用户名: 密码: 验证码:
茄子收获机器人视觉系统和机械臂避障规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茄子作为人们生活中常见的蔬菜,在我国大江南北都有广泛的种植。本文以苏皖一带常见的自然生长的长紫茄为研究对象,以实现成熟茄子自动识别、定位和机械臂避障路径规划为研究目的。完成的主要工作有:
     1根据自然生长茄子图像的灰度和颜色特点,在RGB中,对6种色差组合进行分析,发现目标和背景的R-B、G-B和G-R差别较大;在HSI空间中,H通道的目标和背景有明显差别。因此,在阈值分割中,采用基于遗传算法的自动选取阈值法(Otsu法)对图像进行分割;在去除残留噪音的处理中,采用标注的方法对二值图像的各连通区域进行面积统计。保留最大面积的区域,从而使分割效果大大改善。利用多参数来衡量分割效果,使评价尽可能地做到客观、合理。
     2尽管单一阈值法对茄子图像分割能取得一定效果,但依然存在较大的残留噪音。在分析茄子图像色差和色调的基础上,选取R-B、G-B和H作为自组织特征映射网络(SOFM)的输入特征向量,利用该网络自组织学习的特征进行聚类;采用信噪比、面积比、分割时间和傅立叶边界描述子等指标来评价分割精度;并据此确定了SOFM网络的输入特征向量的个数、输出神经元个数、训练步数、拓扑函数、距离函数、学习函数等参数。使用傅立叶描述子的能量谱值来评价分割边缘的相似程度,克服了其他边缘描述子依赖边缘点的个数和起始位置等限制。实验证明,基于SOFM神经网络图像分割评价优于单一阈值分割,适合复杂背景的彩色图像分割。
     3提出了一种基于改进型广义Hough变换的空间有部分遮挡的茄子目标识别方法。用广义柱近似描述样本茄子形状;在描述茄子空间位姿的6个参数中,选择两个位置参数和一个旋转参数等3个主要参数;通过坐标转换获得了不同位姿的立体目标在平面上的投影边缘。将缩放、旋转等运算提前于参数表制作阶段进行,采用了“形状相似度”的方法初选缩放索引和旋转索引,有效降低了搜索时间,提高了搜索精度;建立茄子外形的4维参数索引表;适当提高梯度索引步长,可避免参考点在累加器中的排布过于分散,便于从潜在参考点中找出最终参考点坐标;采用改进型的广义Hough变换计算茄子目标的潜在位置,并通过比较各旋转角度下的“面积比”,筛选出目标实际的位姿。实验表明:改进型广义Hough变换对空间不同位姿、部分遮挡情况下目标的识别具有良好的效果。
     4根据针孔透视模型,采用了一种平面标定法,对摄像机模型进行分析和标定。左右摄像机标定过程中,利用最小二乘法标定了摄像机的内外参数;结合实验室已有的实验条件,选用平行式的双目立体视觉;根据自然环境中茄子生长的特征,提出了一种基线选择的方法,并在此基础上,通过实验确定两摄像机的合理基线距离2a应大于132mm,合理的测量深度范围z应在[700,1200]mm之间;根据左右摄像机内外参数,对摄像机的位姿进行调节,使之满足Marr约束4;通过对内外参数的求取和基线的选择,建立了茄子收获机器人的双目立体系统;选择目标的形心作为特征匹配点。在此条件下,其测量相对误差可控制在2%以内,能够满足在农业环境里机械手作业要求。
     5提出了一种机械臂在三维空间的避障方法。将空间障碍物等效为可以用数学建模的轴截面为圆或矩形的圆柱扇环,将三维空间的路径规划简化为二维,提高了控制的实时性;将障碍物等效从工作空间转换到C-空间中,使对机器人的控制直接作用于关节,避免了使用雅克比矩阵的逆阵进行复杂的坐标转换;将C-空间映射到图像矩阵中,通过对图像进行适当的处理,规避了在使用A*算法寻优时可能出现的失败。实验表明,该避障路径规划方法计算量小,实时性好,适合自然生长状态下的茄子自动收获。
Eggplant, as a common vegetable in people's life, is widely planted in all parts of China. In the study of this paper, research object is natural growth long-purple eggplant which is familiar in Jiangsu and Anhui province. Automatic recognition and location of the ripe eggplant and obstacle avoidance planning for manipulator were the research purpose in this paper. The work mainly has been accomplished as followed:
     1. According to the gray-level and color characteristics of natural growth eggplant image, analysis on six kinds of color-difference combination was implemented in RGB space. It was found that there was great difference between target and background among R-B, G-B and G-R. In HSI space, target and background had great difference in H channel. According to the above analysis, the auto threshold-adaptive method of Otsu operation was specially used for threshold segmentation based on genetic algorithm. And upon the elimination of the residue noise, labeling method for statistical calculation was introduced for the connected regions of the binary image. The maximum areas were preserved to improve segmentation effects. In addition, multi-indices were applied to assess the effect of segmentation, in order that to the great extent the assessment was subjective and reasonable.
     2. Although the effect had been achieved on eggplant image segmentation by using single threshold method, it also leaved more residue noises. The purpose of this article was to segment eggplant from its complex background. R-B, G-B and H were selected as the input-vectors of the SOFM network based on analyzing the color-difference and hue characteristics of eggplant image. The input-vectors were classified by the characteristics of self-organizing of this network. In order to make the segmentation results objective and reasonable, signal-noise ratio, area ratio, segmentation time and Fourier-Descriptor were adopted to evaluate the segmentation precision. Many SOFM network parameters were determined such as the number of input feature vector and output neurons, training steps, topology function, distance function and learning function, etc. The energy spectrum of Fourier descriptors was already adopted to evaluate the similar degree of segmentation edge. This overcame other descriptor limitations which depended on the number of edge points and initial position. The experiment demonstrated that SOFM network was better than the single-threshold segmentation and more suitable for the color image segmentation with complex background.
     3. One method has been introduced for recognizing the partially occluded eggplant based on improved generalized Hough transform in three-dimensional space. The shape of eggplant was approximately described by using generalized-cylinders from the view of biology. In order to describe the pose of eggplant, three main parameters such as two location parameters and a rotation parameter were selected from six factors. Different edges of projection were obtained through coordinate transformation. Scaling and rotation operation was ahead of parameter index table establishment. Shape similarity degree method was adopted to primarily select scaling index and rotation index. It could effectively reduce the searching time and improve the searching precision. 4-D parameter index tables were established to describe the shape of eggplant. Properly increasing step size of gradient index could avoid across dispersion of array in accumulator. And it was also easy to search the final reference point coordinates from potential points. Improved Generalized Hough Transform was used to count the potential pose of object and the real pose was screened by comparing the area-ratio of different rotation angles. The experiment demonstrated that it was feasible and effective to recognize different pose and partially occluded object by using Improved Generalized Hough Transform.
     4. The model of camera calibration was discussed and the calibration results of the left and right cameras were provided based on calibration method. The intrinsic and extrinsic parameters were obtained by the least square method with the pinhole model. The parallel model of stereo vision was selected according to the existing devices of lab. Based on the characteristics of natural growth eggplant, one effective method for selecting baseline length was introduced. The appropriate baseline length between cameras was more than 132mm and the feasible measuring distance range was from 700mm to 1200mm. According to the intrinsic and extrinsic parameters of left and right cameras, we made adjustment on the intrinsic and extrinsic parameters of cameras to fit Marr constraints, and thus the binocular stereovision system was established. We selected centroid of the target as match features. Under this condition, the measure relative error could be controlled within 2% which was satisfied with the requirements of the manipulator in agricultural environment.
     5. An avoiding obstacle method has been introduced for manipulator in 3D space. Obstacles were made equivalent to cylindrical-rings mathematical model which axial section was circle or rectangular and a three-dimensional planning path problem was reduced to two-dimensional one, which greatly improved real-time control performance. Obstacle transforming from Work-space to Configuration-space could directly control the robot joints so as to avoid complex coordinate translation using Jacobian inverse matrix. Path planning failure under A-star algorithm could be evaded by processing properly image matrix which mapped from C-space. Experimental results showed this algorithm which was small computational amount and good real-time performance was suitable for natural growth eggplant harvest.
引文
[1]日本机器人协会.机器人技术手册[M].北京:科学出版社,1996.
    [2]汤修映,张铁中.果蔬收获机器人研究综述[J].机器人,2005,27(1):90-96.
    [3]Hayashi S,Ganno K,Ishii Y,et al.Robotic harvesting system for eggplants[J].JARQ,2002,36(3):163-168.
    [4]Kondo N,Ting K C.Robotics for plant production[J].Artificial Intelligence Review,1998,(12):227-243.
    [5]冈本嗣男.邹诚,刘蛟龙译.生物农业机器人[M].北京:科学技术文献出版社,1994.
    [6]Harrell R C,Adsit P D,Munilla R D,et al.Robotic picking of citrus[J].Robotica,1990,8(4):269-278.
    [7]Edan Y,Gaines E.Systems engineering of agrieultttral robot design[J].IEEE Transactions on Systems,Man and Cybernetics,1994,24(8):1259-1265.
    [8]Sario Y.Robotics of fruit harvesting:a state-of-the-art review[J].Journal of Agricultural Engineering Research,1993,54(3):265-280.
    [9]Van Kollenburg-Crisan L M,Bontsema J,Wermekes P.Meehatronic system for automatic harvesting of cucumbers[A].IFAC Control Applications and Ergonomics in Agriculture[C].Athens,Greece:1998.289-293.
    [10]Ceres R,Pons F L,Jimenez A R,et al.Design and implementation of an aided fruit-harvesting Robot(Agribot)[J].Industrial Robot,1998,25(5):337-346.
    [11]Buemi F,Massa M,Sandini G,et al.The agrobot project[J].Advanced Space Research,1996,18(1/2):185-189.
    [12]Kawamura N,Namikawa K.Robots in agriculture[J].Advanced Robotics,1989,3(4):311-320.
    [13]赵匀,武传宇,胡旭东,等.农业机器人的研究进展及存在的问题[J].农业工程学报,2003,19(1):20-24.
    [14]Pool T A,Harrell R C.An end-effector for robotic removal of citrus from the tree[J].Transactions of the ASAE,1991,34(2):373-378.
    [15]Edan Y,Rogozin D,Flash T,et al.Robotic melon harvesting[J].IEEE Transactions on Robotics and Automation,2000,16(6):831-835.
    [16]Jose L,Ceres R,Antonio R.Mechanical design of a fruit picking manipulator:improvement of dynamic behavior[A].Proceedings of the 1996 IEEE International Conference on Robotics and Automation[C].1996.969-974.
    [17]Chen C L,Lin C J.Motion planning of redundant robot manipulators using constrained optimization:a parallel approach[J].Proceedings of the Institution of Mechanical Engineers-Part Ⅰ,Journal of Systems and Control Engineering,1998,212(4):281-292.
    [18]Hollingnm J.Robot in agriculture[J].Industrial Robot,1999,26(6):438-445.
    [19]Murase H.Biomechatronics for agro-industrial applications[A].IFAC Modeling and Control in Agriculture,Horticulture and Post-harvesting Processing[C].Wageningen,the Netherlands:2000.269-278.
    [20]梁喜凤.番茄收获机械手机构分析与优化设计研究[D].杭州:浙江大学,2004.
    [21]Kondo N,Monta M,Fujiura T.Fruit harvesting robot in Japan[J].Advanced Space Research,1996,18(12):181-184.
    [22]Van Henten E J,Van Tuijl B A J,Hemming J.Field test of an autonomous cucumber picking robot [J].Biosystems Engineering,2003,86(3):305-313.
    [23]Kenichi O,Masaki A,Shigeyasu K.Intelligent algorithm for biped robot for harvesting watermelons[J].Journal of Robotics and Mechotronics,1999,11(3):183-192.
    [24]Van Henten E J,Van Dijk G,KuypersM C,et al.Motion planning for a cucumber picking robot[A].IFAC Modeling and Control in Agriculture,Horticulture and Post-harvesting Processing[C].Wageningen,the Nether-lands:2000,39-44.
    [25]沈明霞,姬长英.农业机器人的开发背景及技术动向[J].农机化研究,2000,5(2):31-35.
    [26]冯建农,柳明,吴捷.自主移动机器人智能导航研究进展[J].机器人,1997,19(6):468-478.
    [27]方建军.移动式采摘机器人研究现状与进展[J].农业工程学报,2004,20(3):273-278.
    [28]Noble R,Reed J N,Miles S,et al.Influence of mushroom strains and population density on the performance of a robotic harvester[J].Agricultural Engineers.1997(68):215-222.
    [29]Edan Y,Miles G E.Design of an agricultural robot for harvesting melons[J].Tram of the ASAE,1993,36(2):593-603.
    [30]Monta M,Kondo N,Shibano Y.Agricultural robot in grape production system[A].IEEE International Conference on Robotics and Automation[C].1995.2504-2509.
    [31]Kondon N,Ting K C.Robotics for bioproduction system[R].ASAE Paper,1998.
    [32]徐丽明,张铁中.果蔬果实收获机器人的研究现状及关键问题和对策[J].农业工程学报,2004,20(5):38-42.
    [33]梁喜凤,王永维.番茄收获机械手奇异性分析与处理[J].农业工程学报,2006,22(1):85-88.
    [34]梁喜凤,苗香雯,崔绍荣,等.番茄收获机械手运动学优化与仿真试验[J].农业机械学报,2005,36(7):96-100.
    [35]David C,Roy C.Color vision in robotic fruit harvesting[J].Transactions of the ASAE,1987,30(4):1144-1148.
    [36]Jimenez A R,Ceres R,Pons J L.A survey of computer vision methods for locating fruit on trees[J].Transactions of the ASAE,2000,43(6):1911-1920.
    [37]Slaughter D C,Harrell R C.Colore vision in robotic fruit harvesting[J].Trans of the ASAE,1987,30:1144-1148.
    [38]Harrell R C,Adsit P D,Pool T A,et al.The flotida robotic grove-lab[J].Trans of the ASAE,1990,3(2):391-399.
    [39]Tiller N D.Robotic manipulators in horticulture:a review[J].Journal of Agricultural Engineering Research,1993,55:89-105.
    [40]Kondo N,Nishitsuji Y,Ling P,et al.Visual feedback guided robotic cherry tomato harvesting[J].Trans of the ASAE,1996,39:2331-2338.
    [41]孙学岩.一种基于直方图的双阈值茄子图像分割方法[J].潍坊学院学报,2005,5(6):26-29.
    [42]Bulanon D M,Kataoka T,Ota Y,et al.A segmentation algorithm for the automatic recognition of Fuji Apples at harvest[J].Biosystems Engineering,2002,83(4):405-412.
    [43]林伟明,毛罕平等.多光谱视觉技术在收获机器人中的应用[J].农业装备技术,2004,30(6):15-18.
    [44]赵杰文,刘木华,杨国彬.基于HIS颜色特征的田间成熟番茄识别技术[J].农业机械学报,2004,35(5):122-124.
    [45]汤建华,陈树人,尹建军.计算机视觉在农业自动化收获中的应用与展望[J].农机化研究,2004,9(5):16-18.
    [46]应义斌,章文英,蒋亦元等.机器视觉技术在农产品收获和加工自动化中的应用[J].农业机械学报,2000,31(3):112-115.
    [47]应义斌,景寒松,马俊福,等.黄花梨品质检测机器视觉系统[J].农业机械学报,2000,30(3):113-115.
    [48]周增产,Bontsema J,Van Kollenburg-Crisan L.荷兰黄瓜收获机器人的研究开发[J].农业工程学报,2001,17(6):77-80.
    [49]李庆中,汪懋华.基于计算机视觉的苹果自动分级系统硬件开发[J].农业机械学报,2000,31(2):51-59.
    [50]尹建军,毛罕平,王新忠等.不同生长状态下多目标番茄图像的自动分割方法[J].农业工程学报,2006,22(10):149-153.
    [51]Hough P V C.Method and means of recognizing complex pattems[P].U.S.Patent 3069654,1962-12.
    [52]谢志勇,张铁中,赵金英.基于Hough变换的成熟草莓识别技术[J].农业机械学报,2007,38(3):106-109.
    [53]饶洪辉,姬长英.基于标记信息的Hough变换检测早期的作物行中心线[J].农业工程学报,2007,23(3):146-150.
    [54]Whittaker A D,Miles G E.,Mitchell O R,et al.Fruit location in a partially occluded image [J].American Society of Agricultural Engineers.1987,30(3):591-597.
    [55]张铁中,周天娟.草莓采摘机器人的研究:Ⅰ.基于BP神经网络的草莓图像分割[J].中国农业大学学报,2004,9(4):65-68.
    [56]齐龙,马旭,张小超.基于网络的植物病害彩色图像的分割技术[J].吉林大学学报,2006,36(2):126-139.
    [57]刘禾,汪懋华.水果果形判别人工神经网络专家系统的研究[J].农业工程学报,1996,12(1):171-176.
    [58]何东建,杨青.果实表面颜色计算机视觉分级技术研究[J].农业工程学报,1998,14(3):202-205.
    [59]Murakami N,Inoue K,Otsuka K.Selective harvesting robot of cabbage[J].JSAM,1995(2):24-31.
    [60]滕光辉,李长缨.计算机视觉技术在工厂化农业中的应用[J].中国农业大学学报,2002,7(2):62-67.
    [61]应义斌,饶秀勤,黄永林等.水果高速实时分级机构控制系统[J].农业机械学报,2004,35(5):117-121.
    [62]应义斌,傅宾忠,蒋亦元等.机器视觉技术在农业生产自动化中的应用[J].农业工程学报,1999,15(3):199-203.
    [63]郭峰,曹其新,谢国俊等.基于OHTA颜色空间的瓜果轮廓提取方法[J].农业机械学报,2005,36(11):113-116.
    [64]Levi P,Falla R,Pappalardo R.Image controlled robotics applied to citrus fruit harvesting[J].In Procedures ROVISEC-Ⅶ,1988,Zurich.
    [65]梁喜凤,苗香雯,崔绍荣等.番茄收获机器人技术研究进展[J].农机化研究,2003,10(4):1-4.
    [66]Jimenez A R,Ceres R,Pons J L.A vision system based on a laser range-finder applied to robotic fruit harvesting[J].Machine Vision and Application,2000,11:321-329.
    [67]胥芳,张立彬,计时鸣等.农业机器人视觉传感系统的实现与应用研究进展[J].农业工程学报,2002,18(4):180-184.
    [68]Tsai R.A Versatile Camera Calibration Technique for High Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses[J].IEEE Transactions on Robotics Automat,1987,13(4):323-344.
    [69]Tsai R.An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Miami Beach:FL,1986.364-374.
    [70]Zhang Z Y.A Flexible New Technique for Camera Calibration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334.
    [71]Kanade T,okntomi M.A stereo matching algorithm with an adaptive window[J].Theory and experiment 1994:PAMI-16(9):920-931.
    [72]Raymond V E,Clifton M S.Unconstrained stereoscopic matching of lines[J].Vision Research,2000:40:151-162.
    [73]Fleet D J,Jepson A D,Jenkin M R M.Phase-based Disparity Measurement[J].CVGIP:Image understanding,1991:53(2):198-210.
    [74]徐青,王敬东,李鹏,等.基于图像分割的快速立体匹配算法[J].计算机工程,2006,32(22):209-211.
    [75]Kassay L.Hungarian robotic apple harvester[H].ASAE Paper,1992,92-7042.
    [76]张瑞合,姬长英.计算机视觉技术在番茄收获中的应用[J].农业机械学报,2001,32(5):50-52.
    [77]郑小冬,赵杰文.基于双目立体视觉的番茄识别与定位技术[J].计算机工程,2004,12(4):50-53.
    [78]Harrell R C,Adsit P D,Munilla R D,et al.Robotic picking of citrus[J].Robotica,1990,8(4):269-278.
    [79]Van Henten E J,Hemming J,Van Tuuijl B A J.An autonomous robot for harvesting cucumbers in greenhouses[J].Autonomous Robots,2002,13:241-258.
    [80]Schwartz J T,Shadr M.On the 'piano movers' problem-Ⅰ:The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers[J].Communications on Pure and Applied Mathematics,1983,36(4):345-398.
    [81]王伟,杨扬,原魁.机器人C-空间障碍边界建模与无碰路径规划[J].机器人,1998,20(4):280-286.
    [82]陈靖波,赵猛,张珩.空间机械臂在线实时避障路径规划研究[J].控制工程,2007,14(4):445-447,450.
    [83]蔡健荣,赵杰文,Thomas R等.水果收获机器人避障路径规划[J].农业机械学报,2007,38(3):102-105,135.
    [84]戈志勇,陈树人,王新忠.神经网络在果蔬收获机器人机械臂避障路径中的应用[J].农机化研究,2007,2:172-174.
    [85]徐毓良,杨启帆.机器人三维空间无碰撞路径规划[J].机器人,1991,13(5):1-6.
    [86]Kondon N,Monta M,Fujiura T.Basic constitution of a robot for agricultural use[J].Advanced Robotics,1996,10(4):339-353.
    [87]Kataoka T,Murakami A,Duke M,et al.Estimating apple fruit locations for manipulation by apple harvesting robot [A]. IFAC Bio-Robotics, Information Technology and Intelligent Control for Bio-Production Systems [C]. Sakai, Osaka, Japan: 2000. 67-72.
    [88] Peterson D L, Kornecki T S. Mechanical apple harvester for T-trellis canopies [J]. Transactions of the ASAE, 1987,30(3): 597-600.
    [89] Arima S, Kondo N. Cucumber harvesting robot and plant training system. [J]. Journal of Robotics and Mechatronics, 1999,11(3): 208-212.
    [1]章毓晋.图像工程(中)——图像分析[M].北京.清华大学出版社,2005,73-105.
    [2]姚敏.数字图象处理[M].北京:机械工业出版社,2006:225-261.
    [3]汤建华.番茄收获机械人中视觉目标的自动分割与识别究[D].镇江:江苏大学,2005.
    [4]Bulanon D M,Kataoka T,Ota Y,et al.A segmentation algorithm for the automatic recognition of Fuji Apples at harvest[J].Biosystems Engineering,2002,83(4):405-412.
    [5]林伟明,毛罕平,王新忠,等.多光谱视觉技术在收获机器人中的应用[J].农业装备技术,2004,30(6):15-18.
    [6]赵杰文,刘木华,杨国彬.基于HIS颜色特征的田间成熟番茄识别技术[J].农业机械学报,2004,35(5):122-124.
    [7]汤建华,陈树人,尹建军.计算机视觉在农业自动化收获中的应用与展望[J].农机化研究,2004,9(5):16-18.
    [8]应义斌,章文英,蒋亦元,等.机器视觉技术在农产品收获和加工自动化中的应用[J].农业机械学报,2000,31(3):112-115.
    [9]Hayashi S,Ganno K,Ishii Y,et al.Robotic harvesting system for eggplants[J].JARQ,2002,36(3):163-168.
    [10]应义斌,景寒松,马俊福,等.黄花梨品质检测机器视觉系统[J].农业机械学报,2000,30(3):113-115.
    [11]Otsu N.A threshold threshold method from gray-level histograms[J].IEEE Transactions on System Man and Cybernetics,1979,9(1):62-69.
    [12]雷英杰,张善文,李续武,等..MATLAB遗传算法工具箱及应用[M].西安电子科技大学出版社,2005.62-105.
    [13]肖家庆,卢凌,李晟,等.基于矩不变量的图像目标识别[J].武汉理工大学学报,2006,30(4):696-699.
    [1]饶洪辉,姬长英.基于机器视觉的作物对行喷药控制的研究[J].南京农业大学学报,2007,30(1):120-123.
    [2]尹建军,毛罕平,王新忠,等.不同生长状态下多目标番茄图像的自动分割方法[J].农业工程学报,2006,22(10):149-153.
    [3]应义斌.水果图像的背景分割和边缘检测技术研究[J].浙江大学学报(农业与生命科学版),2000,26(1):35-38.
    [4]Hayashi S,Ganno K,Ishii Y,et al.Robotic harvesting system for eggplants[J].JARQ,2002,36(3):163-168.
    [5]Bulanon D M,Kataoka T,Ota Y,et al.A segmentation algorithm for the automatic recognition of Fuji Apples at harvest[J].Biosystems Engineering,2002,83(4):405-412.
    [6]赵杰文,刘木华,杨国彬.基于HIS颜色特征的田间成熟番茄识别技术[J].农业机械学报,2004,35(9):122-124,135.
    [7]张铁中,魏剑涛.蔬菜嫁接机器人视觉系统的研究(Ⅰ)[J].中国农业大学学报,1999,4(4):45-47.
    [8]李震,洪添胜,王卫星,等.基于多元统计的柑桔图像分割和目标识别[J].中山大学学报(自然科学版),2005,44(增刊2):136-140.
    [9]包晓敏,汪亚明.基于最小错误率贝叶斯决策的苹果图像分割[J].农业工程学报,2006,22(5):122-124.
    [10]牟研娜,王渝,蔡振江.彩色图像分割方法及其在农业中的应用[J].计算机应用,2006,26(6):67-69.
    [11]赵静,何东健.果实形状的计算机识别方法研究[J].农业工程学报,2001,17(2):165-167.
    [12]张铁中,周天娟.草莓采摘机器人的研究Ⅰ基于BP神经网络的草莓图像分割[J].中国农业大学学报,2004,9(4):65-68.
    [13]包晓安,张瑞林,钟乐海.基于人工神经网络与图像处理的苹果识别方法研究[J].农业工程学报,2004,20(3):109-112.
    [14]WANG D L,ZHANG X M,LIU Y Q.Recognition system of leaf images based on neuronal network[J].Journal of Forestry Research,2006,17(3):243-246.
    [15]常发亮,刘静,乔谊正.基于自组织神经网络的彩色图像自适应聚类分割[J].控制与决策,2006,21(4):449-452.
    [16]Gonzalez R C,Woods R E,Eddins S L.Digital image processing using MATLAB[M].Beijing:Publishing House of Electronics Industry,2004:194-241.
    [17]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2006:63-78.
    [18]姚敏.数字图象处理[M].北京:机械工业出版社,2006:225-261.
    [19]Mokhtarian F,Mackworth A K.A theory of multiscale,curva-ture-based shape representation for planer curves[J].IEEE Trans on PAMI,1992,14(8):789-805.
    [20]王涛,刘文印,孙家广,等.傅立叶描述子识别物体的形状[J].计算机研究与发展,2002,39(12):1714-1719.
    [1]陈振羽,李德华,周焰,等.利用多种特征和Hopfield神经网络的有遮挡的目标识别[J].中国图像图形学报,2000,5A(12):1034-1038.
    [2]申金嫒,李现国,常胜江,等.相位特征在三维物体识别中的应用[J].物理学报,2005,54(11):5157-5162.
    [3]Cozar J R,Gull N,Zapata E L.Detection of Arbitrary Planar Shapes with 3D Pose[J].Image and Vision Computing,2001,19(14):1057-1070.
    [4]Hough P V C.Method and means of recognizing complex patterns[P].U.S.Patent 3069654,1962-12.
    [5]Ballard D H.Generalizing the Hough transform to detect arbitrary shapes[J].Pattern Recognition,1981,13(2):111-122.
    [6]谢志勇,张铁中,赵金英.基于Hough变换的成熟草莓识别技术[J].农业机械学报,2007,38(3):106-109.
    [7]饶洪辉,姬长英.基于标记信息的Hough变换检测早期的作物行中心线[J].农业工程学报,2007,23(3):146-150.
    [8]程义民,王以孝,张冬青,等.基于广义Hough变换的部分遮挡物体识别[J].中国科学技术大学学报,1997,27(4):411-418.
    [9]李智磊,翟宏琛,王明伟.一种可识别破碎图形的特殊广义Hough变换方法[J].物理学报2007,56(6):3234-3239.
    [10]Ponce J.Chelberg D.Mann W B.lnvariant properties of straight homogeneous generalized cylinders and their contours[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(9):951-966.
    [11]Chen J L,Stockman G C.3D flee-form object recognition using indexing by contour features[J].Computer Vision and Image Understanding,1998,71(3):334-355.
    [12]蔡健荣,许月明.基于主动形状模型的苹果果形分级研究[J].农业工程学报,2006,22(6):123-126.
    [13]林开颜 吴军辉,徐立鸿.基于计算机视觉技术的水果形状分级方法[J].农业机械学报,2005,36(6):71-74.
    [14]应义斌,桂江生,饶秀勤.基于矩的水果形状分类[J].江苏大学学报(自然科学版),2007,28(1):1-3,67.
    [15]姚敏.数字图象处理[M].北京:机械工业出版社,2006:238-243.
    [16]薛定宇,陈阳泉.高等应用数学问题的MATLAB求解[M].北京:清华大学出版社,2004: 200-299.
    [17]飞思科技产品研发中心.MATLAB7基础与提高[M].北京:电子工业出版社,2006:58-64.
    [18]蔡自兴.机器人学[M].北京:清华大学出版社,2000:29-43.
    [19]Saeed B.Niku.机器人学导论tM].北京:电子工业出版社,2004:26-78.
    [20]王鑫,荆晶,葛庆平.检测不规则图形的改进广义Hough变换[J].计算机工程,2007,33(8):178-179,184.
    [1]马颂德,张正友.计算机视觉-计算理论与算法基础[M].北京:科学出版社,1998.
    [2]章毓晋.图像工程(上册)[M].北京:清华大学出版,2000.
    [3]邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述[J].自动化学报,2000,26(1):43-55.
    [4]Tsai R.A Versatile Camera Calibration Technique for High Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses[J].IEEE Transactions on Robotics Automat,1987,13(4):323-344.
    [5]Tsal R.An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Miami Beach:FL,1986.364-374.
    [6]Zhang Z Y.A Flexible New Technique for Camera Calibration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334.
    [7]张毅,罗元,郑太雄,等.移动机器人技术及其应用[M].北京:电子工业出版社,2007,9.
    [8]张明淳.工程矩阵理论[M].南京:东南大学出版社,1995,12.
    [9]Heikkila J.Geometric camera calibration using circular control points[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(10):1066-1077.
    [10]Heikkila J,Silvh O.Calibration procedure for short focal length off-the-shelf CCD cameras[C]IEEE Transactions on International Conference on Pattern Recognition.1996:166-170.
    [11]蔡健荣,赵杰文.双目立体视觉系统摄像机标定[J].江苏大学学报(自然科学版),2006,27(1):6-9.
    [12]Klaus S,Wolfgang S,Stefan F.http://www.vision.ealtech.edu/bouguetj/calib_doc/[Z].2007.4.
    [13]Golub G,Loan C.Matrix Computations[M].Balti-more,Maryland:The John Hopkins University Press,1996.
    [14]Jimenez A R,Ceres R,Pons J L.A survey of computer vision methods for locating fruit on trees[J].Transactions of the ASAE,2000,43(6):19110-1920.
    [15]Mart D.Vision:A Computational Investigation into The Human Representation and Processing of Visual Information[M].San Francisco:Freeman W H,1982.
    [16]仲琴.基于机器视觉的番茄收获机器人目标定位技术研究[D].江苏大学硕士学位论文,2005,6.
    [17]王勇.棉花收获机器人视觉系统的研究[D].南京农业大学博士学位论文,2007,9.
    [1]Kanade T,okntomi M.A stereo matching algorithm with an adaptive window[J].Theory and experiment 1994:PAMI-16(9):920-931.
    [2]Raymond V E,Clifton M S.Unconstrained stereoscopic matching of lines[J].Vision Research,2000:40:151-162.
    [3]Fleet D J,Jepson A D,Jenkin M R M.Phase-based Disparity Measurement[J].CVGIP:Image understanding,1991:53(2):198-210.
    [4]徐青,王敬东,李鹏,等.基于图像分割的快速立体匹配算法[J].计算机工程,2006,32(22):209-211.
    [5]徐奕,周军,周源华.立体视觉匹配技术计算机工程与应用[J].2003,15,1-5,62.
    [6]Ali M,Shah J R,Ahrned M.3D Reconstruction and Model Acquisition of Objects in Real World Scenes Using Stereo Imagery[C].Proceedings of the 7th international Multi Topic Conference,Islamabad,Pakistan,2003:32-37.
    [7]Nguyen H T,Minh N.Do Image-based Rendering with Depth Information Using the Propagation Algorithm[C].Proceedings of Acoustics,Speech,and Signal Processing,Philadelphia,USA,2005:589-592.
    [8]李智磊,翟宏琛,王明伟.一种可识别破碎图形的特殊广义Hough变换方法[J].物理学报2007,56(6):3234-3239.
    [9]仲琴.基于机器视觉的番茄收获机器人目标定位技术研究[D].江苏大学硕士学位论文,2005,6.
    [10]李显宏.MATLAB7.X界面设计与编译技巧[M].北京:电子工业出版社,2006:203-294.
    [1]Schwartz J T,Sharir M.On the 'piano movers' problem-Ⅰ:The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers[J].Communications on Pure and Applied Mathematics,1983,36(4):345-398.
    [2]王伟,杨扬,原魁.机器人C-空间障碍边界建模与无碰路径规划[J].机器人,1998,20(4):280-286.
    [3]陈靖波,赵猛,张珩.空间机械臂在线实时避障路径规划研究[J].控制工程,2007,14(4):445-447,450.
    [4]蔡健荣,赵杰文,Thomas R,等.水果收获机器人避障路径规划[J].农业机械学报,2007,38(3):102-105,135.
    [5]戈志勇,陈树人,王新忠.神经网络在果蔬收获机器人机械臂避障路径中的应用[J].农机化研究,2007,2:172-174.
    [6]梁喜凤,苗香雯,崔绍荣,等.番茄收获机械手运动学优化与仿真试验[J].农业机械学报,2005,36(7):96-100.
    [7]梁喜凤.番茄收获机械手机构分析与优化设计研究[D].杭州:浙江大学,2004.
    [8]徐毓良,杨启帆.机器人三维空间无碰撞路径规划[J].机器人,1991,13(5):1-6.
    [9]蔡自兴.机器人学[M].北京:清华大学出版社,2000:29-43.
    [10]Ponce J,Chelberg D,Mann W B.Invariant properties of straight homogeneous generalized cylinders and their contours[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(9):951-966.
    [11]Denavit,J,R.S.Hartenberg.A kinematic notation for lower-pair mechanisms based on matrices[J].ASME Journal of Applied Mechanics,June 1955,215-221.
    [12]Saeed B.Niku.机器人学导论[M].北京:电子工业出版社,2004:26-78.
    [13]Lozano P T.A simple motion-planning algorithm for general robot manipulators[J].IEEE Journal of Robotics and Automation,1987,3(3):224-238.
    [14]Lozano P T.Spatial planning:a configurations space approach[J].IEEE Transactions on Computers,1983,32(2):108-120.
    [15]熊有伦.机器人操作[M].武汉:湖北科技出版社,2002:21-59.
    [16]Hart P E,Nilsson N J,Raphael B.A Formal Basis for the Heuristic Determination of Minimum Cost Paths in Graphs[J].IEEE Transactions on Systems Science and Cybernetics,1968,4(2):100-107.
    [17]Tang P,Yang Y M.Study on algorithm A* of intelligent path planning based on method of representation environment with both quad tree and binary tree[J].Control Theory & Application,2003,20(5):770-772.
    [18]Robin R M.人工智能机器人导论[M].北京:电子工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700