用户名: 密码: 验证码:
西洋参化学组分的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了西洋参中的人参皂苷和氨基酸随参龄和部位的变化以及西洋参有效成分人参皂苷与生物分子的相互作用。
     采用高压微波辅助提取技术提取西洋参中的人参皂苷,并用高效液相色谱(HPLC)-蒸发光散射检测器(ELSD)对12种人参皂苷进行含量测定,其中包括西洋参的特征性成分F11。
     使用高压微波水解西洋参中的蛋白,并用2, 4-二硝基氟苯微波衍生,采用HPLC-UV对3-5年生西洋参各部位中西洋参中18种氨基酸进行测定。建立了快速测定氨基酸的方法,大大缩短了氨基酸分析时间,并为氨基酸的在线衍生奠定了基础。
     用电喷雾质谱法研究了人参皂苷与溶菌酶的相互作用。用质谱峰强度直接计算人参皂苷-溶菌酶形成非共价复合物的解离常数。并研究了不同竞争体系下解离常数的差别。
     用电喷雾质谱法研究了药物分子与18种氨基酸的相互作用,得到了药物-氨基酸复合物的解离常数;并基于理论计算的结果,提出了两种结合模式,为找到药物与蛋白的结合位点及结合方式提供了依据。
     用质谱法研究了18种α-氨基酸的碎裂,得到了18种氨基酸在正离子模式下和负离子模式下的裂解规律。
American ginseng was widely studied for its so many pharmacological actions because it can enhance immunologic function of organism, has anti-weary, anti-oxygen deficit and cardiac muscle protective function, has anti-heart rate abnormal, anti-tumor, anti-atherosclerosis function, and can reduce the blood sugar et al.. The main effective constituents in American ginseng are ginsenosides. There are more than 20 kinds of amino acids in American ginseng, and some of them can not be synthesized by human body itself. So the functions of amino acids in American ginseng can not be ignored. The investigations of the contents of ginsenosides and amino acids in different ages and differents parts of American ginseng can provides the foundation for reasonably planting, expanding medicinal parts of American ginseng and producting medicine.
     The interactions of drug and protein are of great significance in pharmacokinetics and clinical pharmacology, which made it an active research area. In this thesis the noncovalent interactions of lysozyme and ginsenosides were investigated. In order to evaluate the interactions of ginsenosides and proteins which are composed ofα-amino acids, electrospray ionization mass spectrometry was employed to study the noncovalent interactions between ginsenosides and 18 kinds ofα-amino acids.
     In the second chapter, high pressure microwave-assisted extraction(HPMAE) was applied for extracting ginsenosides from American ginseng. The ginsenosides Rg1, Re, F11, Rf, Rg2, Rh1, Rb1, Rc, Rb2, Rb3, Rd, Rh2 were determined by high pressure liquid chromatography coupled with a evaporative high scattering detector(HPLC-ELSD). Two extraction methods, microwave-assisted extraction and Soxlet extraction were compared. Except that the extraction efficiencies of ginsenosides Rg2,Rb1 and Rc obtained by HPMAE were lower than those obtained by Soxlet extraction, the extraction efficiencies of other ginsenosides obtained by HPMAE were all higher than those obtained by Soxhlet extraction. HPMAE required only 10 min, but Soxhlet extraction required 5 h. The results showed that the contents of ginsenosides in the leaf were higher than those in other parts, such as root, rhizome, stem. So the leaf of American ginseng can be a new resouce for ginsenosides. The total content of these 12 kinds of ginsenosides in main root increases with years and that in leaf is not related to years.
     In the third chapter, the proteins in American ginseng was hydrolyted by the high pressure microwave-assisted hydrolyzation(HPMAH). The contents of 18 kinds of amino acids(Asp, Glu, Ser, His, Gly, Pro, Ala, Val, Met, Cys, Ile, Leu, Trp, Phe, Lys, Tyr) in different parts of 3-5 year old American ginseng were determined by HPLC-UV. Microwave-assisted hydrolytion and microwave-assisted derivation were compared with traditional methods. To get the same results, microwave-assisted hydrolytion required only 15 min but traditional hydrolyzation required 24 h. The microwave-assisted derivation cost only 30 s but traditional derivation required 1 h. A new determinion method for amino acids was established. The analysis time was greatly reduced and the online derivation for determination of amino acids should be possible.
     In the fourth chapter, the noncovalent binding of lysozyme (Ly) and ginsenoside Rg1,Re,Rd,Rh2 was studied by electrospray ionization mass spectrometry. The dissociation constants of the noncovalent complexes were directly calculated based on the peak intensities of the lysozyme and the complexes of lysozyme and ginsenoside in mass spectra. The dissociation constants in different systems were in the main consistent, which shows that this method was reliable. It can be concluded that the stronger the peak of the complex, the better the precision. Based on the results given in the fifth chapter (the acidic and basic amino acids, including Asp, Glu, Lys and Arg, can be bound to ginsenosides more strongly than other amino acids), and the structure of lysozyme (the molecular surface has a deep, long and narrow scoop channel, whose size can hold 6 monosaccharide unit of the polysaccharide substrate exactly), we deduced that ginsenosides interacts with the two active sites GLu35 and Asp52 of lysozyme.
     In the fifth chapter, electrospray ionization mass spectrometry was employed to study the noncovalent interactions between ginsenosides (Rb2, Rb3, Re, Rg1 and Rh1) and 18 kinds ofα-amino acids (Asp, Glu, Asn, Phe, Gln, Thr, Ser, Met, Trp, Val, Gly, Ile, Ala, Leu, Pro, His, Lys and Arg). The 1:1 and 2:1 noncovalent complexes of ginsenosides and amino acids were observed in the mass spectra. The dissociation constants for the noncovalent complexes were directly calculated based on peak intensities of ginsenosides and the noncovalent complexes in the mass spectra. Based on the dissociation constants, it can be concluded that the acidic and basic amino acids, Asp, Glu, Lys and Arg, can be bound to ginsenosides more strongly than other amino acids. The experimental results were verified by theoretical calculations of parameters of noncovalent interaction between ginsenoside Re and Arg which served as a representative example. Two kinds of binding forms,“head-tail”(“H-T”) and“head-head”(“H-H”), were proposed to explain the interaction between ginsenosides and amino acids. And the interaction in“H-T”form was stronger than that in“H-H”form.
     In the sixth chapter, electrospray ionization tandem mass spectrometry (MS/MS) was applied to study fragmentation pathways of 18 kinds ofα-amino acids, including Asp, Asn, Glu, Gln, Gly, Ala, Ser, Thr, His, Met, Val, Leu, Ile, Phe, Trp, Lys, Arg and Pro in positive and negative ion mode. The group–NH2 and–COOH which joined toα-C were found to be more inclined to be fragmented, but not the side chain. The peak intensities of molecular ions in positive ion mode are stronger than these in negative mode.
引文
[1]马晓北.西洋参[M].天津:天津科学技术出版社,2005.
    [2]李方元中国人参和西洋参[M].北京:中国农业科学技术出版社,2002.
    [3]肖培根.西洋参[M].北京:中国中医药出版社,2001.
    [4]刘铁城.中国西洋参[M].北京:人民卫生出版社,1995.
    [5]中国医学科学院药物研究所等.中药志[M].北京:人民卫生出版社,1995.
    [6]全国中草药汇编编写组.全国中草药汇编(上册)[M].北京:人民卫生出版社,1992.
    [7]周雨,宋凤瑞,刘淑莹,等.西洋参中皂甙成分的研究[J].中国中药杂志, 1998,23(9):551-552.
    [8]李向高,郑友兰,贾继红.西洋参的氨基酸成分的分析[J].中药通报,1985,10(5):33-35.
    [9]卫永第,宋长春,吴广宣,等.野山参、园参与西洋参中氨基酸的对比分析[J].白求恩医科大学学报,1989,15(3): 251-252.
    [10]张甲生,王起山,郑振福,等.西洋参果汁和花旗酒中氨基酸的测定[J].白求恩医科大学学报,1990,16(4): 355-357.
    [11]汪庆平,周家齐,王玲仙.云南丽江人参、西洋参的氨基酸营养[J].氨基酸杂志,1994,(4): 15-16.
    [12]张崇禧,李向高,郑友兰.西洋参挥发油成分的分析[J].药学通报,1987,22(7):401-402.
    [13]刘惠卿,刘国声,刘铁城,等.西洋参茎叶中挥发油成分的研究[J].中药材,1988,11(3):37-38.
    [14]郑友兰,张崇禧,李向高,等.黑龙江栽培的西洋参中挥发油的分离与鉴定[J].中草药,1993,24(11): 570-580.
    [15]沈宁,王素贤,吴立军,等.中国吉林栽培西洋参挥发油成分的新近研究[J].沈阳药学院学报,1991,8(3):175-181, 210.
    [16]周雨,宋凤瑞,刘淑莹,等.西洋参中挥发油化学成分的分析[J].分析化学,1997,25(4):412-414.
    [17]梁忠岩,张冀伸,苗春艳.西洋参与人参总糖组成及含量比较研究[J].中国药学杂志,1989,24(4):207-209.
    [18]梁忠岩,苗春艳,陈丽颖,等.国产西洋参茎叶水溶性多糖的分离与分析[J].特产研究,1993,(4): 44-45, 48.
    [19]苗春艳,梁忠岩,张翼伸.引种西洋参叶水溶性多糖的研究-中性多糖PN的分离、纯化与结构分析[J].生物化学杂志,1993, 9(5): 610-614.
    [20]张崇禧,郑友兰,李向高,等.国产西洋参与进口西洋参中多糖组成分析[J].中成药,1989,11(2):32-33.
    [21]吴锦忠,林如辉,叶国维,等.人参属四种植物中糖类含量比较[J].贵阳医学院学报,1991,16(2):184-186.
    [22]罗维莹,魏春雁,许传莲.不同年生国产西洋参叶中糖类物质的测定[J].人参研究,1998, (1): 9-10.
    [23]张甲生,叶汉光,安汝国,等.国产西洋参各部位中微量元素的测定[J].白求恩医科大学学报,1987,13(6): 503-505.
    [24]刘铁城,刘惠卿,赵阳景,等.西洋参根中微量元素[J].中药通报,1987,12(9): 17-18.
    [25]李晶晶,徐国钧,金容鸾,等.人参、西洋参中的微量元素分析[J].中国药科大学学报,1989,21(1): 43-45.
    [26]李淑子,杨美林,李大达,等.西洋参须根中的无机元素和氨基酸测定[J].特产研究,1993,(3): 61-62.
    [27]张崇禧,李向高,郑友兰.西洋参油脂中脂肪酸类的分离鉴定[J].中成药研究,1987,(6): 26-27.
    [28]李静,卫永第,陈玮宣.野山参叶及西洋参叶脂肪酸成分分析[J].人参研究,1996,8(2): 38.
    [29]刘桂荣,黄万忠,耿利等.西洋参种子油化学成分的研究.特产研究[J],1998,(2):42-43.
    [30]魏均娴,王菊芬,李增蓉.西洋参化学成分的研究[J],中草药,1983,14(9): 5-7.
    [31]徐绥绪,陈英杰,蔡忠琴,等.中国辽宁栽培西洋参化学成分的研究[J].药学学报,1987,20(10):750-755.
    [32]徐绥绪,陈英杰,吕永俊,等.人参和国产西洋参化学的系统研究[J].沈阳药学院学报,1989,6(4):286-292.
    [33]张崇禧,李向高,郑友兰.国产西洋参化学成分的研究[J].吉林农业大学学报,1988,10(1): 22-28.
    [34]包文芳,李红兵,杨宝云.西洋参化学成分的研究进展[J].沈阳药科大学学报,1998,15(2): 149-153.
    [35]李向高.西洋参不同部位化学成分的研究[J].中药材科技,1984,(3): 17-21.
    [36]关利新,翟凤国,聂影,等.西洋参茎叶皂苷对脑缺血大鼠细胞凋亡及caspase-3表达的影响[J].中药药理与临床,2008,24(1):30-32.
    [37]张志国,赵学忠,曲绍春,等.西洋参叶二醇组皂苷抗大鼠心室重构的作用机制[J].吉林大学学报(理学版),2008,34(1):112-116.
    [38]吕忠智,王德凯,刘禹,等.西洋参茎叶皂甙对某些免疫功能影响的实验研究[J].牡丹江医学院学报,1993,14(1): 8-10.
    [39]王蕾,王英平,许世泉,等.西洋参化学成分及药理活性研究进展[J].特产研究,2007,(3):73-77.
    [40]吕妍,郑士鲜.人参与西洋参的规格及药理作用[J].解放军健康,2007,(1):33.
    [41]王承龙,殷惠军,史大卓,等.西洋参茎叶皂苷心血管药理研究概述[J].中药新药与临床药理,2006,17(1): 76-78.
    [42]王筠默.西洋参药理作用研究的最新进展[J].人参研究,2001,13(4): 2-6.
    [43]刘桂艳.西洋参地上部位化学成分的药理药效学研究概况[J].江苏临床医学杂志,2001,5(5): 465-467.
    [44]魏春雁,李向高,杜雪荣,等.国产西洋参叶总黄酮对心血管作用的药理研究[J].中国药理学通报,2000,16(1): 229-230.
    [45]纪凤兰,徐惠波,李延忠,等.西洋参茎叶皂甙药理研究概况[J].特产研究,2000,(1): 55-58.
    [46]万金志,罗上武.人参与西洋参的化学成分药理作用与临床应用之别[J].中草药,1998,29(1): 57-58.
    [47]ZHANG H R, CHEN G, WANG L, et al. Study on the inclusion complexes of cyclodextrin and sulphonated azo dyes by electrospray ionization mass spectrometry[J]. International Journal of Mass Spectrometry, 2006, 252: 1-10.
    [48]张华蓉,张寒琦,等.电喷雾质谱法研究人参皂苷Rb1、Rd与细胞色素c的非共价复合物[J].高等学校化学学报, 2006, 27: 2061-2065.
    [49]ZHANG H R, ZHANG H Q, JIN W Q, et al. Determination of dissociation constants of cyclodextrin-ligand inclusion complexes by electrospray ionization mass spectrometry[J]. European Journal of Mass Spectrometry, 2006, 12(5): 291-299.
    [50]ZHANG H R, DING L, QU C L, et al. Study on the noncovalent complexes of ginsenoside and cytochrome c by electrosprayionization mass spectrometry[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 68(2): 312-316.
    [51]ZHANG H R, ZHANG H Q, QU C L, et al. Fluorimetric and mass spectrometric study of the interaction ofβ-cyclodextrin and osthole[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 68(3): 474-477.
    [52]张华蓉,张寒琦,渠琛玲,丁兰.电喷雾质谱研究人参皂苷Re与氨基酸的相互作用[J].质谱学报, 2006, 27(增刊): 121-122. (2006年国际华人质谱研讨会,乌鲁木齐,7.31-8.4).
    [53]张华蓉,渠琛玲,丁兰,等.氨基酸与人参皂苷Rb2相互作用的电喷雾质谱研究[J].南昌大学学报(理学版). 2006, 30(专辑): 1402-1403. (第九届分析化学年会曁第九届原子光谱会议,南昌,10.11-15).
    [54]王铁生.中国人参[M].沈阳:辽宁科学技术出版社,2001.
    [55]肖宗厚.中药化学[M].上海:上海科技出版社,1987.
    [56]寻晓红.人参皂苷的研究进展[J].中国现代医学杂志,2003,13(15):43-44.
    [57]郑绯,徐娟,梁丹,等.正交试验法优选F胶囊中人参总皂苷的提取工艺[J].武警医学,2008,19(11):995-997.
    [58]黄雪,冯光柱,等.超临界CO2萃取三七总皂苷[J].精细化工,2008,25(3):238-242.
    [59]秦枫,刘靖,陈玉勇,等.三七总皂苷含量测定方法及超声提取工艺研究[J].安徽农业科学,2008,36(8):3062-3063, 3231.
    [60]刘永练,郑成,毛桃嫣,等.微波提取人参中活性成分人参皂苷的研究.广州大学学报(自然科学版),2006,5(6):52-55.
    [61]SHI W, WANG Y T, LI J, ZHANG H Q, DING L. Investigation of ginsenosides in different parts and ages of Panax ginseng[J], Food Chemistry, 2007, 102: 664-667.
    [62]石威,王玉堂,权新军,等.高效液相色谱-蒸发光检测法测定人参根中人参皂苷的含量[J].分析化学,2006,34(2):243-246.
    [63]王笳,袁崇均,陈帅,等.从西洋参中提取分离纯化人参皂苷Rb1和人参皂苷Re的研究[J].天然产物研究与开发,2008,20:357-359.
    [64]高昌琨,高建,徐先祥.大孔吸附树脂提取太子参总皂苷工艺研究[J].中国实验方剂学杂志,2007,13(10):15-17.
    [65]王笳,袁崇均,陈帅,等.大孔吸附树脂和丙酮沉淀分离纯化西洋参中人参二醇类和三醇类皂苷[J].四川中医,2007,25(15):31-33.
    [66]冯子群,解艳.四种人参提取工艺的比较[J].黑龙江科技信息, 2008, 182.
    [67]党锁凤,苟正军.红参在中药产业大生产中提取工艺的研究[J].中国实用医药,2007,2(22):32-33.
    [68]陈军辉,谢明勇,张中伟,等.西洋参皂苷的HPLC测定及不同提取方法比较[J].天然产物研究与开发,2006, 18(1): 120-125.
    [69]ZHANG S Q,CHEN R Z, WU H, WANG C Z, Ginsenoside extraction from Panax quinquefolium L. (American ginseng) root by using ultrahigh pressure[J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41: 57–63.
    [70]张黎黎,王栋.水提取人参茎叶皂苷最佳工艺的研究[J].云南中医中药杂志,2008,29(3):48-49.
    [71]焉石,王英平,许世泉,等.不同提取方法对西洋参中人参皂苷含量的影响[J].特产研究. 2007,(1):51-53.
    [72]吴杏梅.正交试验法优选红药片提取工艺研究[J].中国实用医药. 2007, 2(33): 37-39.
    [73]周漩,林乐明,张军,等.薄层色谱法分离人参皂甙的展开剂优化[J].药物分析.2001,21(1):61-65.
    [74]邸欣.薄层色谱分离人参总皂甙[J].色谱,1994,12(3):1731-1735.
    [75]孙成贺,王英平,刘继永,等.HSCC法分离制备人参果中人参皂苷Re[J].中药材,2008, 31(4): 527-529.
    [76]杨伟峰,赵维良.胶束电动毛细管色谱法测定西洋参中人参皂苷Rb1和Re的含量[J],中国中药杂志,2003,28(12):1135-1137.
    [77]都述虎,王晓华,夏重道,等.穿龙薯蓣总皂苷中薯蓣皂苷原含量的毛细管气相色谱法研究[J].药物分析杂志,2001,21(2):116-119.
    [78]李露,程薇,杨洁.高效液相色谱法测定竹节参中多种人参皂苷含量[J].分析测试技术与仪器,2008,14(1): 19-22.
    [79]KIM S N, HA Y W, SHIN H, et al. Simultaneous quantification of 14 ginsenosides in Panax ginseng C.A. Meyer (Korean red ginseng) by HPLC-ELSD and its application to quality control[J]. Journal of Pharmaceutical and Biomedical Analysis, 2007,45:164–170.
    [80]WANG Z L, WANG H, CHEN S Z. Analysis of Ginsenosides in Sheng-Mai-Yin Decoction by High Performance Liquid Chromatography-Diode Array Detection-Electrospray Ionization Mass Spectrometry[J]. Chinese Journal of Chromatography, 2006, 24(4): 325–330.
    [81]HA Y W, LIM S S, HA I J, et al. Preparative isolation of four ginsenosides from Korean red ginseng(steam-treated Panax ginseng C. A. Meyer), by high-speed counter-current chromatography coupled with evaporative light scattering detection[J]. Journal of Chromatography A, 2007, 1151: 37–44.
    [82]ZHANG H J, WU Y J, CHENG Y Y. Analysis of“SHENMAI”injection by HPLC/MS/MS[J], Journal of Pharmaceutical and Biomedical Analysis, 2003 31: 175-183.
    [83]Li L, ZHANG J L, SHENG Y X, GUO D, et al. Simultaneous quantification of six major active saponins of Panax notoginseng by high-performance liquid chromatography-UV method[J]. Journal of Pharmaceutical and Biomedical Analysis, 2005 38: 45-51.
    [84]WAN J B , YANG F Q , LI S P, WANG Y T, CUI X M. Chemical characteristics for different parts of Panax notoginseng using pressurized liquid extraction and HPLC-ELSD[J], Journal of Pharmaceutical and Biomedical Analysis, 2006, 41: 1596-1601.
    [85] PARK M K, PARK J H, HAN S B, et al. High performance liquid chromatographic analysis of ginseng saponins using evaporative light scattering detection[J], Journal of Chromatography A, 1996, 736:77-81.
    [86]KWON H J, JEONG J S, LEE Y M, HONG S P. A reversed-phase high-performance liquid chromatography method with pulsed amperometric detection for the determination of glycosides[J]. Journal of Chromatography A, 2008, 1185: 251–257.
    [87]SHANGGUAN D H, HAN H W, ZHAO R, et al. New method for high-performance liquid chromatographic separation and fluorescence detection of ginsenosides[J]. Journal of Chromatography A, 2001, 910:367–372.
    [88]真田修一,庄司顺三.生药学杂志(日)[J].1978, 32(2): 96-99.
    [89]李向高,夏玉兰.国产西洋参与原产西洋参有效成分比较研究[J].特产科学实验,1980, (2): 29-31.
    [90]魏均娴,王菊芬,李增蓉.西洋参化学成分的研究[J].中草药,1983, 14(9): 5-7.
    [91]李义侠,刘淑芬,王晓霞.假人参皂甙24(R)-F11鉴别人参与西洋参的显著标志[J].中草药,1995, 26(10): 540-541.
    [92]中国药品生物制品检定所.进口药材质量分析研究[M].1988, 57-65.
    [93]松浦广道.药用人参近缘植物配糖体化学研究(博士论文集)[C].1985, 85-99. 40
    [94]徐绥绪,陈英杰,蔡忠琴,等.中国辽宁栽培西洋参化学成分的研究[J].药学学报,1987, 20(10): 750-755.
    [95]徐绥绪,陈英杰,吕永俊,等.人参和国产西洋参化学的系统研究[J].沈阳药学院学报,1989, 6(4): 286-292.
    [96]张崇禧,李向高,郑友兰.国产西洋参化学成分的研究[J].吉林农业大学学报,1988, 10(1): 22-28.
    [97]周雨,宋凤瑞,刘淑莹,等.西洋参中皂甙成分的研究[J].中国中药杂志,1998, 23(9): 551-552.
    [98]李铣,王金辉.加拿大西洋参的化学研究.中国自然资源学会全国第二届天然药物资源学术研讨会论文集[C].南京:中国药科大学, 1997, 117-118.
    [99]YOSHIKAWA M, MURAKAMI T, YASHIRO K, Chemical & Pharmaceutical Bulletin, 1998, 46(4): 647-651
    [100]CHEN S E, STABA E J. American ginseng.I.large scale isolation of ginsenosides from leaves and stems[J]. Lloydia, 1978, 41(4): 361-366.
    [101]CHEN S E, STABA E J, TANIGASUETAL S. Further study on Dammarane-Saponins of Leaves and Stems of American Ginseng, Panax quinquefolium [J].Planta medica, 1981, 42: 406-411.
    [102]王贵德,马兴元,邵春杰,等.国产西洋参叶化学成分的研究-人参皂甙的分离鉴定[J].中成药, 1990, 4(2): 33-34.
    [103]马兴元,邵春杰,徐景达,等.西洋参茎叶皂甙化学研究-Pseudoginsenoside-RT5的分离与结构鉴定[J].人参研究, 1991, (4): 9-15.
    [104]马兴元,王广树,王陆黎,等.西洋参茎叶三萜皂甙的化学研究[J].中国药学杂志,1993, 28(12): 718-720.
    [105]孙平,陈燕萍,徐景达.西洋参茎叶皂甙的品质评价(一)-总皂苷、单体皂苷、分组皂苷的定性定量分析[J].人参研究,1992,(2):24-27.
    [106]王键,赵岚峰,东贵华.西洋参茎叶中西洋参皂甙的分析[J].中成药,1995, 17(1): 36-38.
    [107]李铣,王金辉.加拿大西洋参的化学研究[C].中国自然资源学会全国第二届天然药物资源学术研讨会论文集,南京:中国药科大学,1997,117-118.
    [108]王金辉,李铣.加拿大产西洋参茎叶的化学研究I.十一种三萜皂甙的分离、鉴定[J].中国药物化学杂志,1997,7(2):130-132.
    [109]王金辉,李铣,王永金.加拿大西洋参茎叶中的一个新三萜皂甙[J].沈阳药科大学学报,1997,14(2):135-136.
    [110]王金辉,李铣,李文.加拿大产西洋参茎叶中的新三萜皂苷-西洋参皂甙L2[J].中国药物化学杂志,1997,7(4):275-276.
    [111]丛登立,等.西洋参叶中人参皂苷的分离与鉴定[J].中国药学杂志,2000,35(2):82-84.
    [112]孟勤,等.西洋参叶三萜皂苷的分离鉴定[J].中国药学杂志,2002,37(3):175-177.
    [113]张崇禧,郑友兰,李向高,等.国产西洋参芦头中皂甙的分离鉴定[J].中成药,1994, 16(2): 37-38.
    [114]郑友兰,等.西洋参芦头化学成分分析[J].中国药学杂志,2005,40(11): 815-816
    [115]窦德强,等.国产西洋参芦头中皂甙的分离鉴定[J].中成药,1994,2:37-38.
    [116]潘金凤,包敏求.加拿大产西洋参不同部位总皂甙含量比较[J].安徽中医学院学报,1996, 15(1): 50-51.
    [117]唐纪琳,李静,卫永第,等.西洋参花蕾皂苷的分离与鉴定[J].中草药,2000, 31(7): 496-498.
    [118]孟祥颖,李向高,于洋.国产西洋参花蕾化学成分的研究I.人参皂苷的分离、鉴定及含量测定[J].吉林农业学报,2000, 22(3): 1-8.
    [119]白喜耕,徐景达,姜锡昆,程光荣.人参果中达玛烷型皂甙的研究—一对构型异构体的分离与鉴定[J].科学通报, 1986, (1):36-39.
    [120]白喜耕,徐景达,程光荣,姜锡昆.人参果的化学研究—皂甙GF-Ⅰ、GF-Ⅳ和GF-Ⅴ的结构鉴定[J].科学通报,1987, (1):39-41.
    [121]徐绥绪,王清华,张国刚,吕永俊,陈国兴,陈英杰.人参化学成分的研究——12.人参脂溶性成分的研究[J].沈阳药科大学学报, 1988, 1
    [122]于明,赵余庆.人参果中一对构型异构体的分离与鉴定[J].中草药,2002, (5): 404-405
    [123]魏春雁,罗维莹,李向高,等.西洋参果汁干浸膏成分分析[J].中国药学杂志,1992, 27(1):26-30.
    [124]张甲生,王晓光,李清民,等.西洋参果汁和花旗酒化学成分的分析[J].白求恩医科大学学报,1989, 15(5):481-482.
    [125]孟祥颖,任跃英,李向高,等.西洋参中皂苷类成分的研究综述[J].特产研究,2001, (3):43-47.
    [126]张崇禧,郑友兰,李向高.不同产地西洋参中人参皂苷的含量比较[J].人参研究,1993,(3):12-14.
    [127]孙文基,郭耀武,高海,等.国产西洋参中总皂甙及假人参皂甙的含量考察[J].西北药学杂志,1997, 12(1):13-14.
    [128]杨崇仁,姚荣成,阮德春,等.云南栽培西洋参皂甙的高压液相色谱定量分析[J].云南植物研究,1989, 11(3):276-284.
    [129]侯集瑞.国产及进口人参和西洋参药材质量的对比研究[C].吉林农业大学博士学位论文,2003.
    [130]朱丹妮,等.西洋参与人参中人参皂苷含量的比较[J].植物资源与环境学报,2000, 9(3):1-4.
    [131]郑友兰,等.不同年生西洋参皂苷比较研究[J].吉林农业大学学报,1991, 13(2):88-89.
    [132]张崇禧,等.不同产地人参一般组成成分分析[J].林业实用技术,1990,(3):12-14.
    [133]罗纪盛.生物化学,华东师范大学出版社,1997.
    [134]JURANVILLE J F, POSCHL B, OESTCRHELT G, SCHONFELD H J, FOUNTOULAKIS M. Glycerol affects the quantification of aspartate and glutamate in acid-hydrolyzed proteins[J]. Amino Acids, 1998, 15(3): 253-262.
    [135]WALSH M K, BROWN R J. Use of amino acid analysis for estimating the individual concentrations of proteins in mixtures[J].Journal of Chromagraphy A, 2000, 891(2): 355-360.
    [136]LANGEN H, TAKACS B, EVERS S et al. Two-dimensional map of the proteome of Haemophilus influenzae[J]. Electrophoresis, 2000, 21(2): 411-429.
    [137]DARRAGH A J, GARRICK D J, MOUGHAN P J, HENDRIKS W H. Correction for Amino Acid Loss during Acid Hydrolysis of a Purified Protein [J]. Analytical Biochemistry, 1996, 236: 199-207.
    [138]DAVIDSON I. Hydrolysis of Samples for Amino Acid Analysis [J]. Methods in Molecular Biology[J], 1997, 64: 119-129.
    [139]GOBOM J, MIRGORODSKAYA E, NORDLHOFF E, HOJRUP P, ROEPSTORFF P. Use of Vapor-Phase Acid Hydrolysis for Mass Spectrometric Peptide Mapping and Protein Identification [J] . Analytical Chemistry, 1999, 71: 919-927.
    [140]CHIU S H, WANG K T. Simplified protein hydrolysis with methanesulfonic acid[J]. Journal of Chromatography, 1988, 448: 404-408.
    [141]CHIU S H. Biochemistry International[J],1988,17:981.
    [142]GUPTA R K, CHANG A C, GRIFFIN P, RIVERA R, GUO Y Y, SIBER G R.Determination of protein loading in biodegradable polymer microspheres containing tetanus toxoid[J]. Vaccine, 1997, 15: 672-678.
    [143]WEISS M, MANNEBERG M, JURANVILLE J F, LAHM H W, FOUNTOULAKIS M[J]. Journal of Chromatography A, 1998, 795: 263-275.
    [144]陈泽宪,徐辉碧.蛋白质水解阶段对氨基酸组成分析的影响[J].分析科学学报,2002, 18(1): 80-85.
    [145]黄校亮,刘岩,金丽,等.微波辅助蛋白质水解研究进展[J].辽宁石油化工大学学报,2006, 26(4):53-55.
    [146]迟玉杰.蛋白质水解物的研究与开发[J].食品工业,2003, (8): 28-30.
    [147]曾念辉.氨基酸分析方法综述[J].江西化工,2007, (1): 49-51.
    [148]陈志慧.氨基酸分析技术的综述[J].广东化工,2004, (2): 69-71.
    [149]杨莉丽.氨基酸分离分析方法及其与衰老和疾病关系的研究[D].中国科技大学博士学位论文,2000.
    [150]王慧云,孙勤枢,等.L-半胱氨酸在金电极上的电化学行为[J].济宁医学院学报, 2001, 24(4): 1-2.
    [151]邹永德,王进,等.用碳糊修饰电极测定氨基酸的伏安法研究.I.色氨酸和酪氨酸在聚酰胺修饰碳糊电极上的电化学行为[J].分析测试学报,1999, 18(2): 25-28.
    [152]莫健伟,等.氨基酸衍生物的电化学研究及碱性氨基酸的极谱测定[J].汕头大学学报(自然科学版),1994, 9(2): 96-99.
    [153]GILBERT D D. Pulse polarographic study of the cystine catalytic hydrogen wave[J]. Analytical Chemistry, 1969, 41: 1567-1571.
    [154]成海平.蛋白质组研究中氨基酸组成分析方法的建立和初步应用[D].军事医学科学院硕士学位论文,2000.
    [155]许庆琴.大孔径毛细管气相色谱法测定野生果汁中的氨基酸[J].山西师范大学学报(自然科学版),2002,16(1): 49-51.
    [156]周建华.毛细管气相色谱法分析氨基酸[J].山东轻工业学院学报,1998, 12(4): 48-50.
    [157]姚艳红,朴英爱,方英玉.气相色谱-质谱法分析鸡蛋壳中氨基酸[J].延边大学学报(自然科学版),1998, 24(3): 25-27, 78.
    [158]杨艳.烟草中非挥发性有机酸和氨基酸的GC/MS分析[D].云南大学硕士学位论文,2002.
    [159]金凤明,冯学伟,李桂贞.珍珠角壳蛋白中氨基酸的高效液相色谱分析[J].华东理工大学学报, 2001, 27(1): 103-105.
    [160]纳鹏君,张继,陈平,等.乌拉尔甘草叶中氨基酸的反相高效液相色谱快速测定[J].分析测试学报, 2002, 21(6): 21-23.
    [161]陈文.用高效液相色谱测定烟叶中游离氨基酸及其应用研究[J].武汉科技大学硕士学位论文, 2001.
    [162]冯雷.烟草中游离氨基酸的分离分析方法研究[J].云南大学硕士学位论文, 2003.
    [163]丁雅韵.高效液相色谱对氨基酸和肽的分离及定量分析方法的研究[J].北京师范大学硕士学位论文, 2001.
    [164]孟凡征,李柏.西洋参[M].北京:北京科学技术出版社,2003,13-66.
    [165]陈军辉.西洋参活性成分及其指纹图谱研究[D].南昌大学硕士论文,2005.
    [166]李向高,郑友兰,张崇禧,等.西洋参的氨基酸成分的分析[J].中药通报,1985, 10(5): 33-35.
    [167]李向高,马英春,王秀全,等.西洋参的研究[M].北京:中国科学技术出版社,2001, 287-288.
    [168]李向高,郑友兰,贾继红.西洋参中氨基酸的分析[J].中药通报, 1985, 10(5): 33-35.
    [169]任贵兴,王铁生,王化武.西洋参茎叶中氨基酸无机元素含量的研究[J].特产研究, 1987, (4): 1-4.
    [170]张崇禧,李向高,郑友兰.西洋参中氨基酸的分析[J].中药材, 1987, (6): 39-41.
    [171]卫永第,宋长春,等.野山参、园参与西洋参中氨基酸的测定[J].白求恩医科大学学报, 1989, 15(3): 251-252.
    [172]张甲生,王起山,等.西洋参果汁和花旗酒中氨基酸的测定[J].白求恩医科大学学报, 1990, 16(4): 355-357.
    [173]LAM Y W, DUROUX M H, GAMBERTOGLIO J G. Effect of protein binding on serum bactericidal activities of ceftazidime and cefoperazone in healthy volunteers[J]. Antimicrob Agents Chemother, 1998, 32: 298-302.
    [174]YOO S D, HOLLADAY J W, FINCHER T K. Altered disposition and antidepressant activity of imipramine in transgenic mice with elevated alphal-acid glycoprotein[J]. Journal of Pharmacology and Experimental Therapeutics, 1996, 276: 918-922.
    [175]WEBER L T, SHIPKOVA M, ANNSTRONG V W. The pharmacokineticpharmcodynamic relationship for total and free mycophenolic acid in pediatric renal transplant recipients: a report of the German study group on mycophenolate mofetil therapy[J]. Journal of the American Society of Nephrology, 2002, 13: 759-768.
    [176]KRUGER E A, FIGG W D. Protein binding alters the activity of suramin, carboxyamidotriazole, and UCN201 in an ex vivo rat aorticring angiogenesis assay[J]. Clinical Cancer Research, 2001, 7: 1867-1872.
    [177]陈耀祖,涂亚平.有机质谱原理及应用[M].北京:科学出版社,2000.
    [178]何美玉.现代有机与生物质谱[M].北京:北京大学出版社,2002.
    [179]李锐,代本才,等.光谱法在分子间非共价相互作用中的应用及进展[J].光谱学与光谱分析,2009, 29(1): 240-243.
    [180]WAN K X, SHIBUE T, GROSS M L, Non-covalent complexes between DNA-binding drugs and double-stranded oligodeoxynucleotides: a study by ESI ion-trap mass spectrometry[J], Journal of American Chemical Society, 2000, 122(2): 300-307.
    [181]CHENG X, HARMS A C, et al. Direct measurement of oligonucleotide binding stoichiometry of gene V protein by mass spectrometry[J], Proceedings of the National Academy of Sciences, USA, 1996, 93(14): 7022-7027.
    [182]LIM H K, HSIEH Y L, et al. Recognition of cell-wall peptide ligands by vancomycin group antibiotics: strudies using ionspray mass spectrometry[J], Journal of mass spectrometry, 1995, 30(7): 708-714.
    [183]Jorgensen T J D, et al. Direct determination of solution binding constants for noncovalent complexes between bacterial cell wall peptide analogues and vancomycin group antibiotics by electrospray ionization mass spectrometry[J], Analytical chemistry, 1998, 70(20): 4427-4432.
    [184]YONG D S, et al. An easy and rapid method for determination of stability constants by electrospray ionization mass spectrometry[J], Rapid communications in mass spectrometry, 1997, 11(7): 769-773.
    [185]BENKESTOCK K, EDLUND P, ROERAADE. Electrospray ionization mass spectrometry as a tool for determination of drug binding sites to human serum albumin by noncovalent interaction[J]. Rapid Communications in Mass Spectrometry. 2005, 19: 1637-1643.
    [186]GANGULY A K, et al. Detection and structural characterization of rasoncoprotein-inhibitiors complexes by electrospray mass spectrometry[J]. Bioorganic andMedicinal Chemistry Letters, 1997, 5(5): 817-820.
    [187]袁金伟,陈晓岚,等. ESI质谱法对黄酮-7-磷酰化氨基酸酯与溶菌酶相互作用的研究[J],分析测试学报,2009, 28(2): 135-139.
    [188]申睿,吴弼东,等.氨基化环糊精与氨基酸包络物的电喷雾质谱研究[J],分析化学,2006, 34(8): 1153-1156.
    [189]吴胜明,杨松成,等.氨基酸与钠离子非共价键相互作用的电喷雾质谱研究[J],分析测试学报,2004,25:66-67.
    [190]刘勤,张淑珍,吴弼东,等.电喷雾质谱在超分子体系中非共价相互作用研究中的应用[J].质谱学报,2005, 26(5):51-58.
    [191]林秀丽,陆玮洁,主沉浮.电喷雾质谱在药物和DNA相互作用研究中的应用[J].中国生化药物杂志, 2007, 28(2): 421-423.
    [192]LOO J A. Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes[J]. 2000, 200: 175-186.
    [193]陈勇,等.α1-酸性糖蛋白与药物相互作用的电喷雾离子阱质谱研究[J].高等学校化学学报, 2005, 26(10): 1829-1831.
    [194]JECKLIN M C, et al. Which electrospray-based ionization method best reflects protein-ligand interactions found in solution? A comparison of ESI, nanoESI, and ESSI for the determination of dissociation constants with mass spectrometry[J], Journal of the American Society for Mass Spectrometry, 2008, 19: 332-343.
    [195]刘雪锋.几种中药小分子与牛血清白蛋白的相互作用[J].江南大学博士学位论文, 2005.
    [196]XING S K, ZHANG Q, ZHANG C, et al. Isothermal titration calorimetry and theoretical studies on host-guest interaction of ibuprofen withα-,β- andγ–cyclodextrin[J]. Journal of Solution Chemistry, 2009, 38: 531-543.
    [197]CRESPILHO F N, LIMA F C A, et al. The origin of the molecular interaction between amino acids and gold nanoparticles: A theoretical and experimental investigation[J]. Chemical Physics Letters, 2009, 469: 186-190.
    [198]MATSUBARA T, et al. A theoretical insight into the interaction of fatty acids involved in royal jelly with the human estrogen receptorβ[J]. Bulletin of the Chemical Society of Japan, 2008, 81: 1258-1266.
    [199]PETIT L, JOUBERT L, et al. A theoretical investigation on the interaction of a new genevector with DNA[J]. Theoretical Chemistry Accounts, 2008, 120: 507-513.
    [200]MENDEZ P S, GUEDES R C, et al. Theoretical prediction of binding modes and hot sequences for allopsoralen-DNA interaction[J]. Chemical Physics Letters, 2007, 127-131.
    [201]BHATTACHARYA S, UJIHASHI N, et al. Spectral and theoretical studies on effective and selective non-covalent interaction between tetrahexylporphyrins and fullerenes[J]. Spectrochimica Acta Part A, 2007, 68: 495-503.
    [202]JALBOUT A F, Li@C60 complexes with amino acids: A theoretical analysis[J]. Journal of Organometallic Chemistry, 2008, 693: 1143-1149.
    [203]CARDOZO K H M, VESSECCHI R, et al. A theoretical and mass spectrometry study of the fragmentation of mycosporine-like amino acids[J]. International Journal of Mass Spectrometry, 2008, 273: 11-19.
    [204]BARBOSA L R S, et al. Interaction of phenothiazine compounds with zwitterionic lysophosphatidylcholine micelles: Small angle X-ray scattering, electronic absorption spectroscopy, and theoretical calculations[J]. Journal of Physical Chemistry B, 2006, 110: 13086-13093.
    [205]SEYMOUR J L, et al. Chiral recognition in solution and the gas phase. Experimental and theoretical studies of aromatic D- and L-amino acid-Cu(II)-chiragen complexes[J]. Journal of mass spectrometry, 2004, 39: 1382-1383.
    [206]李颖.中药有效成分与人血清白蛋白相互作用研究[D].兰州大学硕士学位论文, 2007.
    [1]松浦广道.药用人参近缘植物配糖体化学成分的研究[C].化学研究,1985, 85-99.
    [2]LI X G, et al. The challenges of the 21st Century-proceedings of the International ginseng conference-vancouverin Canada[C]. 1994, 402-403.
    [3]肖宗厚.中药化学[M].上海:上海科技出版社,1987, 361-365.
    [4]VUKSAN V, SIEVENPIPER J L, KOO V Y Y, FRANCIS T, BELJAN-ZDRAVKOVIC U, XU Z, VIDGEN E. American Ginseng (Panax quinquefolis L.) reduces postprandial glycemia in nondiabetic subjects and subjects with type II diabetes mellitus[J]. Archives of Internal Medicine, 2001, 160: 1009-1013.
    [5]WANG Y T, YOU J Y, YU Y, QU C L, ZHANG H R, DING L, ZHANG H Q, LI X W. Analysis of ginsenosides in Panax ginseng in high pressure microwave-assisted extraction[J]. Food Chemistry, 2008, 110: 161-167.
    [6]SHEN X H, REN Y P, CHEN Y. Detection of ginsenoside in healthy foods by HPLC[J]. Chinese Journal of Health Laboratory Technology, 2003, 5: 600–601.
    [7]寻晓红.人参皂苷的研究进展[J].中国现代医学杂志,2003, 13(15): 43-44.
    [8]TENG R W, ANG C S, MCMANUS D, ARMSTRONG D, MAU S, BACIC A. Regioselective acylation of ginsenosides by Novozyme 435[J]. Tetrahedron Letters, 2003, 44: 5661-5664.
    [9]KIM S N, HA Y W, SHIN H, SON S H, WU S J, KIM Y S. Simultaneous quantification of 14 ginsenosides in Panax ginseng C.A. Meyer (Korean red ginseng) by HPLC-ELSD and its application to quality control[J]. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45:164-170.
    [10]LEUNG K S, CHAN K, BENSOUSSAN A, MUNROE M J. Application of atmospheric pressure chemical ionisation mass spectrometry in the identification and differentiation of Panax Species[J]. Phytochemical Analysis, 2007, 18: 146-150.
    [11]WANG A B, WANG C Z, WU J A, OSINSKI J, YUAN C S. Determination of major ginsenosides in Panax quinquefolius (American ginseng) using high-performance liquid chromatography[J]. Phytochemical Analysis, 2005, 16: 272-277.
    [12]LI T S C, MAZZA G, COTTRELL A C, GAO L. Ginsenosides in roots and leaves of American ginseng[J]. Journal of Agricultural and Food Chemistry, 1996, 44: 717-720.
    [13]LIM W, MUDGE K W, VERMEYLEN F. Effects of population, age, and cultivationmethods on ginsenoside content of wild American ginseng (Panax quinquefolium)[J]. Journal of Agricultural and Food chemistry, 2005, 53: 8498-8505.
    [14]SHI W, WANG Y T, LI J, ZHANG H Q, DING L. Investigation of ginsenosides in different parts and ages of Panax ginseng[J]. Food Chemistry, 2007, 102: 664-668.
    [15]KWON S W, HAN S B, PARK I H, KIM J M, PARK M K, PARK J H. Liquid chromatographic determination of less polar ginsenosides in processed ginseng[J]. Journal of Chromatography A, 2001, 921: 335–339.
    [16]KIM S J, MURTHY H N, HAHN E J, LEE H L, PAEK K Y. Parameters affecting the extraction of ginsenosides from the adventitious roots of ginseng (Panax ginseng C.A. Meyer) [J]. Separation and Purification Technology, 2007, 56: 401-406
    [17]YE J, ZHANG X, DAI W X, YAN S K, HUANG H H, et al. Chemical fingerprinting of Liuwei Dihuang Pill and simultaneous determination of its major bioactive constituents by HPLC coupled with multiple detections of DAD, ELSD and ESI-MS[J]. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49: 638-645.
    [18]LEE Y H, JEONG E S, CHO H E, MOON D C. Separation and determination of polyethylene glycol fatty acid esters in cosmetics by a reversed-phase HPLC/ELSD[J]. Talanta, 2008, 74: 1615-1620.
    [19]WAN J B, YANG F Q, LI S P, WANG Y T, CUI X M. Chemical characteristics for different parts of Panax notoginseng using pressurized liquid extraction and HPLC-ELSD[J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41: 1596-1601.
    [20]CHAI X Y, LI S L, LI P. Quality evaluation of Flos Lonicerae through a simultaneous determination of seven saponins by HPLC with ELSD[J]. Journal of Chromatography A, 2005, 1070: 43-48.
    [21]ROMBAUT R, DEWETTINCK K, CAMP V. Phospho- and sphingolipid content of selected dairy products as determined by HPLC coupled to an evaporative light scattering detector (HPLC–ELSD) [J]. Journal of Food Composition and Analysis, 2007, 20: 308-312.
    [1]于泓,牟世芬.氨基酸分析方法的研究进展[J].分析化学,2005,33(3):398-404.
    [2]常碧影,杨文军.氨基酸分析与仪器性能评价[J].现代科学仪器,2004,6:6-9.
    [3]OZCAN S, SENYUVA H Z. Improved and simplified liquid chromatography/atmospheric pressure chemical ionization mass spectrometry method for the analysis of underivatized free amino acids in various foods[J]. Journal of Chromatography A, 2006, 1135: 179-185.
    [4]PETRITIS K, ELFAKIR C, DREUX M. A comparative study of commercial liquid chromatographic detectors for the analysis of underivatized amino acids[J]. Journal of Chromatography A, 2002, 961: 9-21.
    [5]CHAIMBAULT P, PETRITIS K, ELFAKIR C, DREUX M. Determination of 20 underivatized proteinic amino acids by ion-pairing chromatography and pneumatically assisted electrospray mass spectrometry[J]. Journal of Chromatography A, 1999, 855: 191-202.
    [6]冯娅,陈红,张林,程传民.饲料中氨基酸检测的常规水解法与微波水解法比对[J].中国饲料,2006, 10: 34-35.
    [7]穆军,呼世斌,刘建党,周广阔,凌云.动物蹄甲微波水解制备复合氨基酸新工艺的研究[J].中国资源综合利用,2006, 24(2): 9-11.
    [8]陈泽宪,徐辉碧.蛋白质水解阶段对氨基酸组成分析的影响[J].分析科学学报,2002, 18(1): 80-85.
    [9]丁永胜,牟世芬.氨基酸的分析方法及其应用进展[J].色谱,2004, 22(3): 210-215.
    [10]宋志峰,王丽,纪锋,黄璜,于志晶.柱前在线衍生-反相高效液相色谱内标法快速测定饲料中氨基酸[J].分析化学,2007, 35(1): 25-30.
    [11]周政华,杨元,洪君蓉,黄承钰,李河君.固相萃取-离子色谱-积分脉冲安培法测定人血清中游离氨基酸[J].分析化学,2007, 35(7): 1063-1066.
    [12]鄢丹,李果.反相高效液相色谱法直接测定水蛭中14种未衍生氨基酸的含量[J].分析化学,2006, 34(5): 705-708.
    [13]蒋新宇,周春山.氨基酸的柱前衍生高效液相色谱分析述评[J].湖南化工,1999, 29(2): 9-11.
    [14]朱丹,孟品佳,何洪源.动态液相微萃取-微波衍生化-气相色谱/选择离子检测-质谱法测定毛发中的苯丙胺类毒品[J].色谱,2007, 25(1): 16-20.
    [15]侯俊红,廖林川,颜有仪,杨林,陈渝,付强.苯丙胺类气相色谱分析前衍生化条件筛选[J].刑事技术,2007, 3: 6-8.
    [16]刘冬娴,贺江南.微波照射衍生化气相色谱法检测丁丙诺啡[J].光谱实验室,2007, 24(5): 987-990.
    [17]赵剑虹,杨柳桦,李永新,吴鑫,毛丽莎,孙成均.柱前衍生-高效液相色谱法测定大熊猫血清中18种游离氨基酸[J].分析实验室,2007, 26(11): 15-19.
    [1]LOO J A. Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes[J]. International Journal of Mass Spectrometry, 2000, 200: 175-186.
    [2]ZHANG H R, DING L, QU C L, LI D, ZHANG H Q. Study on the noncovalent complexes of ginsenoside and cytochrome c by electrospray ionization mass spectrometry[J]. Spectrochimica Acta A, 2007, 68: 312-316.
    [3]BENKESTOCK K, EDLUND P, et al. Electrospray ionization mass spectrometry as a tool for determination of drug binding sites to human serum albumin by noncovalent interaction[J]. Rapid Communications in Mass Spectrometry, 2005, 19: 1637-1643.
    [4]ZHOU J, YUAN G. Analysis of Noncovalent Complexes between Human Telomeric DNA and Polyamides Containing N-Methylpyrrole and N-Methylimidazole by Using Electrospray Ionization Mass Spectrometry[J]. Chemistry-A European Journal, 2005, 11: 1157-1162.
    [5]CHEN W H, CHAN C L, CAI Z W, LUO G A, JIANG Z H. Study on noncovalent complexes of cytotoxic protoberberine alkaloids with double-stranded DNA by using electrospray ionization mass spectrometry[J]. Bioorganic and Medicinal Chemistry Letters, 2004, 14: 4955-4959.
    [6]SANNES-LOWERY K A, GRIFFEY R H, HOFSTADLER S A. Measuring Dissociation Constants of RNA and Aminoglycoside Antibiotics by Electrospray Ionization Mass Spectrometry[J]. Analytical Biochemistry, 2000, 280: 264-271.
    [7]LOO J A. Studying noncovalent protein complexes by electrospray ionization mass spectrometry[J]. Mass Spectrometry Reviews, 1997, 16: 1-23.
    [8]HO Y, LI H, LU L. Probing the interactions of oxidized insulin chain A and metal ions using electrospray ionization mass spectrometry[J]. International Journal of Mass Spectrometry, 2003, 227: 97-109.
    [9]WISEMAN J M, TAKATS Z, GOLOGAN B, DAVISSON V J, Cooks R G. Direct Characterization of Enzyme–Substrate Complexes by Using Electrosonic Spray Ionization Mass Spectrometry[J]. Angewandte Chemie International Edition, 2005, 44: 913-916.
    [10]CHENG X, CHEN R, Bruce J E, et al. Using Electrospray Ionization FT ICR Mass Spectrometry To Study Competitive Binding of Inhibitors to Carbonic Anhydrase[J].Journal of the American Chemical Society, 1995, 117(34): 8859-8860.
    [11]TRIOLO A, ARCAMONE F M, RAFFAELLI A, et al. Non-covalent Complexes between DNA-binding Drugs and Double-stranded Deoxyoligonucleotides: A Study by Ionspray Mass Spectrometry[J]. Journal of Mass Spectrometry, 1997, 32(11): 1186-1194.
    [12]WAN K X, SHIBUE T, GROSS M L. Non-covalent Complexes between DNA-binding Drugs and Double-stranded Oligodeoxynucleotides: A Study by ESI Ion-trap Mass Spectrometry[J]. Journal of the American Chemical Society, 2000, 122(2): 300-307.
    [13]CHENG X, HARMS A C, GOUDREAU R N, et al. Direct Measurement of Oligonucleotide Binding Stoichiometry of Gene V Protein by Mass Spectrometry[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(14): 7022-7027.
    [14]GUO M Q, ZHANG S P, SONG F R, WANG D W, LIU Z Q. Studies on the non-covalent complexes between oleanolic acid and cyclodextrins using electrospray ionization tandem mass spectrometry[J]. Journal of Mass Spectrometry, 2003, 38(7): 723-731.
    [15]GREIG M J, GAUS H, CUMMINS L L, et al. Measurement of Macromolecular Binding using Electrospray Mass Spectrometry Determination of Dissociation Constants for Oligonucleotideserum Alum in Complexes[J]. Journal of the American Chemical Society, 1995, 117(43): 10765-10766.
    [16]LIM H K, HSIEH Y L, GANEM B, et al. Recognition of Cell-wall Peptide Ligands by Vancomycin Group Antibiotics: Studies Using Ion Spray Mass Spectrometry[J]. Journal of Mass Spectrometry, 1995, 30(7): 708-714.
    [17]LOO J A, HU P, MCCONNELL P, et al. A Study of Src SH2 Domain Protein-phosphopeptide Binding Interactions by Electrospray Ionization Mass Spectrometry[J]. Journal of the American Society Mass Spectrometry, 1997, 8(3): 234-243.
    [18]GRIFFEY R H, HOFSTADLER S A, SANNES-LOWERY K A, et al. Determinants of Aminoglycoside binding Specificity for rRNA by Using Mass Spectrometry[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(18): 10129-10133.
    [19]YONG D S, HUNG H Y, LIU L K. An Easy and Rapid Method For Determination of Stability Constants by Electrospray Ionization Mass Spectrometry[J]. Rapid Communications in Mass Spectrometry, 1997, 11(7): 769-773.
    [20]KEMPEN E, BRODBELT J. A Method for the Determination of Binding Constants by Electrospray Ionization Mass Spectrometry[J]. Analytical Chemistry, 2000, 72(21): 5411-5416.
    [21]ZEHENDER H, MAYR L. Application of mass spectrometry technologies for the discovery of low-molecular weight modulators of enzymes and protein–protein interactions[J]. Current Opinion Chemical Biology, 2007, 11: 511-517.
    [22]GABELIC V, GALIC N, ROSU F, HOUSSIER C, PAUW E. Influence of Response Factors on Determining equilibrium Association Constants of Noncovalent Complexes by Electrospray Ionization Mass Spectrometry[J]. Journal of Mass Spectrometry, 2003, 38: 491-501.
    [23]SUCKAU D, SHI Y, BEU S C, SENKO M W, QUINN J P, et al. Coexisting stable conformations of gaseous protein ions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90: 790-793.
    [24]LOO J A, HE J X, CODY W L. Higher Order Structure in the Gas Phase Reflects Solution Structure[J]. Journal of American Chemical Society, 1998, 120: 4542-4543.
    [25]JARROLD M F. Unfolding, Refolding, and Hydration of Proteins in the Gas Phase[J]. Accounts Chemical Research, 1999, 32: 360-367.
    [27]GROSS D S, SCHNIER P D, RODRIGUEA-CRUZ S E, et al. Conformations and folding of lysozyme ions in vacuo[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 3143-3148.
    [28]HILL T J, LAFITTE D, WALLACE J I, COOPER H J, TSVETKOV P O, DERRICK P J. Calmodulin?Peptide Interactions: Apocalmodulin Binding to the Myosin Light Chain Kinase Target-Site[J]. Biochemistry, 2000, 39: 7284-7290.
    [29]WU Q, GAO J, JOSEPH-MCCARTHY D, SIGAL G B, BRUCE J E, WHITESIDES G M, SMITH R D. Carbonic anhydrase inhibitor binding: from solution to the gas phase[J]. Journal of the American Chemical Society, 1997, 119: 1157-1158.
    [30]SANNES-LOWERY K A, HU P, MACK D P, MEI H Y, LOO J A. HIV-1 Tat peptide binding to TAR RNA by Electrospary Ionization Mass Spectrometry[J]. Analytical Chemistry, 1997, 69: 5130-5135.
    [31]MCLAFFERTY F W, KELLEHER N L, BEGLEY T P, FRIDRIKSSON E K, ZUBAREV R A, HORN D M. Two-Dimensional Mass Spectrometry of Biomolecules at The Subfemtomole Level[J]. Current Opinion Chemical Biology, 1998, 2: 571-578.
    [32]ROGNIAUX H, VAN DORSSELAER A, BARTH P, BIELLMANN J F, BARBANTON J, et al. Binding of aldose reductase inhibitors: Correlation ofcrystallographic and mass spectrometry studies[J]. Journal of the American Society for Mass Spectrometry, 1999, 10: 635-647.
    [33]JIANG Z L, HUANG G X. Resonance scattering spectra of micrococcus lysodeikticus and its application to assay of lysozyme activity[J]. Clinica Chimica Acta 2007, 376: 136-141.
    [34]HE W Y, LI Y, TANG J H, LUAN F, JIN J, HU Z D. Comparison of the characterization on binding of alpinetin and cardamonin to lysozyme by spectroscopic methods[J]. International Journal of Biological Macromolecules, 2006, 39: 165-173.
    [35]GU Z Y, ZHU X N, NI S W, SU Z G, ZHOU H M. Conformational changes of lysozyme refolding intermediates and implications for aggregation and renaturation[J]. International Journal of Biochemistry and Cell Biology, 2004, 36: 795-805.
    [36]ZHU J, LI D, JIN J, WU L. Binding analysis of farrerol to lysozyme by spectroscopic methods[J]. Spectrochimica Acta A, 2007, 68: 354-359.
    [37]ZHANG H R, CHEN G, WANG L, DING L, TIAN Y, JIN W Q, ZHANG H Q. Study on the inclusion complexes of cyclodextrin and sulphonated azo dyes by electrospray ionization mass spectrometry[J]. International Journal of Mass Spectrometry, 2006, 252: 1-10.
    [1]NAM M H, KIM S I, LIU J R, YANG D C, LIM Y P, KWON K H, YOO J S, PARK Y M, Proteomic analysis of Korean ginseng (Panax ginseng C.A. Meyer)[J]. Journal of Chromatography B. 2005, 815: 147-155.
    [2]KWON J H, BELANGER J M R, PARE J R J, YAYLAYAN V A, Application of the microwave-assisted process (MAP? ) to the fast extraction of ginseng saponins[J]. Food Research International, 2003, 36: 491-498.
    [3]CORBIT R M, FERREIRA J F S, EBBS S D, MURPHY L L, Simplified Extraction of Ginsenosides from American Ginseng (Panax quinquefolius L.) for High-Performance Liquid Chromatography-Ultraviolet Analysis[J]. Journal of Agricultural Food Chemistry, 2005, 53: 9867-9873.
    [4]LUCHTEFELD R, KOSTORYZ E, SMITH R E, Determination of Ginsenosides Rb1, Rc, and Re in Different Dosage Forms of Ginseng by Negative Ion Electrospray Liquid Chromatography?Mass Spectrometry[J]. Journal of Agricultural Food Chemistry, 2004, 52: 4953-4956.
    [5]CUI J F, Identification and quantification of ginsenosides in various commercial ginseng preparations[J]. European Journal of Pharmaceutical Sciences, 1995, 3: 77-85.
    [6]MA X Q, LIANG X M, XU Q, ZHANG X Z, XIAO H B, Identification of ginsenosides in roots of Panax ginseng by HPLC-APCI/MS[J]. Phytochemical analysis, 2005, 16: 181-187.
    [7]LI T S C, MAZZA G, COTTRELL A C, GAO L. Ginsenosides in Roots and Leaves of American Ginseng[J]. Journal of Agricultural and Food Chemistry, 1996, 44: 717-720.
    [8]MIAO X S, METCALFE C D, HAO C Y, MARCH R E. Electrospray ionization mass spectrometry of ginsenosides[J]. Journal of Mass Spectrometry, 2002, 37: 495-506.
    [9]陈英杰,王红艳,徐绥绪,等.人参抗心律失常构效关系研究[J].中国自然科学基金,1995, 3(1): 37-39.
    [10]钟国赣,齐晖,赵春燕.用电子自旋共振法比较观察八种人参单体皂苷对培养心肌细胞自由基含量影响[J].生物化学与生物物理学报,1993, 25(6): 667-671.
    [11]赖红,吕永利,包峰,等.海马神经元的老龄性改变及人参皂苷对其作用研究[J].中国医科大学学报,1996, 25(3): 225-228.
    [12]窦德强,靳玲,陈英杰.人参的化学成分及药理活性的研究进展与展望[J].沈阳药科大学学报,1999, 16(2): 151-156.
    [13]WORTMANN A, ROSSI F, LELAIS G, ZENOBI R. Determination of zinc to beta-peptide binding constants with electrospray ionization mass spectrometry[J]. Journal of Mass Spectrometry, 2005, 40: 777–784.
    [14]AYED A, KRUTCHINSKY A N, ENS W, STANDING K G, DUCKWORTH H W. Quantitative evaluation of protein-protein and ligand-protein equilibria of a large allosteric enzyme by electrospray ionization time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 1998, 12: 339-344.
    [15]CHENG X H, CHEN R D, BRUCE J E, SCHWARTZ B L, ANDERSON G A, HOFSTADLER S A, GALE D C, SMITH R D. Using Electrospray Ionization FTICR Mass Spectrometry To Study Competitive Binding of Inhibitors to Carbonic Anhydrase[J]. Journal of the American Chemical Society, 1995, 117: 8859-8860.
    [16]LOO J A, HU P F, MCCONNELL P, MUELLER W T, SAWYER T K, THANABAL V. A study of Src SH2 domain protein—phosphopeptide binding interactions by electrospray ionization mass spectrometry[J]. Journal of the American Society for Mass Spectrometry, 1997, 8: 234-243.
    [17]LIM H K, HSIEH Y L, GANEM B, HENION J. Recognition of cell-wall peptide ligands by vancomycin group antibiotics: Studies using ion spray mass spectrometry[J]. Journal of Mass Spectrometry, 1995, 30: 708-714.
    [18]JORGENSEN T J D, ROEPSTORFF P. Direct Determination of Solution Binding Constants for Noncovalent Complexes between Bacterial Cell Wall Peptide Analogues and Vancomycin Group Antibiotics by Electrospray Ionization Mass Spectrometry[J]. Analytical Chemistry, 1998, 70: 4427-4432.
    [19]GREIG M J, GAUS H, CUMMINS L L, SASMOR H, GRIFFEY R H. Measurement of Macromolecular Binding Using Electrospray Mass Spectrometry. Determination of Dissociation Constants for Oligonucleotide: Serum Albumin Complexes[J]. Journal of the American Chemical Society, 1995, 117: 10765-10766.
    [20]LU H J, GUO Y L, YANG P Y. Using amino acids for probing structural information of Cytochrome c by electrospray ionization mass spectrometry[J]. Journal of the American Society for Mass Spectrometry. 2005, 15: 1612-1615.
    [21]BENKESTOCK K, EDLUND P, ROERAADE J. Electrospray ionization mass spectrometry as a tool for determination of drug binding sites to human serum albumin by noncovalent interaction[J]. Rapid Communications in Mass Spectrometry, 2005, 19:1637-1643.
    [22]SCHLOSSER G, VEKEY K, MALORNI A, POCSFALVI G. Combination of solid-phase affinity capture on magnetic beads and mass spectrometry to study non-covalent interactions: example of minor groove binding drugs[J]. Rapid Communications in Mass Spectrometry, 2005, 19: 3307-3314.
    [23]ZHANG J, WANG H Y, GUO Y L. Amino Acids Analysis by MALDI Mass Spectrometry Using Carbon Nanotube as Matrix[J]. Chinese Journal of Chemistry, 2005, 23: 185-189.
    [24]ZHANG H R, CHEN G, WANG L, Ding L, TIAN Y, JIN W Q, Zhang H Q. Study on the inclusion complexes of cyclodextrin and sulphonated azo dyes by electrospray ionization mass spectrometry[J]. International Journal of Mass Spectrometry, 2006, 252: 1-10.
    [25]ZHANG H R, ZHANG H Q, QU C L, BAI L F, DING L. Fluorimetric and mass spectrometric study of the interaction ofβ-cyclodextrin and osthole[J]. Spectrochimica Acta Part A, 2007, 68: 474-477.
    [26]ZHANG H R, DING L, QU C L, LI D, ZHANG HQ. Study on the noncovalent complexes of ginsenoside and cytochrome c by electrospray ionization mass spectrometry[J]. Spectrochimica Acta A, 2007, 68: 312-316.
    [27]PARAC M, ETINSKI M, PERIC M, GRIMME S. A Theoretical Investigation of the Geometries and Binding Energies of Molecular Tweezer and Clip Host?Guest Systems[J]. Journal of Chemical Theory and Computation, 2005, 1: 1110-1118.
    [28]JALBOUT A F. Li@C60 complexes with amino acids: A theoretical analysis[J]. Journal of Organometallic Chemistry, 2008, 693: 1143-1149.
    [29]CARDOZO K H M, VESSECCHI R, CARVALHO V M, PINTO E, et al. A theoretical and mass spectrometry study of the fragmentation of mycosporine-like amino acids[J]. International Journal of Mass Spectrometry, 2008, 273: 11-19.
    [30]KOSTOVA I, TRENDAFILOVA N, MOMEKOV G. Theoretical, spectral characterization and antineoplastic activity of new lanthanide complexes[J]. Journal of Trace Elements in Medicine and Biology, 2008, 5: 100-111.
    [31]PLOTNIKOV A, VOGT C, WETZIG K, KYRIAKOPOULOS A. A theoretical approach to the interpretation of the transient data in scanning laser ablation inductively coupled plasma mass spectrometry: Consideration of the geometry of the scanning area[J]. Spectrochimica Acta B, 2008, 63: 474-483.
    [32]YU X Y, XU X, CHEN Z. ESI-MS and theoretical study on the coordination structuresand reaction modes of the diperoxovanadate complexes containing histidine-like ligands[J]. International Journal of Mass Spectrometry, 2008, 269: 138-144.
    [33]ZENG B R, ZHU X B, YU X Y, CAI S H, CHEN Z. Spectroscopic and theoretical study on the interaction between diperoxovanadate and oxazole[J]. Spectrochimica Acta A, 2008, 69: 117-122.
    [34]SILVA V L, CARVALHO R, FREITAS M P, TORMENA C F, MELO W C. Structural determination of Zn and Cd–DTPA complexes: MS, infrared, 13C NMR and theoretical investigation[J]. Spectrochimica Acta A, 2007, 68: 1197-1200.
    [35]SOUZA W F, GUIMARAES I R, OLIVEIRA L C A, GUERREIRO M C, et al. Natural and H2-reduced limonite for organic oxidation by a Fenton-like system: Mechanism study via ESI-MS and theoretical calculations[J]. Journal of Molecular Catalysis A, 2007, 278: 145-151.
    [36]CARL D R, MOISION R M, ARMENTROUT P B. Binding energies for the inner hydration shells of Ca : An experimental and theoretical investigation of Ca (H O) complexes (x=5-9)2+ 2+2 x[J]. International Journal of Mass Spectrometry, 2007, 265: 308-325.
    [37] Gaussian03 (RevisionA.1), FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R, MONTGOMERY J A, JR, VREVEN T, KUDIN K N, BURANT J C, MILLAM J M, IYENGAR S S, TOMASI J, BARONE V, MENNUCCI B, COSSI M, SCALMANI G, REGA N, PETERSSON G A, NAKATSUJI H, HADA M, EHARA M, TOYOTA K, FUKUDA R, HASEGAWA J, ISHIDA M, NAKAJIMA T, HONDA Y, KITAO O, NAKAI H, KLENE M, LI X, KNOX J E, HRATCHIAN H P, CROSS J B, ADAMO C, JARAMILLO J, GOMPERTS R, STRATMANN R E, YAZYEV O, AUSTIN A J, CAMMI R, POMELLI C, OCHTERSKI J W, AYALA P Y, MOROKUMA K, VOTH G A, SALVADOR P, DANNENBERG J J, ZAKRZEWSKI V G, DAPPRICH S, DANIELS A D, STRAIN M C, FARKAS O, MALICK D K, RABUCK A D, RAGHAVACHARI K, FORESMAN J B, ORTIZ J V, CUI Q, BABOUL A G, CLIFFORD S, CIOSLOWSKI J, STEFANOV B B, LIU G, LIASHENKO A, PISKORZ P, KOMAROMI I, MARTIN R L, FOX D J, KEITH T, AL-LAHAM M A, PENG C Y, NANAYAKKARA A, CHALLACOMBE M, GILL P M W, JOHNSON B, CHEN W, WONG M W, GONZALEZ C, POPLE J A. Gaussian, Inc., Pittsburgh, PA , 2003.
    [38]PARR R G, YANG W. Density-functional theory of atoms and molecules[M]. Oxford University Press , 1989.
    [39]PERDEW J P, CHEVARY J A S, VOSKO H, JACKSON K A, PEDERSON M R,SINGH D J, FIOLHAIS C. Atom, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B: Condensed Matter, 1992, 46: 6671-6687.
    [40]BAUERNSCHMITT R, AHLRICHS R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory[J]. Chemical physics letters, 1996, 256: 454-464.
    [41]GISBERGEN S J A VAN, KOOTSTRA F, SCHIPPER P R T, GRITSENKO O V, SNIJDERS J G, BAERENDS E. Density-functional-theory response-property calculations with accurate exchange-correlation potentials[J]. Journal of Physical Review A, 1998, 57: 2556-2571.
    [42]MATSUZAWA N N, ISHITANI A, DIXON D A, UDA T. Time-Dependent Density Functional Theory Calculations of Photoabsorption Spectra in the Vacuum Ultraviolet Region[J]. Journal of Physical Chemistry A, 2001, 105: 4953-4962.
    [1]何美玉.现代有机与生物质谱[M].北京:北京大学出版社,2002.
    [2]陈耀祖,涂亚平.有机质谱原理及应用[M].北京:科学出版社,2000.
    [3]KARASEK L, WENZI T, ANKLAM E. Determination of acrylamide in roasted chestnuts and chestnut-based foods by isotope dilution HPLC-MS/MS[J]. Food chemistry, 2009, 114: 1555-1558.
    [4]SABER A L. On-line solid phase extraction coupled to capillary LC-ESI-MS for determination of fluoxetine in human blood plasma[J]. Talanta, 2009, 78: 295-299.
    [5]YE J, ZHANG X, DAI W X, et al. Chemical fingerprinting of Liuwei Dihuang Pill and simultaneous determination of its major bioactive constituents by HPLC coupled with multiple detections of DAD, ELSD and ESI-MS[J]. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49: 638-645.
    [6]CHACE D H, LIM T, HANSEN C R, ADAM B W, HANNON W H. Quantification of malonylcarnitine in dried blood spots by use of MS/MS varies by stable isotope internal standard composition[J]. Clinica Chimica Acta, 2009, 402: 14-18.
    [7]ISMAIEL O A, HALQUIST M S, ELMAMLY M Y, SHALABY A, KARNES T. Monitoring phospholipids for assessment of ion enhancement and ion suppression in ESI and APCI LC/MS/MS for chlorpheniramine in human plasma and the importance of multiple source matrix effect evaluations[J]. Journal of Chromatography B, 2008, 875: 333-343.
    [8]周莉莉,刘志强,闫存玉,等.马钱苷的电喷雾串联质谱及傅立叶变换离子回旋共振质谱研究[J].质谱学报,2008, 29(6): 332-336.
    [9]闫静,刘志强,朱海光,刘淑莹.马钱子中两种微量生物碱异构体的电喷雾多级串联质谱分析[J].化学学报, 2007, 65(1): 49-52.
    [10]陈怀侠,韩凤梅,杜鹏,陈勇.苦参生物碱电喷雾质谱分析[J].分析化学, 2006, 34(2): 205-208.
    [11]韩凤梅,梁智军,陈勇.马兜铃酸电喷雾质谱电离规律及其药材指纹图谱[J].湖北大学学报(自然科学版),2006, 28(1): 65-68.
    [12]陈兰慧,胡冬华,王道武,等.小檗碱质谱碎片离子稳定性分析及碎裂机理的量子化学研究[J].高等学校化学学报,2006, 27(5): 905-908.
    [13]陈勇,陈怀侠.北豆根生物碱电喷雾质谱电离规律及其特征图谱研究[J].分析化学,2006, 34(5): 675-678.
    [14]韩凤梅,张玲,蔡敏,陈勇.三七药材皂苷类成分的电喷雾离子阱质谱特征图谱研究[J].湖北大学学报(自然科学版),2006, 28(2): 176-180.
    [15]李丽,刘志强,刘春明,等.车前草中苯乙醇苷化合物的电喷雾多级串联质谱研究[J].高等学校化学学报,2006, 27(8): 1430-1434.
    [16]梁勇,郭宝江,梁冠洪,宋艳平.牛膝中三萜皂苷类化合物的电喷雾电离串级质谱研究[J].质谱学报,2005, 26(1): 10-13.
    [17]SAKURAI T, ITO H, MATSUO. MS/MS and MS/MS/MS Analyses in a Multisector Time-of-Flight Mass Spectrometer[J]. Analytical chemistry, 1994, 66: 2313-2317.
    [18]XU X Y, LAN J, KORFMACHER W A. Rapid LC/MS/MS Method Development for Drug Discovery[J]. Analytical chemistry, 2005, 77: 389-394.
    [19]BYRDWELL W C, NEFF W E. Dual parallel electrospray ionization and atmospheric pressure chemical ionization mass spectrometry (MS), MS/MS and MS/MS/MS for the analysis of triacylglycerols and triacylglycerol oxidation products[J]. Rapid Communications in Mass Spectrometry, 2002, 16(4): 300-319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700