用户名: 密码: 验证码:
三维地质建模及其在天然气水合物储量评价中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球能源需求的不断增加,对新型替代能源——天然气水合物深入研究的重要性日益彰显。本文对三维地质模型的基本原理和具体应用进行归纳总结,并介绍天然气水合物赋存的地球物理证据、构造沉积特征、地球化学特征、形成存在的温压条件及研究意义。采用插值法对空间数据进行处理,构建天然气水合物三维地质模型,从三维的角度更加逼真准确的对水合物矿体进行观察和分析解释。应用三维地质建模技术,在VC++.NET平台下,结合Open Inventor三维图形软件包,开发出一套实用的、具有自主知识产权的天然气水合物储量评价系统(GHRES)软件,并已应用于南海北部陆坡某研究区,取得理想效果。
     在研究区数据文件中,提取出不同时间域的各种地震属性信息,应用SOM神经网络方法对其分类,可以对水合物矿体进行有效识别。应用BP神经网络的方法对水合物物性参数(即孔隙度和饱和度)进行预测,大幅提高了预测精度。建立天然气水合物三维矿体雕刻模型,精细刻画矿体内部地质特征,动态圈定水合物矿体的边界形态,然后对水合物三维矿体雕刻模型进行体积剖分,确定水合物矿体基本六面体单元的体积、孔隙度和饱和度,最后使用三维矿体雕刻模型法估算得到水合物的储量。
Due to the complexity of the geological diversity of objects, information resources increasingly rich and three-dimensional visualization technology's rapid development, the application of three-dimensional geological model to the field become a research hotspot. Through the establishment of three-dimensional geological model, you can display realistic geological structures, describe the physical properties of geological features and evaluation of reserves. In the three-dimensional geological model of the observation and analysis, it can not only verify the preliminary exploration work, but also provide a favorable reference to the evaluation and development of the latter. Three-dimensional geological modeling is playing an increasingly important role as a means of comprehensive research in the treatment of geological problems. As a potential alternative sources of energy, the distribution of gas hydrate, which has the characteristics of wide range of large reserves, high energy density, shallow burial depth and pollution-free after post-combustion, will become possibly alternatives of oil, natural gas and coal in the future, and have great significance in the farther research.
     Paper, build a three-dimensional geological model of gas hydrate from the perspective of a more realistic three-dimensional observation and accurate analysis, which adopt interpolation to deal with spatial data. The establishment of gas hydrate model three-dimensional ore body sculpture, portrait of the geological characteristics of the ore body, dynamic delineation of ore boundaries hydrate form, and then three-dimensional ore body sculpture of hydrate volume mesh model, the application of three-dimensional ore body sculpture model method hydrate reserves. The main research contents are as follows:
     1. It expatiated the research significance of three-dimensional geological modeling and the development of gas hydrate, reviewed the domestic and international gas hydrate research, and summarized the existing domestic and international three-dimensional geological model of the type and three-dimensional geological modeling software features. This thesis, based on research ideas, advanced specific research methods .
     2. Aiming at the requirement and characteristics of the data obtained of the modeling of gas hydrates, it established the geological space for triangulation using of Delaunay triangulation algorithm disorderly scattered data points, and then become the triangular data points online for the rules of interpolation of grid data to generate the surface model formation, the application of the triangular upper and lower bands to the surface of suture formation, construction of model formation. Using three-dimensional texture hardware-accelerated volume rendering methods, analyze the ore body's internal structure and properties of the distribution of the situation by spatial data model for the establishment of a variety of attributes model. In the three-dimensional scene, the use of the projection transformation, the processing of the light and materials, the addition of bump texture, made the model show good results, a more prominent model for the distribution of geological features of the method. In addition, the seismic profile could act animation along X, Y and Z direction or any direction .
     3. Using gas hydrate through three-dimensional seismic data processing, the established seismic models, seismic attributes model and physical parameters of the model. On the basic concepts of gas hydrate and distribution, as well as the existence of the geophysical evidence hydrate: hydrate community marked the end of the—BSR (bottom simulating reflector layer), the amplitude blanking zone, the waveform of BSR polarity reversal. Hydrate occurrence in the general seabed sedimentary basins of hydrate structures, sedimentary characteristics, and geochemical characteristics, the existence of hydrate formation temperature and pressure conditions for analysis. On account of many different types of seismic attributes, it made use of SOM neural network method, extraction of attribute data characteristics, model, to effectively hydrate recognition. Using conventional BP neural network methods, it can predict gas hydrate physical parameters (porosity and saturation) of the basic principles and concrete steps.
     4. Based on the volume method, it advanced the application of three-dimensional ore body sculpture model to estimate gas hydrate reserves. Three-dimensional ore body sculpture method carried out on hexahedral mesh cube, which made the two-dimensional distribution of cases hydrate the area and the calculation of effective thickness translate into three-dimensional unit case volume for the calculation of ore, and portrayed fine the geological characteristics of the ore body, and dynamic boundary delineation of ore bodies form hydrates.
     5. The use of VC ++. NET as a development platform, combined with Open Inventor package, set up visual evaluation of gas hydrate system (GHRES). Open Inventor which had the characteristics of object-oriented, could make programming simple, achieve a more realistic target at the same time cross-platform features.
     Overall system is divided into three modules: module model basin, deposits and reserves estimates model module. Basin model modules: harbor basin on the three-dimensional computer modeling, the structure of observable characteristics of the basin. Minerals model modules: including three-dimensional seismic model, seismic attribute model, physical parameters of the model, the model can be sliced in any direction, cutting, transparent display, by means of a detailed analysis of these showed that the internal characteristics of the reservoir, in order to provide a basis for hydrate exploration .Reserves estimation module: dynamic delineation of hydrate ore body shape and borders, and the use of three-dimensional model to estimate ore reserves carving. In addition, system can be set according to user need to be flexible color table, work area coordinates attribute wells, graphics notes attribute , the various models, such as display properties.
     6. Analysis of gas hydrate reserves evaluation system (GHRES) in the South China Sea continental slope north of the study area in a specific application. It described the structure of the study area of the sedimentary characteristics, temperature and pressure conditions, and established three-dimensional digital model of BSR layers, seismic wave impedance properties of model and data model, such as attributes, and finally through the establishment of three-dimensional ore body sculpture model hydrate, hydrate estimate reserves. Hydrate ore body sculpture first volume mesh model for calculation of the hydrate model ore body subdivision carved out of each hexahedron volume, porosity and saturation, and finally by use of the three-dimensional ore body sculpture model formula, obtained study area of the reserves of hydrate.
     The results of the work achieved and innovation are as follows:
     1. The author used three-dimensional geological modeling technology, to develop a practical, with independent intellectual property rights of natural gas hydrate reserves evaluation system (GHRES) software, and the northern South China Sea continental slope has been used in a study area, the desired effect.
     2. Data files from the work area to extract a variety of different time domain seismic attributes information. Application of this information through self-organizing neural network approach to hydrate ore body the shape of the boundary description can hydrate ore body to identify effective.
     3. Paper with conventional methods in the physical parameters of hydrate prediction, based on the application of the method of BP neural network parameters on the hydrate (porosity and saturation) to predict and improve the prediction accuracy.
     4. Author hexahedron model as the basic unit of gas hydrate ore body three-dimensional sculpture, a three-dimensional model of ore body sculpture. Through the model can be dynamic delineation of ore boundaries hydrate form, hydrate described the spatial distribution of ore body characteristics, portrait of the hydrate to obtain geological characteristics of minor bodies. To volume-based, three-dimensional model of ore body carving methods to estimate reserves.
引文
[1]李林.基于OpenGL标准的地学信息可视化[J].西北地质,2000,33(3):56-60.
    [2]田景文.地下油藏的仿真与预测[D].哈尔滨:哈尔滨工程大学,2001.
    [3]杨东来,张永波,王新春,等.地质体三维建模方法与技术指南[M].北京:地质出版社,2007.
    [4]唐泽圣.科学计算可视化及其应用[N].计算机世界报,1998-6-29.
    [5]石教英.面向21世纪的可视化技术展望[N].计算机世界报,1998-6-29.
    [6]李裕伟.空间信息技术的发展及其在地球科学中的应用[J].地学前缘,1998(4):335.
    [7]JOES.在地质领域内应用的三维空间信息系统的数据结构[J].华东地院学报,1993(9):263.
    [8]祝有海.加拿大马更些冻土区天然气水合物试生产进展与展望[J].地球科学进展,2006,21(5):513-520.
    [9]姚永坚,黄永样,吴能友,等.天然气水合物的形成条件及勘探现状[J].新疆石油地质,2007,28(6):668-672.
    [10]马孝春,黄盛仁.天然气水合物的赋存条件及判据[J].西部探矿工程,2002(增刊001):144-145.
    [11]郭平,刘士鑫,杜建芬,等.天然气水合物气藏开发[M].北京:石油工业出版社,2006.
    [12]江怀友,乔卫杰,钟太贤,等.世界天然气水合物资源勘探开发现状与展望[J].中外能源,2008,13(6):19-25.
    [13]吴时国,姚伯初,等.天然气水合物赋存的地质构造分析与资源评价[M].北京:科学出版社,2008.
    [14]张发明,等.多尺度三维地质结构几何模拟与工程应用[M].北京,科学出版社,2007.
    [15]史文中,吴立新,李青泉,等.三维空间信息系统模型与算法[M].北京:电子工业出版社,2007.
    [16]曾钱帮,刘大安,张菊明,等.浅谈工程地质三维建模与可视化[J].西部探矿工程,2005,(3):72-74.
    [17]孟小红,王卫民,姚长利,等.地质模型计算机辅助设计原理与应用[M].北 京,地质出版社,2001.
    [18]潘炜,刘大安,钟辉亚,等.三维地质建模以及在边坡工程中的应用[J].岩石力学与工程学报,2004,23(4):597-602.
    [19]EGAN S S,KANE S,BUDDIN T S,et al.Computer modeling and visualization of the structural deformation caused by movement along geological faults[J].Computer & Geosciences,1999,25(3):283-297.
    [20]WHITE M J.Visualization of the EI berrocal granite:application to rock Engineering[J].Engineering Geoglogy,1998,(49):185-194.
    [21]刘军旗,毛小平,孙秀萍.基于GeoView三维地质建模的一般过程[J].工程地质计算机应用,2006,44(4):1-3,13.
    [22]GEMCOM.http://www.gemcomsoftware.com/,2005,3.
    [23]熊祖强.工程地质三维建模及可视化技术研究[D].中国科学院,2007.
    [24]CLAYPOOL G E,KAPLAN I R.The origin and distribution of methane in marine sediments[M].New York:Plenum,1974.
    [25]沙志彬,王宏斌,梁金强,等.天然气水合物成矿带的识别技术研究[J].现代地质,2008,22(3):438-446.
    [26]SIMON W H.3D Geoscience modeling-computer techniques for geological characterization[M].New York and Heidelburg:Springer-Verlag,1994.
    [27]杨必胜.数字城市的三维建模与可视化技术研究[D],武汉:武汉大学,2002.
    [28]LI R X.Data Structures and Application Issues in 3-D Geographic InformationSystems[J].GEOMAYICA,1994,48(3):209-224.
    [29]LI R.3D Data Structure and Application in Geological Subsurface Modeling[J].International Archives of Photogrammetry and Remote Sensing,1994,30:124-131.
    [30]李清泉,杨必胜,史文中,等.三维空间数据的实时获取、建模与可视化[M].武汉:武汉大学出版社,2003.
    [31]李清泉.基于混合结构的三维GIS数据模型与空间分析研究[D].武汉:武汉测绘科技大学,1998.
    [32]汤国安,刘学军,闾国年著.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005.
    [33]Mercury Computer Systems.Open Inventor from TGS User Guide,2006.
    [34]马清利,季民.基于三维GIS空间数据模型集成的概念框架研究[J].山东 科技大学学报(自然科学版),2006,25(1):32-35
    [35]吕鹏.基于立方体预测模型的隐伏矿体三维预测和系统开发[D].北京:中国地质大学,2007.
    [36]赫尔丁S W,龙子芳.三维矿床的计算机构模方法[J].国外金属矿山,1989(2):95-96.
    [37]许斌,张森,历万庆.从序列切片重构3D对象的新方法[J].计算机学报,1994,17(1):64-71.
    [38]程朋根.地矿三维空间数据模型及相关算法研究[D].武汉:武汉大学,2005.
    [39]阿列尼切夫B M,弗拉基米罗夫A N.菱镁矿股份公司露天采矿工程编制自动化[J].国外金属矿山,1995(12):70-74.
    [40]朱小弟,李青元,曹代勇.基于OpenGL的切片合成法及其在3D地质模型可视化中的应用[J].测绘科学,2001,26(1):30-32.
    [41]朱良峰.基于GIS的三维地质建模及可视化系统关键技术研究[D].武汉:中国地质大学,2005.
    [42]吴立新,史文中,CHRISTOPHER GOLD.3D GIS与3D GMS中的空间构模技术[J].地理与地理信息科学,2003,19(1):5-11.
    [43]SCHROEDER W J,SHEPHARD M S.A combined octree Delaunay method for fullyautomatic 3-D mesh generation internat[J].J.Numer.Methods Eng.1990,29(1):37-55.
    [44]僧德文,李仲学,李春民,等.体绘制技术及其在矿床三维可视化中的应用[J].辽宁工程技术大学学报,2005,24(4):476-473.
    [45]张新宇.地学空间三维可视化储量计算辅助分析系统关键技术的研究[D].长春:吉林大学,2006.
    [46]张煜,白世伟.一种基于三棱柱体体元的三维地层建模方法及应用[J].中国图像图形学报,2001,6A(3):285-290.
    [47]齐安文,吴立新,李冰,等.一种新的三维地学空间构模方法——类三棱柱法[J].煤炭学报,2002,27(2):158-163.
    [48]LI R X.Data structure and applications issues in 3D geographical information systems[J].Geomatica,1994,48(3):209-224.
    [49]SHI W Z.Development of a hybrid model for three-Dimensional GIS[J].Geo-Spatial Information Science,2000,3(2):2-6.
    [50]李德仁,李青泉.一种3DGIS混合数据结构研究[J].测绘学报,1997,26(2):128-133.
    [51]李青泉,李德仁.3D空间数据模型集成的概念框架研究[J].测绘学报,1998,27(4):325-330.
    [52]龚健雅,夏宗国.矢量与栅格集成的三维数据模型[J].武汉测绘科技大学学报,1997,22(1):7-14.
    [53]GREEN P J,SIBSON R.Computing Dirichlet tessellation in the plane[J].The Computer Journal,1978,2(2):168-173.
    [54]BOWYER A.Computing Dirichlet Tessellations[J].The Computer Journal,1981,24(2):162-166.
    [55]WASTON D F.Computing the n-Dimensional Delaunay Tessellation with Application to Voronoi Polytopes[J].The Computer Journal,1981,24(2):167-172.
    [56]杨钦.限定Delaunay三角网格剖分技术[M].北京:电子工业出版社,2005.
    [57]http:/baike.baidu.com/view/1691145.htm.
    [58]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005.
    [59]梁晶晶.Delaunay生成算法分类及研究[J].科技信息,2008,29:12,71.
    [60]朱求安,张万昌,余钧辉.基于GIS的空间插值方法研究[J].江西师范大学学报(自然科学版),2004,28(2):183-188.
    [61]李庆扬,王能超,易大义.数值分析(第四版)[M].北京:清华大学出版社,2001.
    [62]劳婧华,余东明.矿体三维模拟技术中的空间数据插值方法[J].大众科技,2008(8):101.
    [63]田宜平.盆地三维数字地层格架的建立与研究[D].武汉:中国地质大学,2001.
    [64]吴立新,张瑞新,戚宜欣,等.3维地学模拟与虚拟矿山系统[J].测绘学报,2002,31(1):28-33.
    [65]张渭军,王文科.基于钻孔数据的地层三维建模与可视化研究[J].大地构造与成矿学.2006,30(1):108-113.
    [66]苑世升.离散高程点生成真实地层的算法分析[J].西部探矿工程,2007(12):83-86.
    [67]王家华,高建国.三维地质数据的体绘制研究[J].中国科技信息,2008(1):113,115.
    [68]BLOOMENTHAL J.Poligonization of Implicit Surfaces[J].Computer Aided Geometric Design,1998,46(6):73-77.
    [69]GREG TURK.Re-Tiling Polygonal Surfaces[J].Computer Graphics,1992,26(2):55-64.
    [70]周良辰,陈锁忠,朱莹.地质结构三维建模及其可视化方法研究[J].计算机应用研究,2007.24(6):150-152.
    [71]DAVE SHREINER,MASON WOO,JACKIE NEIDER,et al.OpenGL Programming Guide Sixth Edition[M].Addison-Wesley Professional,2007.
    [72]JOSIE WERNECKE,Open Inventor Architecture Group.The Inventor Mentor:Programming Object-Oriented 3D Graphics with Open Inventor~(TM),Release 2[M].Addison-Wesley Professional,1994.
    [73]FRANCIS S H J,STEPHEN M K.Computer Graphics Using OpenGL(3rd Edition)[M].Prentice Hall,2006.
    [74]SAMUEL R BUSS.3D Computer Graphics:A Mathematical Introduction with OpenGL[M].Cambridge University Press,2003.
    [75]阎锋欣,候增选,张定华,等.Open Inventor程序设计从入门到精通[M].清华大学出版社,2007.
    [76]BLINN J F.Simulation of Wrinkled Surfaces[J].In Proceedings SIGGRAPH 78.1978,286-292.
    [77]DONALD D HEARN,M PAULINE BAKER.Computer Graphics with OpenGL Third Edition[M].Prentice Hall,2003.
    [78]PETER SHIRLEY,MICHAEL ASHIKHMIN,MICHAEL GLEICHER,et al.Fundamentals of Computer Graphics,Second Ed[M].A K Peters,2005.
    [79]龚建明.冲绳海槽天然气水合物成因及资源潜力评价[D].青岛:中国海洋大学,2007.
    [80]MILKOV A V,SASSEN R.Economic geology of offshore gas hydrate accumulations and provinces[J].Marine and Petroleum Geology,2002,19:1-11.
    [81]SLOAN E D.Clathrate hydrates of natural gases[M].New York:Marcel Dekker,1990.
    [82]曾维平,周蒂.GIS辅助估算南海南部天然气水合物资源[J].热带海洋学报,2003,22(6):35-45.
    [83]孙萍.海洋气体水合物甲烷资源量及其评价方法简介[J].海洋地质动态,2000,16(9):5-8.
    [84]KVENVOLDEN K A.Methane hydrate and hydrates and global climate[J].BiogeochemicalCycles,1988,2:221-229.
    [85]GINSBURG G D,SOLOVIEV V A.Submarine gas hydrate estimation:Theoretical and empirical approaches[C].Offshore Technology Conference,Houston,TX,1995,1:513-518.
    [86]SOLOVIEV V A.Global estimation of gas contentin submarine gas hydrate accumulations[J].Russian Geology and Geophysics,2002,43:609-624.
    [87]MILKOV A V,CLAYPOOL G E,LEE YJ,et al.In situ methane concentrations at Hydrate Ridge offshore Oregon:new constraints on the global gas hydrate inventory from anactive margin[J].Geology,2003,31:836-833.
    [88]葛倩,王家生,向华,等.天然气水合物资源量研究进展[J].海相油气地质,2005,10(4):47-50.
    [89]金庆焕,张光学,杨木壮,等.天然气水合物资源概论[M].北京:科学出版社,2006.
    [90]陈光进,孙长宇,马庆兰.气体水合物科学与技术[M].北京:化学工业出版社,2008.
    [91]栾锡武.琉球沟弧盆系的海底热流分布特征及冲绳海槽热演化的数值模拟[J].海洋与湖沼,1997,28(1):44-48.
    [92]张立新,徐学祖,马巍.青藏高原多年冻土与天然气水合物[J].天然气地球科学,2001,12(1-2):22-26.
    [93]杨木壮,王明君,吕万军.南海西北陆坡天然气水合物成矿条件研究[M].北京:气象出版社,2008.
    [94]SHIPLEY T H,HOUSTON M H,BULLER R T,et al.Seismic evidence for wide-spread possible gas hydrate horizons on continental slopes and margins.Am Assoc Pet Geol Bull,1979,63:2204-2213.
    [95]TINIVELLA U,LODOLO E,CAMERLENGHI A,et al.Seismic tomography study of a bottom simulating reflector off the South Shetland Islands(Antarctica). In:Henniet J-P,Mienert J editors.Gas hydrate:Relevance to World Margin Stability and Climate Change.Geological Society,London,1998,137:141-151.
    [96]MCCONNELL D R,KENDALL B A.Images of the base of gas hydrate stability in the deepwater Gulf of Mexico and implications for successful well planning[J].The Leading Edge,2003,22(4):361-367.
    [97]PAULL C K,MATSUMOTO R.Leg 164 Overview[C].Proceeding ODP Scientific Results 164:College Station,Tx(Ocean Drilling Program),2000,164:3-12.
    [98]张光学,黄永样,祝有海,等.南海天然气水合物的成矿远景[J].海洋地质与第四纪地质,2002,22(1):75-81.
    [99]BOROWSKI W S,PAULL C K,USSLER WⅢ.Blobal and local variations of interstitial sulfate gradients in deep-water,continental margin sediments;sensitivity to underlying methane and gas hydrates[J].Geol.,1999,159(1-4):131-154.
    [100]王宏斌,杨木壮,白志琳,等.全球范围内天然气水合物构造背景及其稳定域研究综述[J].海洋地质,2003,(2):12-21.
    [101]周怀阳,彭小彤,叶瑛.天然气水合物[M].北京:海洋出版社,2000
    [102]CLAYPOOL G E,KAPLAN I R.The origin and distribution of methane in marine sediments.Natural Gases in Marine Sediments[M].New York:Plenum Press,1974.
    [103]COLLETT T S,LEWIS R S,DALLIMORE S R,et al.Detailed evalution of gas hydrate reservoir properties using JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well downhole well-log displays[C].Canada:Geological of Canada Bulletin,1999,544,295-312.
    [104]GORNITZ V,FUNG I.Potential distribution of methane hydrates inthe world's ocean[J].Global Biogeochemical Cycles,1994,8(3):335-347.
    [105]WASEDA A.Organic carbon content,bacterial methanogenesis,and accumulation processes of gas hydrates in marine sediments[J].Geochemical Journal,1998,32(3):143-157.
    [106]KVENVOLDEN K A.Comparison of marine gas hydrate in sediments of an active and passive margin[J].Marine and Petroleum Geology,1985,2(1):65-71.
    [107]PAULL C K,USSLER III W,BOROWSKI W S,et al.Methane-rich plumes on the Carolina continental rise:Associations with gas hydrates[J].Geology,1995, 23(1):89-92.
    [108]HANDA Y P,STUP1N D.Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-A-radius silica-gel pores[J].J Phys Chem,1992,96:8599-8603.
    [109]龚建明,卢振权,吴必豪.天然气水合物地球化学三维识别方法[J].海洋地质动态,2006,22(12):6-8.
    [110]张光学,黄永祥,陈邦彦.海域天然气水合物地震学[M].北京:海洋出版社,2003.
    [111]栾锡武,赵克斌,孙冬胜,等.海域天然气水合物勘测的地球物理方法[J].地球物理学进展,2008,23(1):210-219.
    [112]http://news.upc.edu.cn/syzg/sykp/sykt/20060714/100214.shtml.
    [113]邹才能,张颖,等.油气勘探丌发实用地震新技术[M].北京:石油工业出版社,2002.
    [114]王永刚,乐友善,张军华.地震属性分析技术[M].东营:中国石油大学出版社,2007.
    [115]姚姚.地震波场与地震勘探[M].北京:地质出版社,2006.
    [116]Landmark A Halliburton company.Learning Poststack.PAL and RAVE Training Manual[M],1996.
    [117]阎平凡,张长水,等.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000.
    [118]闫雪梅,王晓华,夏兴高.基于PCA和BP神经网络算法的车牌字符识别[J].激光与红外,2007,37(5):481-484.
    [119]韩立群.人工神经网络教程[M].北京:北京邮电大学出版社,2006.
    [120]雍世和,张超谟.测井数据处理与综合解释[M].东营:中国石油大学出版社,2007.
    [121]廖东良,孙建孟,马建海,等.阿尔奇公式中m、n取值分析[J].新疆石油学院学报,2004,16(3):16-19.
    [122]张振城,孙建孟,马建海,等.阿尔奇公式中a,m值对饱和度计算结果的影响[J].石油大学学报(自然科学版),2004,28(6):27-30.
    [123]荆万学,陈永吉.浅探阿尔奇公式的物理学原型[J].测井技术,1997,21(4):289-291.
    [124]范宜仁.低矿化度条件下的泥质砂岩阿尔奇参数研究[J].测井技术,1997,21(3):200-204.
    [125]高楚桥,李先鹏,吴洪深.温度与压力对岩石物性和电性影响实验研究[J].测井技术,2003,27(2):110-112.
    [126]褚人杰.确定碎屑岩储集层参数m和a值的方法[J].测井技术,1992,16(5):313-322.
    [127]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003.
    [128]张德丰,等.MATLAB神经网络应用设计[M].北京:机械工业出版社,2009.
    [129]胡俊.运用BP人工神经网络计算储集层含水饱和度[J].西南石油学院学报,1999,21(4):35-37.
    [130]TROFIMUK A A,CHERSKIY N V,TSAREV V P.Accumulation of natural gases in zones of hydrate formation in the hydrosphere[C].Doklady Akademii Nauk SSSR 212,1973:931-934.(in Russian)
    [131]SATOH M,MAEKAWA T,OKUDA Y.Estimation of amount of methane and resources of natural gas hydrates in the world andaround Japan[J].Journal Geological Society Japan,1996,102:959-971.(in Japanese with English abstract)
    [132]COLLET T S,LADD JOHN.Detection of gas hydrate with down-hole logs and assessment of gas hydrate concentrations(satura-tions)and gas volumes on the Blake Ridge with electrical resis-tivity log data[A].In:PAULL C K,MATSUMOTO R,WALLACE P J,et al.Proceedings of the Ocean Drilling Program,Scientific Results[C].2000,164:179-191.
    [133]佐藤干夫,著,李日辉,摘译.天然气水合物甲烷量及资源量的计算[J].李日辉摘译.海洋地质动态,1999,15(9):5-19.
    [134]张剑秋.三维地质建模与可视化系统开发研究[D].南京:南京大学,1998.
    [135]FINLEY P,KRASON J.Geological evolution and analysis of confirmed or suspected gas hydrate localities.Formation and stability of gas hydrate of the Middle America Trench.U.S.Department of Energy Report DOE/MC21181(DE88001007),1986,9:234.
    [136]梁金强,刘学伟,杨木壮,等.海洋天然气水合物地球物理解释方法研究[R].广州海洋地质调查局,中国地质大学(北京),2002.
    [137]DICONESCU C C,KIECKHEFE R M,KNAPP J H.Geophysical evidence for gas hydrates in the deep water of the South Cas-pian Basin,Azerbaijan[J].Marine Petroleum Geology,2001,18:209-221.
    [138]沙志彬,王宏斌,杨木壮,等.天然气水合物成矿带的识别技术研究[J].现代地质,2008,22(3):438-446.
    [139]SUESS E,CARSON B,RITGER S D,et al.Biological communities at vent sites along the subduction zone off Oregon,in the hydrothermal vents of the eastern pacific:an overview.Bull Biol Soc Wash,1985,6:475-484.
    [140]渡部芳夫,著,许东禹,译.海底天然气水合物资源概率的评价方法[J].海洋石油,2000,(3):47-50.
    [141]KVENVOLDEN K A.A review of the geochemistry of methane in natural gas hydrate.Organic Geochemistry,1995,23(11-12):997-1008.
    [142]LORENSON T D,COLLETT T S.Gas content and composition of gas hydrate from sediments of the southern North American continental margin.Proceedings of the Ocean Drilling Program,Scientific Results,164:College Station,Texas,Ocean Drilling Program,2000,37-46.
    [143]罗智勇.面向地质勘查的三维可视化系统研制与开发[D].成都:成都理工大学,2008.
    [144]苏新,陈芳,于兴河,等.南海陆坡中新世以来沉积物特性与气体水合物分布初探[J].现代地质,2005,19(1):1-13.
    [145]姚伯初.南海的天然气水合物矿藏[J].热带海洋学报,2001,20(2):20-28.
    [146]宋海斌,等.天然气水合物的地球物理研究[M].北京:海洋出版社,2003.
    [147]沙志彬,杨木壮,梁劲.天然气水合物成矿的沉积控制因素[J].海洋地质动态.2003a(6):16-20.
    [148]沙志彬,杨木壮,梁劲.南海北部陆坡海底异常地貌特征与天然气水合物的关系[J].南海地质研究,2003b(14):29-34.
    [149]WYLLIE M R J,GREGORY A R,et al.An experimental investigation of factors affecting elastic wave velocities in porous media[J].Geophysics,1958,23:459-493.
    [150]葛瑞·马沃可,塔潘·木克基,杰克·德沃金.岩石物理手册:孔隙介质中地震分析工具[M].合肥:中国科学技术大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700