEEE Trans. Antennas Propagat., vol. 51, pp. 2936-2946, Oct. 2003.
    [12] L. Zhang, J. A. Castaneda, and N. G. Alexopoulos,“Scan blindness free phased array design using PBG materials,”IEEE Trans. Antennas and Propaga., vol. 52,no. 8, pp. 2000-2007, Aug. 2004.
    [13] Zeev Iluz, Reuven Shavit, and Reuven Bauer,“Microstrip antenna phased array withelectromagnetic bandgap substrate,”IEEE Trans. Antennas and Propaga., vol. 52, no. 6, pp. 1446-1453, June 2004.
    [14] Yasushi Horri and Makoto Tsutsumi,“Suppression of the harmonic radiation from the PBG microstrip antenna,”IEEE MTT-S, pp. 724-727, 1999.
    [15] J. R. James and A Henderson,“High-Frequency Behavior of Microstrip Open-Circuit Termination”, IEE Journal Microwaves, Optics and Acoustics, vol. 3, pp. 205-218, 1979.
    [16] Y. T. Lo, D. Solomon and D. D. Harrison,“An improved Theory for Microstrip Antennas”, IEEE Trans. AP, vol. 27, pp. 137-145, Mar.1979.
    [17]李龙,“广义电磁谐振与EBG电磁局域谐振研究及应用”,西安电子科技大学博士论文,2005.
    [18] S. Maci, G. B. Gentili, P. Piazzesi and C. Salvador,“Dual-band slot-loaded patch antenna”, IEE Proc.-Microw. Antennas Propag., vol. 142, no. 3, pp. 225-232, June 1995.
    [19] J. H. Lu and K. L. Wong,“Slot-loaded,meandered rectangular microstrip antenna with compact dual-frequency operation”, Electronics Letter, vol. 34, no. 11, pp. 1048-1050, May 1998.
    [1] Lijun Zhang,“Numerical characterization of electromagnetic band-gap materials and applications in printed antennas and arrays,”Ph. D. dissertation, University of California at Los Angles, 2000.
    [2] L. Zhang, J. A. Castaneda, and N. G. Alexopoulos,“Scan blindness free phased array design using PBG materials,”IEEE Trans. Antennas and Propaga., vol. 52, no. 8, pp. 2000-2007, Aug.2004.
    [3] Zeev Iluz, Reuven Shavit, and Reuven Bauer,“Microstrip antenna phased array with electromagnetic bandgap substrate,”IEEE Trans. Antennas and Propaga., vol. 52, no. 6, pp.1446-1453, June 2004.
    [4] N. Amitay, V. Galindo, C. P. Wu,“Theory and Analysis of Phased Array Antennas,”Wiley-Interscience, a Division of John Wiley & Sons, Inc. 1972.
    [5] J. R. James,“Theoretical investigation of cylindrical dielectric-rod antenna,”Proceeding Institution of Electrical Engineers, vol. 114, pp. 309-319, 1967.
    [6] D. M. Pozar,“The active element pattern,”IEEE Trans. Antennas Propagat., vol. 42, pp. 1176-1178, Aug. 1994.
    [7] B. L. Diamond,“Small arrays-Their analysis and their use for the design of array elements,”in Phased Array Antennas, A. A. Oliner and G. H. Knittel, Eds. Norwood MA: Artech House, pp. 127-131, 1972.
    [8]郭燕昌,钱继曾,黄富雄,冯祖伟编,“相控阵和频率扫描天线原理”,国防工业出版社,北京,1978.
    [9]刘松华,李龙,党晓杰,梁昌洪,“三角形栅格波导端头有限缝隙相控阵的扫描盲区分析”,西安电子科技大学学报,vol. 34, no. 1, pp. 43-48, 2007.
    [10] L. Li, X. J. Dang, B. Li, C. H. Liang ,“Analysis and design of waveguide slot antenna array integrated with electromagnetic band-gap structures,”IEEE Antennas and Wireless Propagation Letters, vol. 5, no. 4, pp. 111-115, 2006.
    [1] V. G. Veselago“The electrodynamics of substances with simultaneously negative values ofεandμ”, Soviet Physics USPEKI, vol. 10, no. 4, pp. 509-514, 1968.
    [2] J. B. pendry, A. J. holden, W .J. Stewart ,and I. Youngs,“Extremely Low Frequency Plasmons in Metallic Mesostructures,”Phys.Rev.Lett., vol. 76, no. 25, pp. 4773-4776, 1996.
    [3] J. B. pendry, A. J. holden, D. J. Robbins, and W .J. Stewart,“Magnetism from Conductors and Enhanced Nonlinear Phenomena,”IEEE Trans. Microwave Theory Tech., vol.47, no.11, pp. 2075-2084, 1999.
    [4] D. R. Smith, W. J. Padilla, D. C. Vier,S. C. Nemat-Nasser and S.Schultz,“Composite Medium with Simultaneously Negative Permeability and Permittivity,”Phys. Rev. Lett., vol. 84, no. 18, pp. 4184-4187, 2000.
    [5] R. A. Shelby, D. R. Smith and S. Schultz“Experimental verification of a negative index of refraction,”Science, vol. 292, no. 6, pp. 77-79, 2001.
    [6]徐耿钊,张伟华,朱星,“奇妙的左手物质”物理,vol. 33, no. 11, pp. 801-807, 2004.
    [7] S. O. Brien and J. B. Pendry,“Magnetic activity at infrared frequencies in structured metallic photonic crystal”, J. Phys: Condensed Matter, vol. 14, pp. 6383-6394, 2002.
    [8] Hongsheng Chen, Lixin Ran, Jiangtao Huangfu, Xianmin Zhang, Kangsheng Chen, Tomasz M. Grzegorczyk and Jin Au Kong,“Left-handed materials composed of only S-shaped resonators”, PHYSICAL REVIEW E, 70, pp. 0576051-4, 2004.
    [9] Jiangfeng Zhou, Lei Zhang, Gary Tuttle, Thomas Koschny and Costas M. Soukoulis,“Negative index materials using simple short wire pairs,”PHYSICAL REVIEW B, 73, pp. 041101(R) 1-5, 2006.
    [10] G. V. Eleftheriades, A. K. Iyer and P. C. Kremer“Planar negative refractive index media using periodically L-C loaded transmission lines,”IEEE Trans. Microwave Theory Tech., vol. 50, no. 12, pp. 2702–2712, Dec. 2002.
    [11]皇甫江涛,“微波异向介质的实验研究”,浙江大学博士论文,2004。
    [12] A. M. Nicolson and G. F. Ross,“Measurement of the intrinsic properties of materials by time domain techniques,”IEEE Trans. Instrum. Meas., vol. IM-19, pp. 377-382, Nov. 1970.
    [13] W. B. Weir,“Automatic measurement of complex dielectric constant and permeability at microwave frequency,”Proc. IEEE, vol. 62, pp. 33-36, Jan. 1974.
    [14] P. K. Kadaba,“Simultaneous measurement of complex permittivity and permeability in the millimeter region by a frequency-domain technique,”IEEE Trans. Instrum. Meas., vol. IM-33, no.4, pp. 336-340, Dec. 1984.
    [15] D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan,“Free-space measurement of complex permittivity and complex permeability of magnetic material at microwave frequencies,”IEEE Trans. Instrum. Meas., vol. 39, pp. 387-394, Apr. 1990.
    [16] J. Bake-Jarvis, E. J. Vanzura, and W. A. Kissick,“Improved techniques for determining complex permittivity with the transmission/reflection method,”IEEE Trans. Microwave Theory Tech., vol. 38, pp. 1096-1103, Aug. 1990.
    [17] Ziolkowski, Richard W.,“Design, Fabrication, and Testing of Double Negative Metamaterials,”IEEE Trans.Antennas Propag., vol. 51, no. 7, pp. 1516-1529, July 2003.
    [18] S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent,“A metamaterial for directive emission,”Phys. Rev. Lett., vol. 89, no. 21, pp. 213902:1-4, Nov. 2002.
    [19] B. I. Wu, W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk, and J.A. Kong,“A study of using metamaterials as antenna substrate to enhance gain,”PIER, no. 51, pp. 295-328, 2005.
    [20] Q. Sui, C. Li, L. L. Li, and F. Li,“Experimental study ofλ/4 monopole antennas in left-handed meta-material,”PIER, no.51, pp. 281-293, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700