用户名: 密码: 验证码:
充气可展开天线精度及展开过程分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现星载天线的大口径、低能耗、轻质量、小运载体积,和机械可展开天线相比,充气可展开薄膜天线结构技术具有很多的优点,是未来大口径甚至超大口径天线的理想选择。天线工作状态的形面精度是天线最重要的结构指标,直接影响天线的电性能和使用。充气可展开天线能否最终可靠有序地展开并保持其工作状态,是航天任务能否成功的关键。本文对充气可展开天线的高精度反射面实现技术、褶皱分析方法、展开过程分析等几个关键问题进行了深入系统的研究。
     论文首先在大量查阅国内外文献的基础上,总结了国内外空间充气可展开结构的应用情况及研究现状,对课题的研究意义和研究思路进行阐述。
     给出了张量表示的薄膜结构的几何非线性有限元法。薄膜采用9节点Lagrangian曲面单元和三角形单元,索采用两节点直线单元。提出了假想衰减项法,用以分析无预应力薄膜结构,避免了刚度矩阵奇异而不能求解的问题。据此编写了充气薄膜结构的有限元分析程序。
     为实现天线的高精度反射面,分别研究比较了两种成形理论。针对平面—抛物面型充气可展开天线反射面,利用弹性力学分析形面,研究了天线在轨时温度变化对反射面形面的影响,并用自编程序进行验证。针对拼接抛物反射面,为了实现充气变形后的反射面逼近抛物面,经过保形分析,裁剪设计,裁剪片拼接,分析得到充气变形前的曲面,在充气气压作用下变形成最终的高精度充气反射面。
     利用自编程序对拼接抛物天线反射面进行反射面精度的参数分析,包括材料属性、厚度、内压、反射面焦距等。针对地面验证试验的三种实验姿态,分析重力对反射面形面的影响;对2米口径充气可展开天线结构的工作状态,利用有限元软件ABAQUS建立有限元模型,分析结构的固有频率和对应振型,分析中考虑了充气气体和反射面薄膜之间的流固耦合作用,采用声音介质模拟充气气体对结构振动的作用。研究了天线结构设计参数的选择对结构动力性能的影响。
     褶皱现象大量出现在充气可展开薄膜结构中,在自编的有限元程序中增加褶皱分析模块。用综合准则判别薄膜处于三种不同的受力状态:张拉、褶皱、松弛。利用张力场理论分析褶皱发生的区域和方向,分析充气展开天线的褶皱出现情况。基于弹簧-质点系统提出了新的褶皱处理方法,此方法不但能分析褶皱的区域和方向,能够预测褶皱的三维形状和大小。
     从树叶的仿生学出发,总结出平面薄膜结构的几种折叠方式。建立弹簧—质点系统描述薄膜材料,模拟薄膜结构的展开过程。薄膜展开过程中薄膜不可避免地发生自身的接触碰撞,提出了自接触对的判别准则,采用罚函数法有效地解决薄膜自接触问题。对三种折叠方式的薄膜的展开过程进行比较,叶外折叠方式和Miura折叠法比较适合平面薄膜的折叠。开发了充气可展开薄膜结构展开过程仿真程序,详细介绍了程序的流程图。设计了充气圆环管、充气反射面和充气直管的折叠方式,分析展开驱动力的作用机理和简化模型,利用流体场理论分析气囊内的气压变化,利用展开过程仿真软件对模型进行展开过程分析,得到展开过程的各个状态和各个点的展开速度。分析结果也验证了折叠方式的合理性。
     研制2m口径的充气反射面模型,介绍了花边设计和加工工艺。基于PhotoModeler软件建立的非接触摄像测量系统对其进行测量实验。通过反复的测量和形面调整,验证了高精度充气薄膜反射面的可实现性。对形面的误差来源进行了分析,给出了形面调整的方法。
To realize large caliber, low-power, light weight, limit volume of the satellite antenna, compare to mechinics deployment antenna, the inflatable antenna structure technology have many advantages and is one of the best choice for large antenna. The shape precision of reflector on orbit is the most important target of the antenna, which affect the electric and work performance of the antenna directly. Whether the inflatable antenna can deploy to final configuration reliably is the key point that spaceflight mission can be successful. The theories to obtain high precision of inflatable reflector, wrinkle analysis technology and the deploy dynamics simulation of inflatable antenna are investigated in this thesis.
     Firstly, after referring a lot of pertinent literature world widely, the application of inflatable antenna structure and the research actuality of its key technology were summarized. Also the research significance is presented.
     Geometry nonlinear FEM of membrane was described by tensor form 9 node Lagrangian element and 3 node element was selected for membrane and 2 node linear element was selected for cable. Hypothesis damp term method was advanced to analyze non-prestress membrane structure. This method solved the problem from the singularity of stiffness matrix. The nonlinear FEA program for inflatable structure was compiled by FORTRAN and MATLAB.
     To obtain high precision of inflatable reflector, two kinds of figuration theories were investigated and compared. The first one is titled as plan- parabolic reflector. The elastic theory analysis was finished. Based on these works, the influence that temperature variety affects on the reflector precision on orbit was researched and the result was validated by FORTRAN program. The second one is titled as seaming parabolic reflector. For the deformed surface is required to be paraboloid, the theoretical studies, conformal analysis, cutting-pattern, membrane film seaming and then inflatable were described. The seaming parabolic reflector was chose in the following research.
     Precision analyses of inflatable reflector by nonlinear FEA program were conducted, and all important design parameters such as inflation pressure, membrane thickness, material characteristics and pre-tension stress of cable were investigated. The gravity influence in the reflector was compared under three postures and chooses one of them as final experiment posture. Analysis model of 2m antenna in ABAQUS was built to analyze natural frequencies and corresponding modes of the inflatable reflector structure. The analyses work has considered fluid-structure interaction between inflatable gas and the membrane material in reflector structure. This dissertation employed the 3D solid acoustic elements of standard FE software to simulate the inflation gas influence. The effects of all important design parameters on the modes were investigated.
     Wrinkling phenomenon exists broadly and affects the performances of the antenna structure. The distortion stress and strain of the structure were analyzed based on the source code written in MATLAB. Mixed criterion was used to evaluate the three states of membrane material: taut、wrinkled and slack. The TF method was used to forecast the direction and region of membrane wrinkle expediently. Then the wrinkle phenomenon appeared in inflatable reflector was investigated. A new method based on spring-mass system is advanced. This method can forecast not only the direction and region of wrinkle but also the shape and size of wrinkle.
     Some new fold patterns were developed for membrane structures from genuinely biomimetic. The spring-mass system is used to describe structural behavior of membrane material during deployment process. During development, self-contact or collision of the membrane occurs. The rule used to identify the self-contact elements is advanced and a penalty function method is developed to treat this difficult problem. The deployment processes of a two-dimensional membrane folded by three fold patterns were analyzed. The simulation code for inflatable membrane structure was described and the function of each part of module was introduced. The fold configuration and non-stress of tube, torus and parabolic reflector were built. The deployable mechanism and analytic model were researched to obtain deployable force and moment. The liquid theory was used to analyze the inflatable pressure in the ballonet. The deployment process was simulated by the code. Each state during deploy process and the velocity of each node were obtain. The simulation result validates the feasibility of fold method.
     A 2-meter ground demonstration space antenna reflector was design and manufactured. Non-contact Photogrammetric measure system was built on the base of PhotoModeler software packages. The steps of reflector precision measure of ultra-lightweight space structures were introduced on three experiment postures. High precision inflatable reflector was achieved after repeat precision measure and shape adjust. The error source of reflector was analyzed and shape adjust methods were introduced.
引文
[1] Willey Cliff E, Schulze Ron C. A hybrid inflatable dish antenna system for spacecraft [A], 42th AIAA/ASME/ASCE/AHS/ASC SDM Conference, AIAA -2001-1258, April 2001. Seattle, WA: 1-9.
    
    [2] Lin John K..H, Cadogan David P. An inflatable microstrip reflect array concept for ka-band applications [A]. 41th AIAA/ASME/ASCE/AHS/ASC SDM Conference, AIAA -2000-1831, April, 2000. Atlanta, Georgia: 1-13.
    
    [3] David Lichodziejewski. Inflatable deployed membrane waveguide array antenna for space [A]. 44th AIAA/ASME/ASCE/AHS/ASC SDM Conference, AIAA-2003-1649, April 2003, Norfolk, Virginia: 1-7.
    
    [4] Freeland,R.E., Bilyeu,G.. IN-STEP Inflatable Antenna Experiment [J].presented at the 43rd Congress of the International Astronautical Federation,IAF-92-0301,1992, Washington,D.C: 1-12
    
    [5] Hencky. H. Uber den Spannungszustand in kreisrunden Platten. Z. Math. Phys.1915,63:311-317
    
    [6] Fichter WB. Some solutions of the large deflections of uniformly loaded circular membranes. NASA Technical paper 3658-NASA Langley Research Center, Hampton, VA, 1997:1-23.
    
    [7] Ji-Huan He. A Lagrangian for Von Karman Equations of Large Deflection Problem of Thin Circular Plate. Applied Mathematics and Computation 143(2003):543-549.
    
    [8] Rabah Bouzidi, Yannick Ravaut, Christian Wielgosz. Finite elements for 2D problems of pressurized membranes [J]. Computers and Structures.81,2003 :2479-2490.
    
    [9] C. H. Jenkins, S. M. Faisal. Thermal Load Effects on Precision Membranes [A]. AIAA -99-1525:2562-2571.
    
    [10] S.Naboulsi. Investigation of Geometric Imperfection in Inflatable Aerospace Structures [J], Journal of Aerospace Engineering. July,2004: 98-105.
    
    [11] Tang-Tat Ng, P.E, Edge Effects in Pressurized Membranes [J], Journal of Engineering Mechanics,2002:1100-1104.
    [12]Christopher H.Jenkins,Awlad Hossain.Influence Functions for Mechanical Disturbances in Gossamer Antennas and Reflectors[J].IEEE,Vol.2-1045:1-9.
    [13]Mingwan Soh,Jun Ho Lee,Sung-Kie Youn.An Inflatable Circular Membrane Mirror for Space Telescopes[J].Proc.of SPIE Vol.5638:262-271.
    [14]D.K.Marker,C.H.Jenkins.Surface Precision of Optical Membranes with Curvature[J].Optics Express,Vol.1,No.11:324-331.
    [15]Pai P F,Young L G,LEE Seung-Yoon.Geometrically exact modeling and design of high precision membranes[A].AIAA 2002-1762:1-9.
    [16]Charlie C L,Wang,Shana S F Smith,etc.Surface flattening based on energy model[J].Computer-Aided Design.2002,34:823-833.
    [17]J.McCartney,B.K.Hinds,K.W.Chong.Pattern flattening for orthotropic materials[J].Computer-Aided Design.2005,37:631-644.
    [18]Jae-Yeol Kim,Jang-Bog Lee.A new technique for optimum cutting pattern generation of membrane structures[J].Engineering Structures.2002.745-756.
    [19]Palisoc Arthur L,Huang Yuli.Design Tool for Inflatable Space Structures [A].AIAA AIM-974:1-9.
    [20]Palisoc Arthur,Thomas Mitchell.A Comparison of the Performance of Seamed and Unseamed Inflatable Concentrators.
    [21]Thomas Mitchell,Veal Gordon.Scaling Characteristics of Inflatable Paraboloid Concentrators[J].ASME No.H00630-1991:1-6.
    [22]徐彦,关富玲,管瑜.充气可展开天线精度分析和形面调整[J].空间科学学报.2006.26(4):292-297.
    [23]夏劲松.索膜结构的构造理论和柔性天线的结构分析[D].杭州:浙江大学.2005:116-138.
    [24]Fang Houfei,Lou Michael,Hsia Lih-Min,etc.Catenary Systems for Membrane Structures[A].AIAA-2001-1342:1-9.
    [25]Fang Houfei,Huang John,Quijano Ubaldo,etc.Design and Technologies Development for an Eight-Meter Inflatable Reflectarray Antenna[A].AIAA 2006-2230:1-9.
    [26]Fang Houfei,Lou Michael,Huang John,etc.Development of a 7-Meter Inflatable Reflectarray Antenna[A].AIAA 2004-1502:1-11.
    [27]Fang Houfei,Lou Michael,Huang John,etc.Development of a Three-Meter Ka-Band Reflectarray Antenna[A].AIAA 2002-1706:1-10.
    [28]Huang John,Fang Houfei,Lovick Richard,etc.The Development of Large Flat inflatable Antenna for Deep-Space Communications[A].AIAA 2004-6112:1-14.
    [29]Lin John K H,Cadogan David P,Feria V Alfonso,etc.An Inflatable Microstrip Reflectarray Concept for Ka-band Applications[A].AIAA-2000-1831:2-13.
    [30]Sakamoto Hiraku,Miyazaki Yasuyuki,Park K C.Evaluation of Cable Suspended Membrane Structures for Wrinkle-Free Design[A].AIAA 2003-1905:1-10.
    [31]Huang John,Fang Houfei,Lopez Bernardo,etc.The Development of Inflatable Array Antennas[A].AIAA 2003-6320:1-8.
    [32]Fang Houfei,Lou Michael,Huang John,etc.Thermal Distortion Analysis of a Three-Meter Inflatable Reflectarray Antenna[A].AIAA 2003-1650:1-10.
    [33]李作为,杨庆山,刘瑞霞.薄膜结构褶皱研究述评[J].中国安全科学学报.2004.14(7):16-20.
    [34]杜星文,王长国,万志敏.空间薄膜结构的褶皱研究进展[J].力学进展.2006.36(2):187-199.
    [35]Wong Yew Wei.Analysis of wrinkle patterns in prestressed membrane structures[D].Dissertation submitted to the university of Cambridge for the degree of master of philosophy.August 2000.
    [36]Wong Y W,Pellegrino S,Park K C.Prediction of Wrinkle Amplitudes in Square Solar Sails[A].AIAA 2003-1982:1-10.
    [37]Johnston John D.Finite Element Analysis of Wrinkled Membrane Structures for Sunshield Applications[A].AIAA 2002-1456:1-11.
    [38]Stanuszek M.,FE analysis of large deformations of membranes with wrinkling[J].Finite Elements in Analysis and Design 2003,39:599-618.
    [39]Rossi Riccardo,Lazzari Massimiliano,Vitaliani Renato.Simulation of Light-Weight Membrane Structures by Wrinkling Model[J].International Journal For Numerical Methods In Engineering, 2005; 62:2127 - 2153.
    
    [40] Pappa R S. Giersch L R, Quagliaroli Jessica M. Photogrammetry of a 5m inflatable space antenna with consumer digital cameras [J]. NASA TM-2000-210627, December 2000:1-11.
    
    [41] P. M. Danthy. Response Surface Methods for Spatially-Resolved Optical Measurement Techniques [A]. AIAA-2003-648. 2003:1-16
    
    [42] L. R. M. Giersch. Pathfinder Photogrammetry Research for Ultra-Lightweight and Inflatable Space Structures [R]. NASA/CR-2001-211244.2001:25-76
    
    [43] Richard S. Pappa, Thomas W. Jones, Jonathan T. Black, etal.Photogrammetry Methodology Development for Gossamer Spacecraft Structures [J]. S V Sound and Vibration. 2002, 36(8): 12-21
    
    [44] Urmil K. Dharamsi. Comparing Photogrammetry with a Conventional Displacement Measurement Technique on a 0.5m Square Kapton Membrane [A].AIAA 2002-1258. 2002, 1(0273-4508): 463-472
    
    [45] P. Frank Pai, Jiazhu Hu. Camera-based Digital Real-time Static and Dynamic Testing of Deployable/Inflatable Structures [J]. Proc SPIE Int Soc Opt Eng. 2005,5758(0227-786X):209-218.
    
    [46] Fang Houfei, Eastwood Im. Mechanical Technology Development on a 35-m Deployable Radar Antennna for Monitoring Hurricanes.
    
    [47] Pappa Richard S, Black Jonathan T, Blandino Joseph R, Photogrammetric Measurement Of Gossamer Spacecraft Membrane Wrinkling.
    
    [48] Su Jie, Xu Bugao. Fabric Wrinkle Evaluation Using Laser Triangulation And Neural Network Classifier [J]. Optical Engineering, 1999, 38(10):1688-1693.
    
    [49] Blandino Joseph R, Johnston John D, Miles Jonathan J,etc. The Effect of Asymmetric Mechanical and Thermal Loading on Membrane Wrinkling [A].AIAA 2002-1371:1-11.
    
    [50] H. Duvvuru, A. Hossain, C. H. Jenkins. Modeling of an Active Seam Antenna [A]. AIAA-2003-1739. 2003:4(0273-4508) 3123-3131
    
    [51] Lindler Jason E, Flint Eric M. Boundary Actuation Shape Control Strategies for Thin Film Single Surface Shells[A].AIAA conference,2004,AIAA-2004-1825:1-11,2004.
    [52]Jenkins C H,Schur WW.Gore/Seam Architectures for Gossamer Structures [A].AIAA conference,2001,AIAA-2001-1262:1-10,2001.
    [53]M.Salama,C.P.Kuo,J.Garba,etal.On-Obrit Shape Correction of Inflatable Structures[A].AIAA 99-1074.1999:1-10
    [54]Xiaoqi Bao,Yoseph Bar-Cohen.Numerical Modeling of Single-layer Electroactive Polymer Mirrors for Space Applications[A].Proceedings of the SPIE's EAPAD Conf.2003,5051:381388
    [55]J.B.Breckinridge,Aden B.Meinel Inflatable Membrane Mirrors For Optical Passband Imagery[J].Optical Engineering.2000,39(2):541-550
    [56]Kolar Ramesh,Whittinghill Craig,Agrawal Brij.Numerical Simulation of Inflatable Membrane Structures[J].Smart Structures and Materials 2001,Proc.SPIE Vol.4327:481-496.
    [57]Kornbluh R D,Flamn D S.Prahlad H.Shape control of large lightweight mirrors with dielectric elastomer actuation[J].Smart Structures and Materials 2003,Proc.SPIE Vol.5051:143-158.
    [58]翁雁麟,关富玲.充气膜结构的优化设计[J].科技通报.2006,22(4):535-539.
    [59]Guest,S.D.& Pellegrino,S.Inextensional wrapping of flat membranes.Proc.1st Int.Sem.Struct[C].Morphol:R.Motro,T.Wester,1992:203-215.
    [60]Miura,K.Method of packaging and deployment of large membranes in space.Proc.31 st Congr.Int.Astronautics Federation[C],Tokyo,Japan,1980:1-10.
    [61]Miura,K.1991 A note on the intrinsic geometry of origami.Proc.1st Int.Conf.of Origami Science and Technology[C],Ferrara,Italy,1989:239-249.
    [62]D.S.A.De Focatiis,S.D.Guest.Deployable membrane designed from folding tree leaves.Phil.Trans.R.Soc.Lond.A[J],2002:1-12
    [63]陈务军,关富玲,董石麟,张京街。空间可展开桁架结构展开过程分析的理论和方法[J].浙江大学学报:工学版,2000,34(4):382-387。
    [64]余永辉,关富玲,陈向阳。可展桁架运动过程动力学模拟[J].计算力学学报,2005,22(2):197-201.
    [65]Yoon S.Geometric elimination of constraint in numerical simulation of Lagrangian equations[J].Journal of Mechanical Design,1994,116:1058-1064.
    [66]Yasuyuki Miyazaki,Michiharu Uchiki.Deployment dynamics of inflatable tube[C].AIAA-2002-1254:1-10
    [67]刘晓峰,谭惠丰,杜星文.充气太空管展开模拟[J].哈尔滨工业大学学报,2004,36(5):684-687
    [68]Charlie C.L.Wang,Shana S-F.Smith,Matthew M.F.Yuen.Surface flattening based on energy model[J].Computer-Aided Design 34,2002:823-833.
    [69]J.McCartney,B.K.Hinds,K.W.Chong.Pattern flattening for orthotropic materials[J].Computer-Aided Design 37,2005:631-644.
    [70]Hirohisa Noguchi,Toshiaki Hisada.Intergrated FEM Formulation for Total/Updated-Lagragian Method in Geometrically Nonlinear Problems[J].International Journal of JSME 38(1),1995:23-29.
    [71]K.Lu,M.Accorsi,J.Leonard.Finite Element Analysis of Membrane Wrinkling[J].International Journal of Numerical Method in Engineering 50,2001:1017-1038.
    [72]K.Nakashino,M.C.Natori.Efficient Modification Scheme of Stress-Strain Tensor for Wrinkled Membranes[J].AIAA Journal 43(1),2005:206-215.
    [73]张其林,索和膜结构,同济大学出版社,2002
    [74].刘光启,马连湘,刘杰。化学化工物性数据手册(无机卷)[M],化学工业出版社,2002:59-70
    [75]叶小兵.用曲面膜单元建立的膜结构静力动力分析理论,计算机辅助设计系统及模型实验研究.天津大学博士论文.1998.
    [76]叶小兵,李中立,吴健生,用曲面有限单元建立的膜结构分析理论[J],建筑结构学报,1998,10,17-21
    [77]王勖成.邵敏.有限单元法基本原理和数值方法.清华大学出版社.
    [78]张汝清,詹先义,非线性有限元,重庆大学出版社.
    [79]黄祖良,陈强顺.矢量分析和张量分析.同济大学出版社,1989
    [80]陈务军,空间展开桁架结构设计原理与展开动力学分析理论研究,浙江大学博士学位论文(1998).
    [81]陈向阳,可展桁架结构展开过程和动力响应分析与结构设计,浙江大学博士学位论文(2000).
    [82]张京街,弹簧驱动空间可展桁架结构设计与分析理论研究,浙江大学博士学位论文(2001).
    [83]胡其彪,空间可伸展结构的设计与动力学分析研究,浙江大学博士学位论文(2001).
    [84]岳建如,空间可动机构结构设计与控制分析,浙江大学博士学位论文(2002)
    [85]关富玲,李刚,夏劲松,余永辉。充气可展空间结构,卫星结构与机构技术进展研讨会会议论文集,总装备部卫星技术专业组,2003年9月.
    [86]姚涵珍,周桂英,楚大庆。AutoCAD 2004交互工程绘图及二次开发[M]。北京:机械工业出版社。2004。
    [87]张志涌。MATLAB教程[M]。北京:北京航空航天大学出版社。2001。
    [88]徐忠阳。小型非接触式测量系统及其在天线自重变形测量中的应用[D]。郑州:解放军测绘学院,1990.
    [89]狄杰建,段宝岩,仇原鹰,罗鹰。周边式桁架可展开天线的形面调整[J]。宇航学报。2004。25(5):583-586.
    [90]吴明儿,关富玲。可展结构的展开分析[J].杭州电子工业学院学报,1993,13(2):13-21.
    [91]潘在元.张素素.FORTRAN 90教程.浙江大学出版社.1993
    [92]杨耀乾.薄壳理论[M]。北京:中国铁道出版社.1981
    [91]刘明治,高桂芳.空间可展开天线结构研究进展[J].宇航学报,2003,24(1):82-87
    [92]E.Haug and G.H.Powell,Analytical Shape finding for Cable Nets.IASS Pacific Symp.PartlI on Tension Structure and Space Frames,Tokyo and Kyoto.1972:83-92.
    [93]E.Haug and G.H.Powell,Finine element analysis of nonlinear membrane structure.IASS Pacific Symp.PartlI on Tension Structure and Space Frames,Tokyo and Kyoto.1972:289-317.
    [94]Chi-Tsang Li.John W.Leonard.Finite Element Analysis of Inflatable shell,Journal of the Engineering Mechanics Division,1973:495-513
    [95]N.Toshio.T.Nobuyoshi and H.Tosaka.Membrane Structures Analysis Using the Finite Element Technique.lASS Symp.Osaka,1986,2:9-16
    [96]Levy,R.and Spillers,W.Analysis of Geometrically Nonlinear Structures.Chapman and Hall.1995
    [97]Gil,A.J.Finite element analysis of prestressed hyperelastic saint venant-kirchhoff membranes under large deformations.Textile Composites and Inflatable Structures:206-211
    [98]付丽.充气展开天线形面精度分析[M].哈尔滨工业大学硕士论文.2006:21-39.
    [99]卫剑征,苗常青,杜星文.充气太阳能帆板展开动力学数值模拟预报[J].宇航学报.Vol.28(2).2007:322-326
    [100]卫剑征,苗常青,杜星文,充气平面天线结构展开过程仿真分析[J]。哈尔滨工业大学学报.Vol.39(9).2007:1398-1401
    [101]David P.Cadogan,John K.Lin and Mark S.Grahne.Inflatable Solar Array Technology.AIAA-99-1075:1-8
    [102]David Lichodziejewski,Gordon Veal,Billy Derbes.SPIRAL WRAPPED ALUMINUM LAMINATE RIGIDIZATION TECHNOLOGY. AIAA 02-1701:1-8
    [103] D. Cadogan, J. Stein, M. Grahne. Inflatable Composite Habitat Structures for Lunar and Mars Exploration. IAA-98-IAA.13.2.04: 1-9
    [104] S.L.Veldman, C.A.J.R. Vemeeren, Inflatable Structures in Aerospace Engineering-An Overview. Proceedings of the European Conference on Spacecraft Structures, Materials and Mechanical Testing, Noorwijk, The Netherlands, 29 November-1 December 2000. (ESA SP-468, March 2001) [105] D. Cadogan, M. Grahne. Inflatable Space Structures: A New Paradigm for Space Structure Design. 49th International Astronautical Congress, Sept 28-Oct 2, 1998/Melbourne, Australia.
    [106] George H. Sapna III, John Folke, Charles R. Sandy.etc. Inflatable Boom Controlled Deployment Mechanism for the Inflatable Sunshield In Space (ISIS) Flight Experiment. 34th Aerospace Mechanisms Conference, May 11-13 2000, NASA GSFC, Greenbelt, MD: 1-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700