用户名: 密码: 验证码:
基于PC+DSP模式的管道插接专用焊接机器人系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊接过程自动化是未来焊接发展的必然趋势,越来越多的焊接机器人在生产过程中得到应用。现代焊接生产中,插管焊接是化工和锅炉等行业中非常普遍的一种连接形式,由于现有的焊接机器人系统难以满足使用要求,因此,目前仍然依赖焊工进行手工操作,劳动强度大,操作环境非常恶劣,焊接质量难以保证。本文针对管道插接焊接自动化应用方面所存在的问题,采用PC+DSP的开放式控制模式,进行了开放式管道插接专用焊接机器人系统及控制方法研究。
     通过深入分析管道插接焊缝的焊缝特征和焊接机器人系统应该具有的特征,建立了基于PC+DSP控制模式下的机器人运动控制和焊接工艺参数控制的集成控制的硬件平台。针对管道插接焊缝的特点,研发了新型的、便携式5轴焊接机器人,该焊接机器人能够借助支管内壁实现锚定,使机器人的旋转中心与支管的轴线同轴。
     研发了两自由度的、自动定心的新型焊接机器人手腕。该新型手腕由旋转角位台和一套连杆机构组成,实现了焊枪的行走角和工作角的姿态的独立控制,机构性能满足相贯线焊缝焊接工艺的要求,使整个焊接机器人在焊接过程中实现了焊枪轨迹和焊枪姿态的独立控制。
     以PMAC(Progammable Multi-Axis Controller)运动控制卡为控制核心,建立了焊接电源、焊接机器人、送丝系统和送气系统等系统单元间的接口设计,实现了以PMAC为焊接工艺参数和机器人运动参数的控制核心,以PC机为数据管理中心的开放式控制系统硬件平台。
     焊接机器人的运动学模型和焊缝的位姿模型是焊接过程自动化控制的理论基础。针对研发的专用焊接机器人,以D-H法建立了机器人的运动学模型,给出了运动学正解和逆解。管道插接相贯线焊缝是典型的、复杂的空间焊缝,通过对相贯线焊缝的分析,在不失一般性的基础上,建立了适用于机器人焊接的管道插接焊缝位姿的特征矩阵,进而建立了焊枪轨迹控制和焊枪姿态控制的数学模型,实现了焊枪轨迹和焊枪姿态的定量描述。以管道插接相贯线焊缝为焊接对象,建立了能够根据焊缝不同位置而实现实时控制的焊接速度模型。
     针对专用焊接机器人系统,建立了以PMAC为控制核心的分层递阶结构的控制系统操作平台。在Borland C++ builder 6.0开发环境下和Delta Tau提供的PComm32PRO动态链接库,采用了功能强大的SQL Server作为数据库管理引擎,开发开放式专用焊接机器人系统的控制软件平台,主要包括以下模块:系统设置模块、状态监控模块、运动控制模块、专家系统模块、数据管理模块、在线指令模块和通讯模块。根据焊接作业对位置、速度及平稳性控制的要求,实现了以位置环为外环,电流环为内环的,速度环为中间环的三环伺服系统,进行了关节运动间隙补偿,满足了焊接作业的需要。
     分析了管道插接相贯线焊缝焊接过程的控制要求,提出了以焊接工件基础参数为基准的焊枪轨迹、焊枪姿态和焊接电源参数三位一体的控制系统逻辑结构,建立了源发型控制和继承型控制的两种控制方法。在借鉴管道对接全位置焊接工艺参数分析方法的基础之上,提出了以焊缝姿态为基准的焊缝特征区间的划分方法。开发的由环境建模器、任务编程器、参数运算器、任务规划器和传感信息处理器组成的专用焊接机器人任务级离线编程系统,实现了基本的任务级离线编程功能。
     实际的焊接试验验证了焊接机器人系统的实用性和可行性。试验结果表明,焊接机器人系统能够很好的实现管道插接相贯线焊缝的焊接功能,能够实现焊枪轨迹、焊枪姿态的独立控制,焊接过程中能够很好的实现焊枪轨迹、焊枪姿态和焊接工艺三位一体的集成控制,为后续全位置多层多道焊接工艺研究建立了一个稳定的、实用的操作平台。
Automation of welding process is a trend in the welding development, more and more welding robots are used in the manufacture. In the modern welding prcess, pipe inserting is applied in the chemical and boiler industry. The exsiting welding robot can not satisfy the using demand(suiting for whole-position welding and real time programme), So handwork welding is used. The working intensity is large, the working condition is very formidable, and welding quality is bad. In this thesis, the problem in the pipe inserting automation is researched, the PC+DSP open style controlling pattern is applied, and the opening architechture special-purpose welding robot system of pipe inserting and the controlling method are developed.
     The working condition of pipe inserting welding and the characteristic of the welding robot system are analyed. The control device integration hardware flatform controlled by the robot locomotion and welding power parameter is studied. The flatform is based on PC+DSP controlling pattern. For the characteristic of the pipeline pipe inserting, the neotype and protable five freedrom robot is researched. This welding robot implements pointing using inwall additional pipe. The robot gyrating center and additional pipe axial line are in the same line.
     The new style welding robot hand of two fredom and automatic centring is researched. This new hand is composed by the ratation angle revolving table and a mechanical linkage. The independent control of blowtorch moving angle and working angle attitude is implemented. The demand of pipe inserting welding prcocess is satisfied. The blowtorch position and attitude of the whole welding robot is controlled indenpendly in the welding process.
     Based on the PMAC, the interface element makes up with welding power, welding robot, wire feeding system and air supplying system is built. The PMAC is used as the parameters and motion controlling centre. The PC is used as the data management centre and open sytle control system hard ware flatform.
     Pipe inserting intersecting line is typical, complex weld. By analying the intersecting line weld, the characteristic matrix of the pipeline inserting weld position and posture that fit for the robot welding is built, then the controlling math pattern of the blowtorch position and posture is built. The blowtorch position and posture can be decribed quanlitativly. The pipeline intubation intersecting line is the welding puerpose, the real-time controlling welding speed pattern for the different weld position is built.
     The controlling pattern and weld position pattern of the new welding robot are the theoretical basis of the automatic controlling welding process. The motion pattern based on the D-H for the welding robot is recearched. The motion motion normal solution and inverse solution are proposed.
     For the open style controlling system, the controlling system nased on the PMAC is built. The layered step-up controlling system flatform is inplemented. Based on the control demand of the welding position,speed and stabilization, the three rings servo system that using the position as the external ring , the current as the internal ring and the speed as the centre ring. Using the Borland C++ builder 6.0, the PComm32PRO from Delta Tau and the SQL Server as the data bank engine. The open style welding robot is built. It makes up with system designing modular, condition monitor modular,motion controlling modular, expert system modular, condition display modular, on-line command modular and the communicating modular.
     The demand of the pipeline intubation intersecting line welding process is analyed. The system logic structure of the blowborch position, posture, power. The control programm of start control and inherit control. Based on the pipeline butt-joint all-position welding, the weld interval division method that based on the weld posture is suppiled. The welding robot task programm system makes up with condition model building organ, task programmer, parameter arithmetic organ, task planning organ and sensor information processor. The task programm function is implemented.
     To prove the practicablity and feasibility of the welding robot, the welding experiments are done. The results show that, the welding robot can make the pipeline intubation intersecting line weld very well, can implement independent control of the weld borch position and posture, can finish the integrate control of the robot motion line,weld borch posture and welding process. The stable,applicable working platform for the all-position mutil-layers and tracks welding is built.
引文
1唐新华.焊接机器人的现状及发展趋势(一).电焊机.2006, 36(3):1-5
    2唐新华.焊接机器人的现状及发展趋势(二).电焊机.2006, 36(4):43-46
    3 Twamotot(Deneb.Japan.Inc).Robot.Tokyo,Japan:JIRA,1996
    4符娅波,边美华,许先果.焊接机器人的应用与发展.焊接.2006,35(11):79-81
    5 G.S.Bolmsjo.Robotic Arc Welding-Programming and Control.IFAC Robot Control.1998:541-546
    6 World Robot survey sales up 25 percent in 2000. Industrial Robot. 2002, 29(2):7-8
    7哈恩晶.焊接机器人的应用现状与发展趋势.机械工人(热加工).2004,(5):16-18
    8张柯等.移动焊接机器人的研究现状及发展趋势.2004, 8:5-9
    9 Paolo D, Eugenio G, et al. IEEE Robotics and Autamation Magazine ,1996,(9):44
    10 Hyosig K. IEEE Engeering in Medicine and Biology,2001,(12):44
    11赵匀,武传宇,胡旭东,俞高红.农业机器人的研究进展及存在的问题.农业工程学报.2003,19(1):20-24
    12 RyuKH,KimG,HanJS.Developmentofarobotic transplanter forbeding plants.JAgricEngRes.2001,78(2):141-146
    13钱善华等.救灾机器人的研究现状与煤矿救灾的应用.机器人.2006,28(3):350-354
    14薛龙,焦向东,蒋力培,张卫义.特种焊接机器人研制.制造业自动化.2006,
    28(2):49-52
    15吴树雄,林三宝,易翔,栾国红.焊接自动化.现代制造.2004,11:14-17
    16霍孟友.基于的椭球面封头接管自动焊接装置.焊接学报.2005, 26(1):74~78
    17汪木兰等.虚实结合的多关节机器人开放式仿真系统研究.系统仿真学报.2007,
    19(21):4965-4969
    18马琼雄等.基于IPC的开放式工业机器人控制系统研究.机电产品开发与创新.2008,
    21(1):15-17
    19 Bradley N. Demazo, Chles W. Yang, Robert J. Gavin, Open Architecture Controls for Precision Machine Tools, Proceeding of Mechanism and Controls for Ultraprecision Motion, 1994, No.4: 6-8
    20谢哲东等.微小研抛机器人开放式控制系统研究.机械制造. 2007, 45(515):1-3
    21李东君.开放式教学机器人的研究开发.机械研究与应用.2007, 20(4):21-23
    22潘炼东,黄心汉.开放式机器人控制器中仿真组件的实现.计算机工程与应用. 2006,7:208-210
    23刘其峰等.开放式移动机器人嵌入式控制系统的设计与实现.机电工程. 2007,24(9):56-58
    24王磊等.基于开放式机器人力控制系统的研究.机器人技术.2007, 23(2):195-196
    25宋健等.开放式茄子采摘机器人设计与试验.农业机械学报. 2009,40(1):143-147
    26朱勇勇,栾楠.基于工控机的开放式教学机器人运动控制器.机电一体化.2007,3:
    74-77
    27武传宇.基于PC+DSP模式的开放式机器人控制系统及其应用研究.浙江大学博士学位论文.2002,10:13-15
    28 C. H. Fedrowitz. Efficient PC-based Robot Off-line Programming System.SPIE v2247, Sensors and Control for Automation.1994:254-258
    29 P. J. Fiedler, C. J. Schilb. Open-Arcthiteture Systems for Robotic Workcells. Robotics Today. 1998,11(4):1-4
    30许大为,言勇华.模块化、分布式的开放机器人架构.制造业自动化. 2003, 25(3):44-48
    31门昌华等.基于PMAC的六自由度机器人开放式控制系统开发.机电产品开发与创新. 2008, 21(4):4-5
    32闫政,梁君直,陈江.采用DSP控制的高效管道双焊炬全位置自动焊机研究.电焊机.2005,35(4):38-43
    33张忠厚,武传松. GLJ-1型自行车架管连接自动焊机.焊接学报.1997,18(4):206-209
    34霍孟友.基于的椭球面封头接管自动焊接装置.焊接学报.2005,26(1):74-78
    35谭一炯,周方明,王江超,黄志杰.焊接机器人技术现状与发展趋势.电焊机.2006,36(3):6-10
    36毛鹏军,黄石生,薛家祥,等1焊接机器人焊缝跟踪系统研究现状及发展趋势.电焊机.2001,31(10):9-12,22
    37毛鹏军,黄石生,李阳.焊接机器人技术发展的回顾与展望.焊接.2001,(8):6-9
    38熊震宇,张华,潘际銮.电弧传感器的发展状况及应用前.焊接技术.2001,30(5):2-5
    39熊震宇,张华,贾剑平等.旋转电弧传感器的研制.传感器技术.2003, 7:1-3
    40潘际銮.现代焊接控制.北京:机械工业出版社,2000
    41李鑫,周欣荣,牛滨.焊接过程自适应模糊控制研究.哈尔滨理工大学学报.2004, 9(6):21-23
    42梁明,王国荣,石永华.焊缝自动跟踪系统中的智能控制.电焊机.2000, 30(8):17-20
    43 Lucas W.Experience in developing expert system and neural for arc.Welding inthe world. 1994(34):234-245
    44刘双伟,王克鸿.发展焊接机器人自动焊技术的途径.机械制造与自动化.2004, 33(2):12-15
    45林尚扬.我国焊接生产现状与焊接技术的发展.船舶工程.2005,27(增刊):15-24
    46殷树言,刘嘉.数字化焊接电源与焊接技术的发展.现代制造.2003,埃森焊接专刊:46-48
    47 Park, Joong-Jo. Development of the 6 axis force moment sensor for intelligent robot’s gripper. Sensors and Actuator A:Pysical. 2005,118(1):127-134
    48 Bauzil G, Briot M,Ribes P.A navigation Sub-system using ultra—sonic Sensors for the mobile robot I-mare[C].UK:lst Int Conf on Robot Vison and Sensory Control. Stanford-uponAvon.1981:47-58
    49杨振,王芳,周波.网络通信技术在开放式网络化机器人中的应用.山东理工大学学报(自然科学版).2007,21(1):73-76
    50 Greenfeld, I.., Hansen, F.B.,and Wright, P. K.,Self-Sustaining Open-System Machine Tools, Transaction of the 17th North American Manufacturing Research Institution,1989,Vol.17:304-310
    51徐华等.基于ARM的农用机器人开放式控制器的设计.农机化研究. 2007, 5:124-126
    52 Coldstein, B. L. M., et al, Technologies for the Integration of Manufacturing Applications, Advanced Technology Program.1995, 5
    53 Wright, Paul K. Principlcs of Open-Architecture Manufacturing, Journal of Manufacturing System.1995, 14(3)
    54陈玮,郑时雄,周学才.基于网络的开放式机器人通用控制系统的研究.华南理工大学学报(自然科学版).2001,29(5):35-37
    55杨惠华,顾毅,张伟军.基于网络的开放式双臂机器人控制器.机器人技术. 2006, 33(3):36-38
    56沈跃,刘国海,刘慧.基于PC/104总线的开放式机器人控制器的研究.组合机床与自动化加工技术. 2004,1:67-69
    57 T. P. Quinn, J. D. Gilsinn and W. Rippery. A Welding Cell with Its Own Web Site. Welding Journal. 2000, 79(1):46-47
    58 William Rippen, Jim Cilsinn and Lange Flitter. Networking of Welding Applications: A Tutorial. Welding Journal. 2000,79(1):49-53
    59 J. E. Agapakis, K. Masubuchi. Fondamental and Advance in the Development of Remote Welding Fabrication System. Welding Journal. 1986,65(9):21-32
    60 C. C. Rodrigues. An Industrial Application of Telepresence Technology IEEE Conference on Robotic and Automation, 1995:2115-2120
    61 B. F. Kuvin. Welding for Space. Welding Journal. 1992,71(3):41-44
    62 E. J. Morgan-Warren. Remote Repair Welding in Nuclear Reactors. Welding & Mental Fabrication. 1989,12(8):111,116
    63 Masubuchi. K., Gaudiano. A.V. and Rynolds.I.J. Technologies and practices of Underwater Welding. Proceedings of The International Conference on Underwater Welding. Norway. 1983,29(6):49-70
    64 Jahng-Hyon Park,Joonyoung park. Real Time Bilateral Control for Internet based Telerobotic System. Proceedings of the IEEE/RSJ Intl. Conf. On Intelligent Robotics and Systems, Las Vegas, Nevada, 2003:1106-1110
    65 Xiao-Gang Wang, M. Moallem, R. V. Patel. An Internet-Base Distributed Multiple-Telerobot System. IEEE Transactions on Systems, Man, and Cybernetics-Part A: System and Humans. 2003, 33(5):627-633
    66 Reid L. Kress, William R. Hamel, Pamela Murray, Karen Bills. Control Strategies for Teleoperated Internet Assembly. IEEE/ASME Transaction on Mechatronics, 2001, 6(4):410-416
    67李华忠,基于虚拟现实的空间机器人共享控制系统.哈尔滨工业大学博士论文.1996:59-68
    68高胜,赵杰.基于Internet的机器人遥操作虚拟环境的关键问题.哈尔滨工业大学学报.2006,38(4):649-653
    69祖旭,黄洪钟,张旭.虚拟样机技术及其发展.农业机械学报.2004,35(4):168-171
    70邹湘军.虚拟现实技术的演变发展与展望.系统仿真学报.2004,16(9):1095-1099
    71 AraiT,Pagello E,Parker L E.Guestdditorial advance sinmultirobot systems.IEEE Trans.on.Robotics and Automation.2002,18(5):655-661.
    72 N.R. Jennings, M. Wooldridge. Agent Technology: Foundations, Applications, and Market. Springer Verlag. 1998: 3-28
    73 B.C. Draa. Industrial Applications of Distributed AI. Communications of the ACM. 1995, 38(11): 49-53
    74 J. Bocker, J. Lind, B. Zirkler. Using a Multi-Agent Approach to Optimize the Train Coupling and Sharing System. European Journal of Operational Research. 2001, 131(2): 242-252
    75 M. Chau, D. Zeng, H. Chen, M. Huang, D. Hendriawan. Design and Evaluation ofa Multi-Agent Collaborative Web Mining System. Decision Support Systems. 2003, 35(1): 167-183
    76 J.X. Jiao, X. You, A. Kumar. An Agent-Based Framework for Collaborative Negotiation in the Global Manufacturing Supply Chain Network. Robotics and Computer-Integrated manufacturing. 2006, 22(3): 239-255
    77 T. Kaihara. Multi-Agent Based Supply Chain Modeling with Dynamic Environment. International Journal of Production Economics. 2003, 85(2): 263~269
    78 Z. Ren, C.J. Anumba. Multi-Agent Systems in Construction---State of the Art and Prospects. Automation in Construction. 2004, 13(3): 421-434
    79 S. Lev, S. Sergey, I. Anton. Data Mining Techniques for Robocup Soccer Agents. International Workshop on Autonomous Intelligent Systems: Agents and Data Mining, AIS-ADM2005, St. Petersburg, Russia, 2005: 289-301
    80 P. Farahvash, T.O. Boucher. A Multi-Agent Architecture for Control of AGV Systems. 2004, 20(6): 473-483
    81 J.C. Hill, J.K. Archibald, W.C. Stirling, R.L. Frost. A Multi-Agent System Architecture for Distributed Air Traffic Control. Collection of Technical Papers---AIAA Guidance, Navigation, and Control Conference 2005, San Francisco, CA, 2005: 1936-1946
    82 Ursino Domenico, Rosaci Domenico, Terracina Giorgio. An Agent-Based Approach for Managing E-Commerce Activities. International Journal of Intelligent Systems. 2004, 19(5): 385-416
    83 Teale R.A. Automatic welding procedure for X80 pipeline system. Proceeding of theThird international offshore and polar engineering conference proc 1993.
    84 ((VIETZ公司的管道施工设备手册》(产品及公司简介)
    85 Huapeng Wu,Heikki Handroos ,Pekka Pessi ,Juha Kilkki ,Lawrence Jones. Development and control towards a parallel water hydraulic weld/cut robot for machining processes in ITER vacuum vessel. Fusion Engineering and Design. 2005,6: 625-631
    86 G. Prischow, C. Danirl, G. Junghans, W. Speling, Open System Controllers A Ghallenge for the Future of the Machine Tool Industry, Annals of the C工RP.1993, Vo1.42, No.1
    87张连新等.开放式弧焊机器人系统控制软件的开发.焊接学报.2007, 28(1):25-29
    88 Anonymous. Open Architecture: Myth or PipeDream? Robotics World, 1996
    89 William E. Ford.What is an Open Architecture Robot Controller? 1994 IEEE International Symposiumon Intelligent Control, 16-18 August,1994.Columbus,Ohio,USA
    90孙斌,杨汝清.开放式机器人控制器综述.机器人.2001,23(4):374-377
    91周学才等.开放式机器人通用控制系统.机器人.1998,20(1):25-30
    92 Leahy MB,The RAL Hierarchical Control System,IEEE International Conference on Robotics and Aumation,1986,407-411
    93周明德,魏仁选,陈幼平.开放式控制系统的现状、趋势和对策.中国机械工程.1999,10(10),1090-1093
    94 OSACA, Open System Architecture for Controls within Automation System EP6379&EP115 OSACA Finial Report 1996,430,Document OS2FIN4.doc
    95 Wolfgang Sperling,Peter Lutz,Designing Applications for an OSACA Control,Proceeding of the International Mechanical Engineering Congress and Expositon,(the ASME Winter Annual Meeting)Dalles/USA,November 16-21,1997
    96 Sundar Narasimhan et al, Implementation of Control Methodologies on Computation Architecture for the Utab/MIT Hand. IEEE International Conference on Robotics and Automation, 1986, 1884-1889
    97任福深等.基于PMAC的开放式弧焊机器人系统接口设计.电焊机,2008,38(12):62-65
    98王克鸿,刘永,余进.弧焊机器人典型工件建模与姿态规划研究.电焊机.2006,33(6):29-32
    99王晓峰,陈焕明,江淑园.焊接位姿参数定义的讨论及典型工件的建模.南昌航空工业学院学报(自然科学版),2006,26(2):24-28
    100陈志翔,卢振洋,殷树言等.焊缝位姿及焊枪位姿的模型.机械工程学报.2003,39(7):59-62
    101 R.M.Murray,李泽湘,S.S.Sastry.机器人操作的数学导论.徐卫良,钱瑞明译.北京:机械工业出版社,1998:51-75
    102 John J,Craig.机器人学导论.北京:机械工业出版社,2005
    103 M.H.Amg, W. Lin and S. Y. Lim. A Walk-through P rogrammed Robot for Welding in Shipyards. Industrial Robot. 1999, 26(5):377-388
    104 G..C. Carvalho, M.L. Siqueira S.C. Absi-Alfaro. Off-line Proguamming of Flexible Welding Manufacturing Cells. Journal of Materials Progressing Technology, 1998,78:24-38
    105 Jacob Rubinovitz,et al. Task level off-line programming system forrobotic arcwelding-an overview. Journal of Manufacturing Sys-tems,1988, 7(4):293-305
    106 Hemmerle J S,et al. Next generation manufacturing task planner forrobotic arc welding. ISA,1992,31(2):97-111
    107 Ju-Hsien Kao,et al. Collision avoidance using asynchronous teams[C]. Proceeding of the 1996 IEEE international conference on roboticsand automations, Minneapolis, Minnesota, USA, April,1996:1093-1100
    108吴林,陈善本..智能化焊接技术.北京:国防工业出版社,2000
    109林尚扬,陈善本,李成桐.焊接机器人及其应用.北京:机械工业出版社,2000
    110田劲松,吴林,戴明.弧焊机器人任务级离线编程系统的设计.焊接学报. 2000, 21(2):22-25
    111 Wu L,Cui K,Chen S B,Redundancy Coordination of Multiple Robotic Devices for Welding through Gemetic Algorithm. ROBOTICA, 2000, 6(18):669-676
    112崔鲲,吴林,陈善本.冗余度弧焊机器人自主路径规划.机器人.1998,3(20):54-78
    113 John Owens. Microcomputer-Based Industrial Robot Simlation and Off-line Programming System. Robtics Today , 1995,18(7):1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700