用户名: 密码: 验证码:
基于脂质体纳米粒子的生物传感器在生化分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
霍乱是一种严重的传播广泛的流行性疾病,大多数霍乱病例发生在不发达国家,已成为世界上亟待解决的一个严重公共卫生问题。霍乱毒素是霍乱弧菌分泌的一种蛋白质肠毒素,是霍乱弧菌的一个典型生物标记物,所以对霍乱毒素的快速、超灵敏检测对霍乱流行病的防疫、控制和治疗具有十分重要的意义。近年来,前列腺癌已经成为成年男性群体中一项常见癌症,且危害严重。目前临床上对癌症标记物的检测方法普遍操作复杂、仪器昂贵且需要专业技能。从而需要开发更加简便、灵敏、定量准确且易于临床推广的生物传感技术。此外,地中海贫血又称海洋性贫血,是由于珠蛋白基因的缺失或点突变所致的一组遗传性溶血性贫血。该病以地中海沿岸国家和东南亚各国多见,我国长江以南各省均有报道,以广东、广西、海南、四川、重庆等省区发病率较高,是非常严重的遗传性疾病。故开发灵敏、准确的基因单碱基突变检测方法,对地中海贫血症的诊断有很大意义。
     利用化学与生物传感技术检测疾病标志物,进行临床疾病的准确、快速诊断以及流行病的现场筛查与群体监控,是当前医学上既新颖又极具吸引力的热门研究课题之一。近年来,纳米材料得到广泛的研究与应用,研究表明将纳米材料应用于生物传感器的制备可以较大的提高传感器的响应性能。脂质体是一种在水相中由磷脂双分子定向排列而成的直径几纳米至几微米的超微粒子。脂质体纳米粒子可以通过内部包埋或表面修饰方法成为多功能团分子的通用载体且具有良好的生物相容性,本论文将不同功能化的脂质体用作生物传感界面的构建和信号放大探针,并与相适宜的检测手段联用,构建了一系列基于脂质体的新型生物传感器。纳米金制备简单,比表面积大,生物相容性好,是固定生物分子常用的有效载体。有文献报道,电极表面通过自组装纳米金层固定抗体,可以大大增加电极表面积和抗体固定量,同时保持抗体活性,是很好的传感界面修饰方法。另外,碳纳米管具有隧道效应、特殊的电化学、光化学等物化性质,是目前科研领域中最热门的一维纳米材料之一。碳纳米管的功能化修饰是将其应用于生物体系必须解决的一个关键问题。DNA修饰碳纳米管的研究为碳纳米管在基因检测中的应用提供了科学基础和强有力的技术支撑。
     本论文以霍乱毒素,甲胎蛋白,前列腺特异性抗原等重大疾病标志物为检测对象,构建了一系列基于脂质体纳米颗粒的生物传感器(第1部分)。具体内容包括:
     (1)首次研制了一种基于脂质体的压电免疫凝集检测(PEIA)技术用于对人免疫球蛋白(hIgG)和甲胎蛋白(AFP)的直接定量检测。以脂质体替代传统胶乳颗粒标记抗体,并采用牛血清白蛋白修饰压电探针,直接对脂质体颗粒免疫凝集所引起的溶液粘弹性变化进行响应。其定量检测hIgG的浓度范围为0.05~6μg mL-1;将之用于临床样品分析,定量能力与经典的ELISA法相接近。用所构建的生物传感器对AFP实际临床样品检测,结果证明该方法应用于临床医学检测的可行性。与经典的质量型压电免疫检测技术相比,这种基于脂质体的压电免疫凝集检测(PEIA)无需在石英晶振表面固定抗原或抗体,具有简单、快捷、可再生的检测优势。
     (2)开发了一种基于神经节苷脂(GM1)识别和脂质体界面凝集的压电生物传感技术对霍乱毒素进行快速、定量检测。石英晶振传感界面修饰含GM1的支撑磷脂膜,检测介质中含有GM1修饰的脂质体颗粒,这两者构建了压电界面凝集生物传感器。目标物霍乱毒素会引起检测介质中GM1修饰的脂质体在含有GM1的传感界面上发生特异性凝集,同时引起晶体表面巨大的质量负载和溶液粘弹性的变化,结合了压电质量效应和非质量效应,与传统模式的压电频率响应信号相比放大了数倍,具有响应快速、可再生的优势。其定量检测霍乱毒素的浓度范围为0.1~5?μg mL-1,检测下限达到25 ng mL-1。
     (3)提出了一种以脂质体为信号放大载体的酶催化增强化学发光传感技术对霍乱毒素的超灵敏检测。用含GM1的支撑磷脂膜为生物传感界面检测目标物霍乱毒素,再用表面修饰了GM1受体和辣根过氧化物(HRP)酶的脂质体为检测探针对目标物夹心检测。最后利用HRP酶为催化剂,对碘苯酚为增强剂的增强化学发光法对霍乱毒素进行定量检测。本传感器实现了对霍乱毒素的超灵敏检测,检测下限可达到0.8 pg mL-1,同时具有简单、可再生的优势。将传感器用于血清样品分析,其检测结果与ELISA试剂盒检测结果相一致。
     (4)发展了一种基于包酶脂质体的化学发光生物传感技术对前列腺癌特异性抗原的超灵敏检测。以表面修饰了抗体、内部包被HRP酶的脂质体替代传统酶标抗体对界面识别的抗原夹心检测,并采用表面活性剂释放所固定脂质体中的酶分子,用增强化学发光试剂盒放大酶催化化学发光强度,间接检测前列腺特异性抗原。实现了对目标物的超灵敏检测,检测下限可达到4 pg mL-1。在第一部分中,不同形式和性能的功能化脂质体被合理运用,并结合使用多种检测方法,提高了生物传感器的分析性能。此外,我们还构建了几种基于其他纳米粒子的电化学生物传感技术,其中纳米粒子被用于生物分子的固定或检测探针的制备(第2部分)。纳米金比表面积大,生物相容性好,是固定生物分子常用的有效载体。具体内容包括:
     (5)构建了一种以纳米金颗粒为固定化材料和多步信号放大探针的电化学阻抗免疫传感器对hIgG的超灵敏检测。将纳米金颗粒自组装于己二硫醇修饰的金电极表面,利用纳米金层吸附抗体,构建了一种纳米金界面吸附的生物分子固定化方法。信号放大步骤为:用纳米金标记的抗体做为第一步放大探针,然后分别用纳米金标记的二抗和纳米金标记的抗体交替反应,进行多步信号放大。基于纳米金界面固定抗体,具有抗体固定量大、免疫活性强、操作稳定性高等优点。基于纳米金的信号放大技术极大的提高了传感器的灵敏度,对目标物hIgG的线性检测范围为15.3~328.3 ng L-1。
     (6)通过自组装纳米金层固定具有碱基突变识别能力的MutS蛋白,MutS蛋白能捕获含碱基突变的DNA双链并以亚甲基兰在DNA双链中的嵌入作为电化学响应信号来检测单碱基突变核酸链。该方法成功地实现了对β-地中海贫血症基因的-28位点的单个碱基突变的识别,检测限达到5.66×10-13 M,对点突变的检测具有快速、灵敏度高、成本低的特点。对实际样品的两步检测方法可实现样品的基因分型,即将样品分类为变异杂合子,野生纯合子和变异纯合子。
     (7)单壁碳纳米管具有隧道效应、特殊的电化学、光化学等物化性质,将其作为纳米材料探针与电化学方法联用可以超灵敏的检测核酸单链,构建了新型的核酸检测方法。检测原理:将单壁碳纳米管与核酸检测探针混合机械超声,制备核酸检测探针修饰的水溶液分散的单壁碳纳米管。与目标DNA链的杂交反应会使检测探针解离离开碳管表面,裸露的单壁碳纳米管继而吸附在疏水的电极表面,由于其特有的隧道效应使原本绝缘的电极导通,从而检测到氧化还原电子对在电极表面实现电子传递的电化学信号。背景非特性吸附不能产生隧道效应,故检测背景极低,实现了对目标核酸单链的超灵敏测定,线性范围为6.9 pM~50 nM。
Cholera toxin (CT) is a protein enterotoxin secreted by the bacterium Vibrio cholerae that can cause an epidemic disease leading to rapid dehydration, acidosis, and even death in several hours without appropriate treatment. Most cholera cases are reported in many underdeveloped countries, and it is estimated that cholera causes approximately 120,000 deaths annually. As a typical biomarker of Vibrio cholerae, CT has become a very important target in biological detection, and there has been increasing interest in the development of rapid and sensitive methods for the determination of CT. In addition, prostate cancer (PCa) has become a most widespread and stubborn diseases and a major cause of death in the old age male population nowadays. It admits of no delay for the sensitive diagnosis and efficient treatment of PCa. Porstate-specific antigen (PSA), a 33-kD single-chain glycoprotein with chymotrypsin-like protease activity, has been used as the most validated marker for the detection of PCa in screening, diagnosis and monitor of disease recurrence after surgical prostatectomy.
     Use of chemo/biosensing techniques to detect the meaningful bio-markers for the accurate and rapid diagnosis of clinical diseases as well as for the field screening and mass monitoring of the epidemic diseases has been a novel, attractive and hot topic in the current medical studies. In the past few years, nanomaterials have been widely researched and used. Applying nanomaterials for the fabrication of biosensors will greatly improve the performance of the resulting biosensor.
     liposomes are formed spontaneously when phospholipids are dispersed into water. Liposomes can simply be portrayed as spherical vesicles consisting of one or more phospholipid bilayers surrounding an aqueous cavity. Molecules such as fluorophores, enzymes or drugs, present in the aqueous phase during the preparation, can be encapsulated in the liposome. Liposomes have been widely used as analytical tools in immunochemistry and can be implemented with hardly any modifications. Since colloidal Au has a very large surface area and good bio-compatibility, the use of colloidal particles as versatile and efficient templates for the immobilization of biomolecules has been recognized since the early 1980s. As a new kind of carbon materials, carbon nanotubes (CNTs) have attracted considerable interest because of their unique structural, mechanic, electronic, magnetic and optical characteristics. Biomolecule-functionalized carbon nanotubes have rapidly attracted substantial research interests for its application in the biosensor and electrochemistry detection.
     This dissertation focuses on developing a series of nanoparticules-based biosensors for the diagnosis of some clinical serious diseases including prostate cancer, Vibrio cholera andβ-thalassemia diseases etc. by probing their specific markers (sometimes as the model test reagents). The detailed materials are shown as follows:
     (1) A piezoelectric immunoagglutination assay has been proposed for rapid detection of human immunoglobulin G (hIgG) using antibody-modified liposoms (in Chapter 2). liposomes are employed as replacements for the traditional latex to be labeled with goat anti-human IgG antibody, the specific agglutination event in the presence of corresponding antigen was monitored by the sensing probe modified with bovine serum albumin (BSA). It is found that the frequency responses of the liposome-based PEIA are linearly correlated to hIgG concentration in the range of 0.05~6μg mL?1 with a detection limit of 50 ng mL?1, without necessity for immobilization of immunoactive entities and purification of samples. Results of evaluating practical specimens show that the analytical ability of the developed piezoelectric technique is comparable to that of the ELISA method. (2) A novel reusable piezoelectric biosensor has been developed for the detection of cholera toxin (CT) based on analyte-specific surface agglutination of ganglioside GM1-functionalized liposomes on supported lipid membrane incorporated with ganglioside GM1 (in Chapter 3). Compared with traditional piezoelectric biosensor, the proposed technique combines the detection of both the gravimetric and the viscoelastic effects, thereby enabling vast sensitive enhancement in protein determination. Besides the use of stabilized response for the quantification of CT, the initial response rate, defined by the slope of the frequency change curve at the initial stage, could also be utilized for the detection of CT, which might be of particular significance in rapid assay practices. This method had an analytical interval of 0.1~5μg mL-1, with a detection limit of 25 ng mL-1. (3) An ultrasensitive chemiluminescence biosensor was developed for the detection of CT based on a supported lipid membrane as sensing surface and the HRP/GM1-functionalized liposome as detection probe (in Chapter 4). The supported lipid based biosensing surface could be renewed easily and rapidly. The application of enhanced chemiluminescence reaction in the detection of HRP-bearing liposome afforded a further signal amplification and background alleviation. The developed biosensor was shown to give chemiluminescence signal in linear correlation to CT concentration within the range from 1 pg mL-1 to 1 ng mL-1 with readily achievable detection limit of 0.8 pg mL-1. (4) Another highly sensitive chemiluminescence immunosensor for the detection of prostate-specific antigen (PSA) was developed based on a novel amplification procedure with the application of enzyme encapsulated liposome (in Chapter 5). The encapsulated markers, HRP molecules were released by the lysis of the specifically bound liposomes in the microwell with Triton X-100 solution. Then, the analyte PSA could be determined via the chemiluminescence signal of HRP-catalyzed lumino/peroxide/enhancer system. The chemiluminescence intensity was directly proportional to the concentration of PSA in sample solution in the range from 7.4 pgmL-1 to 74 ng mL-1 with a detection limit of 4 pg mL-1. In this part, the application of several kinds of functionalized liposome for the construction of biosensor have greatly improved the performance of the resulting biosensor.
     In this dissertation, the Au nanoparticles and the carbon nanotubes have also been used for the fabrication of biosensor and combined with electrochemical detection methods:
     (5) A highly sensitive electrochemical impedance immunosensor was developed by using a novel amplification procedure with the application of an Au-colloid labeled antibody as the primary amplifying probe and a multistep amplification by alternating treatment of the resulting assembly with an Au-colloid labeled secondary antibody and an Au-colloid labeled antibody(in Chapter 6). Colloidal Au was used as a versatile and efficient template for the immobilization of antibody due to its relatively large surface and good biocompatibility. A novel amplification method was developed with the application of a Au-colloid labeled antibody as the primary amplifying probe and a multistep amplification by alternating treatment of the resulting assembly with a Au-colloid labeled secondary antibody and a Au-colloid labeled antibody. The results obtained revealed that the sensitivity could be substantially improved via the amplification step and a detection limit as low as 4.1 ng L?1 could be reached for a model analyte of human immunoglobulin G (hIgG). (6) A novel approach for scanning of unknown gene mutations was developed based on the utilization of MutS protein for the mutation recognition and spontaneously intercalated MB markers for electrochemical signal generation(in Chapter 7). The occurrence of mutation in target genes resulted in the formation of heteroduplex, which could specifically bind to the immobilized MutS protein on the electrode. The adsorption of heteroduplex on the electrode surface could then be probed electrochemically by a certain redox indicator as methylene blue (MB) that was selectively intercalated in nucleic acid duplexes. The proposed approach has been successfully implemented for the identification of single-base mutation in ?28 site of theβ-thalassemia gene with a detection limit of 5.6×10-13M, providing a highly specific and cost-efficient approach for point mutation detection. (7) An electrochemical label-free detection technique was fabricated for the detection of nucleic acids based on the precipitation of SWNTs by DNA hybridization (in Chapter 8). The DNA hybridization between target DNA and the DNA probe coating on the nanotubes could actively remove DNA probe from the SWNTs surface. The precipitation of SWNTs onto the n-octadecyl mercaptan (C18H37SH) modified Au electrode substantially restores heterogeneous electron transfer between bare Au electrode and redox species in solution phase which was almost totally blocked by the SAM of C18H37SH, and as a result, the electrical signal of the electrode was correlated with the concentration of target DNA in the range from 6.4pM~50nM with a detection limit of 3.2pM.
引文
[1] Rongen H A H, Bult A, van Bennekom W P. Liposomes and immunoassays. Journal of Immunological Methods, 1997, 204(2): 105–133
    [2] Wang M, Wang L, Wang G, et al. Application of impedance spectroscopy for monitoring colloid Au-enhanced antibody immobilization and antibody–antigen reactions. Biosensors and Bioelectronics, 2004, 19(6): 575–582
    [3] Liu G D, Lin Y H. Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes. Electrochemistry Communications, 2006, 8(2): 251-256
    [4] Alving C R. Liposomes as carriers of antigens and adjuvants. Journal of Immunological Methods, 1991, 140(1): 1-13.
    [5] Bangham A D. Liposomes: The Babraham connection. Chemistry and Physics of Lipids, 1993, 64(1-3): 275-285
    [6] Gregoriadis G., Florence A T. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential. Drugs, 1993, 45(1): 15-28
    [7] Smith J G, Walzem R L, German J B. Liposomes as agents of DNA transfer. Biochimica et Biophysica Acta-Reviews on Biomembranes, 1993, 1154(3-4): 327-340
    [8] Monroe D. Novel liposome immunoassays for detecting antigens, antibodies and haptens. Journal of Liposome Research, 1989, 1(3): 339-377
    [9] Litzinger D C, Huang L. Phosphatidylethanolamine liposomes: Drug delivery, gene-transfer and immunodiagnostic applications. Biochimica et Biophysica Acta, 1992, 1113(2): 201-227
    [10] Rongen H A H, Van der Horst H M, Hugenholtz G W K, et al. Development of a liposome immunosorbent assay for human interferong. Analytica Chimica Acta, 1994, 287(3): 191-199
    [11] Bangham A D, Standish M M, Watkins J C. Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology, 1965, 13(1): 238-252
    [12] Huang C. Studies of phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry, 1969, 8(1): 344-352
    [13] Johnson S M, Bangham A D, Hill M W, et al. Single bilayer liposomes. Biochimica et biophysica acta, 1971, 233(3): 820-826
    [14] Szoka F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(9): 4194-4198
    [15] Pidgeon C, Hunt A H, Dittrich K. Formation of multilayered vesicles from water/organic-solvent (W/O) emulsions: Theory and practice. Pharmaceutical Research, 1986, 3(1): 2334
    [16] Batzri S, Korn E D. Single bilayer liposomes prepared without sonication. Biochimica et biophysica acta, 1973, 298(4): 1015-1019
    [17] Deamer D W, Bangham A D. Large volume liposomes by an ether vaporization method. Biochimica et biophysica acta, 1976, 443(3): 629-634
    [18] Deamer D W. Preparation and properties of ether-injection liposomes. Annals of the New York Academy of Sciences, 1978, 308(1): 250-258
    [19] Chapman C J, Erdahl W E, Taylor R W, et al. Effects of solute concentration on the entrapment of solutes in phospholipid vesicles prepared by freeze–thaw extrusion. Chemistry and physics of lipids, 1991, 60(2): 201-208
    [20] Senior J, Gregoriadis G. Dehydration–rehydration vesicle methodology facilitates a novel approach to antibody binding to liposomes. Biochimica et biophysica Acta-Lipids and Lipid Metabolism, 1989, 1003(1): 58-62.
    [21] Ralston E, Hjelmeland L.M, Klausner R.D, et al. Carboxyfluorescein as a probe for liposome-cell interactions. Effect of impurities, and purification of the dye. Biochimica et biophysica acta-Biomembranes, 1981, 649(1): 133-137
    [22] Baeumner A J, Schlesinger N A, Slutzki N S, et al. Biosensor for Dengue Virus Detection: Sensitive,Rapid, and Serotype Specific, Analytical Chemistry, 2002, 74(6): 1442-1448
    [23] Ho J A A, Wauchope R D. A Strip Liposome Immunoassay for Aflatoxin B1. Analytical Chemistry, 2002, 74(7): 1493-1496
    [24] Katsu T, Tanaka A, Fujita Y. An immunochemical study with potassium ion-loaded liposomes. Chemical & pharmaceutical bulletin, 1982, 30(4): 1504-1507
    [25] Kannuck R M, Bellama J M, Durst R A. Measurement of liposome-released ferrocyanide by a dual-function polymer modified electrode. Analytical Chemistry, 1988, 60(2): 142-147
    [26] Edwards A J, Durst R A. Flow-injection liposome immunoanalysis (FILIA) with electrochemical detection. Electroanalysis, 1995, 7(9): 838-845
    [27] Laukkanen M L, Orellana A, Keinanen K. Use of genetically engineered lipid-tagged antibody to generate functional europium chelate-loaded liposomes. Application in fluoroimmunoassay. Journal of Immunological Methods, 1995, 185(1): 95-102
    [28] Hwang K J, Merriman J E, Beaumier P L, et al. Encapsulation, with high efficiency, of radioactive metal ions in liposomes. Biochimica et Biophysica Acta-General Subjects, 1982, 716(1): 101-109
    [29] Schott H, Von Cunow D, Langhals H. Labelling of liposomes with intercalating perylene fluorescent dyes. Biochimica et Biophysica Acta-Biomembranes, 1992, 1110(2): 151-157
    [30] Rosenqvist E, Vistnes A I. Immune lysis of spin label loaded liposomes incorporating cardiolipin; a new sensitive method for detecting anti-cardiolipin antibodies in syphilis serology. Journal of Immunological Methods, 1977, 15(2): 147-155
    [31] Janoff A S, Carpenter-Green S, Weiner A L, et al. Novel liposome composition for a rapid colorimetric test for systemic lupus erythematosus. Clinical Chemistry, 1983, 29(9): 1587-1592
    [32] Garcon N, Senior J, Gregoriades G. Coupling of ligands to liposomes before entrapment of agents sensitive to coupling procedures. Biochemical Society Transactions, 1986, 14(6): 1038
    [33] Toonen P A H M, Crommelin D J A. Immunoglobulins as targeting agents for liposome encapsulated drugs. Pharmaceutisch Weekblad-Scientific Edition, 1983, 5(6): 269-280
    [34] Ishikawa E, Imagawa M, Hashida S, et al. Enzyme-labelling of antibodies and their fragments for enzyme immunoassay and immunohistochemical staining. Journal of Immunoassay, 1983, 4(3): 209-327
    [35] Frost S J, Firth G B, Chakraborty J. Antibody-coated liposomes as a particulate solid phase for immunoassays. Measurement of urinary‘micro-albumin’. Journal of Immunological Methods, 1990, 134(2): 207-213
    [36] Schwendener R A, Trub T, Schott H, et al. Comparative study of the preparation of immunoliposomes with the use of two bifunctional coupling agents and investigation of in vitro immunoliposome-target cell binding by cytofluorometry and electron microscopy. Biochimica et biophysica acta-Biomembranes, 1990, 1026(1): 69-79
    [37] Shahinian S, Silvius J.R, A novel strategy affords highyield coupling of antibodyFab’fragments to liposomes. Biochimica et Biophysica Acta-Biomembranes, 1995, 1239(2): 157-167
    [38] Rongen H A H, Van der Horst H M, Hugenholtz G W K, et al. Development of a liposome immunosorbent assay for human interferong. Analytica Chimica Acta, 1994, 287(3): 191-199
    [39] Rongen H A H, Van Nierop T, Van der Horst H M, et al. Biotinylated and streptavidinylated liposomes as labels in cytokine immunoassays. Analytica Chimica Acta, 1995, 306(2-3): 333-341
    [40] Alfonta L, Singh A K, Willner I, Liposomes labeled with biotin and horseradish peroxidase: A probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Analytical Chemistry, 2001, 73(1): 91–102.
    [41] Ahn-Yoon S, DeCory T R., Baeumner A J, et al. Ganglioside-liposome immunoassay for the ultrasensitive detection of cholera toxin. Analytical Chemistry, 2003, 75(10): 2256–2261
    [42] Baeumner A J, Schlesinger N A, Slutzki N S, et al. Biosensor for dengue virus detection: Sensitive, rapid, and serotype specific. Analytical Chemistry, 2002, 74(6): 1442–1448
    [43] Kamidate T, Komatsu K, Tani H, et al. Estimation of the membrane permeability of liposomes via use of eosin Y chemiluminescence catalysed by peroxidase encapsulated in liposomes. Luminescence, 2007, 22(3): 236-240
    [44] Zhan W, Bard A J. Electrogenerated chemiluminescence. 83. Immunoassay of human C-reactive protein by using Ru(bpy)32+-encapsulated liposomes as labels. Analytical Chemistry, 2007, 79(2): 459-463
    [45] Kamidate T, Kikuchi N, Ishida A, et al. Determination of peroxidase encapsulated in liposomes using homogentisic acidγ-lactone chemiluminescence. Analytical Sciences, 2005, 21(6): 701-704
    [46] Ho J A, Hsu H W. Procedures for Preparing Escherichia coli O157: H7 Immunoliposome and Its Application in Liposome Immunoassay. Analytical Chemistry, 2003, 75(16): 4330–4334
    [47] Ho J A, Wauchope R D. A Strip Liposome Immunoassay for Aflatoxin B1. Analytical Chemistry, 2002, 74(7): 1493-1496
    [48] Baeumner A J, Schlesinger N A, Slutzki N S, et al. Biosensor for Dengue Virus Detection: Sensitive, Rapid, and Serotype Specific. Analytical Chemistry, 2002, 74(6): 1442-1448
    [49] Alfonta L , Willner I. Electrochemical and quartz crystal microbalance detection of the cholera toxin employing horseradish peroxidase and GM1-functionalized liposomes. Analytical Chemistry, 2001, 73(21): 5287–5295
    [50] Rosenqvist E, Vistnes A I. Immune lysis of spin label loaded liposomes incorporating cardiolipin; a new sensitive method for detecting anti-cardiolipin antibodies in syphilis serology. Journal of Immunological Methods, 1977, 15(2): 147-155
    [51] Patolsky F, Lichtenstein A, Willner I. Amplified Microgravimetric Quartz-Crystal-Microbalance Assay of DNA Using Oligonucleotide- Functionalized Liposomes or Biotinylated Liposomes. Journal of the American Chemical Society, 2000, 122(2): 418–419
    [52] Yun K, Kobatake E, Haruyama T, et al. Use of a Quartz Crystal Microbalance to Monitor Immunoliposome-Antigen Interaction. Analytical Chemistry, 1998, 70(2): 260–264
    [53] Wink T, Van Zuilen S J, Bult A, et al. Liposome-Mediated Enhancement of the Sensitivity in Immunoassays of Proteins and Peptides in Surface Plasmon Resonance Spectrometry. Analytical Chemistry, 1998, 70(5): 827–832
    [54] Monroe D. Novel liposome immunoassay for detecting antigens, antibodies, and haptens. Journal of Liposome Research, 1989, 1(3): 339-377
    [55] Kubotsu K, Ushio I, Yoshikawa K, et al. Colorimetric liposome lysis for assay of anti-streptolysin O antibody. Clinical Chemistry, 1990, 36(10): 1747-1749
    [56] Powers J D, Kilpatrick P K, Carbonell R G. Protein purification by affinity binding to unilamellar vesicles. Biotechnology and Bioengineering, 1989, 33(2): 173–182.
    [57] Chiruvolu S, Israelachvili J, Schmitt F J, et al. Higher order self-assembly of vesicles by site-specific binding. Science, 1994, 264(5166): 1753–1756
    [58] Kisak E T, Kennedy M T, Trommeshauser D, et al. Trommeshauser D, Zasadzinski J. Self-limiting aggregation by controlled ligand-receptor stoichiometry. Langmuir, 2000, 16(6): 2825–2831
    [59] Farbman-Yogev I, Bohbot-Raviv Y, Ben-Shaul A. A Statistical Thermodynamic Model for Cross-Bridge Mediated Condensation of Vesicles. Journal of Physical Chemistry A, 1998, 102(47): 9586–9592
    [60] Vermette P, Taylor S, Dunstan D, et al. Control over PEGylated-Liposome Aggregation by NeutrAvidin-Biotin Interactions Investigated by Photon Correlation Spectroscopy. Langmuir, 2002, 18(2): 505–511
    [61]顾大勇,鲁未平,周园国.纳米级金颗粒在基因芯片检测技术中的研究进展.国外医学生物医学工程分册, 2005, 28 (2): 75-80.
    [62] Faulk W P, Taylor G M. An immunocolloid method for the election microscope. Immunochemistry, 1971, 8(11): 1081-1083
    [63] Danscher G. Localization of gold in biological tissue: A photochemical method for light and electronmicroscopy. Histochemistry, 1981, 71 (1): 81-88
    [64] Liu T, Tang J, Jiang L. The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity. Biochemical and Biophysical Research Communication, 2004, 313(1): 3-7
    [65] Barth M, Oulmi Y, Ehrenreich H, et al. Pre-embedding immunogold labeling of TUNEL stain enables evaluation of DNA strand breaks and ultrastructural alterations in individual cells of neuronal tissue. Acta Neuropathologica, 2002, 104(6): 621-636
    [66] Wang H, Wang C C, Lei C X, et al. A novel biosensing interfacial design produced by assembling nano-Au particles on amine-terminated plasma-polymerized films. Analytical and Bioanalytical Chemistry, 2003, 377(4): 632-638
    [67]刘涛,唐季安,韩梅梅,等.纳米金颗粒在石英晶体微天平检测中的表面修饰作用.科学通报, 2003, 48(4): 342-344
    [68] Henne W A, Doorneweerd D D, Lee J, et al. Detection of folate binding protein with enhanced sensitivity using a functionalized quartz crystal microbalance sensor. Analytical Chemistry, 2006, 78(14): 4880-4884
    [69] Wang L, Wei Q, Wu C, et al. The Escherichia coli O157: H7 DNA detection on a gold nanoparticle-enhanced piezoelectric biosensor. Chinese Science Bulletin, 2008, 53(8): 1175-1184
    [70] Choi J W, Kang D Y, Jang Y H, et al. Ultra-sensitive surface plasmon resonance based immunosensor for prostate-specific antigen using gold nanoparticle-antibody complex. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314(1): 655-659
    [71] Li T, Guo L, Wang Z. Microarray based Raman spectroscopic detection with gold nanoparticle probes. Biosensors and Bioelectronics, 2008, 23(7): 1125-1130
    [72] Cui R, Huang H, Yin Z, et al. Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosensors and Bioelectronics, 2008, 23(11): 1666-1673
    [73] Ambrosi A, Casta?eda M T, Killard A J, et al. Double-codified gold nanolabels forenhanced immunoanalysis. Analytical Chemistry, 2007, 79(14): 5232-5240
    [74] Cao C, Sim S J. Signal enhancement of surface plasmon resonance immunoassay using enzyme precipitation-functionalized gold nanoparticles: A femto molar level measurement of anti-glutamic acid decarboxylase antibody. Biosensors and Bioelectronics, 2007, 22(9-10): 1874-1880
    [75] Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382(8): 607-609
    [76] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277(22): 1078-1081
    [77] Murphy D, O'Brien P, Redmond G. Sub-picomole colorimetric single nucleotide polymorphism discrimination using oligonucleotide–nanoparticle conjugates. Analyst, 2004, 129(8): 970-974
    [78] Storhoff J J, Lucas A D, Garimella V, et al. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nature Biotechnology, 2004, 22(7): 883-887
    [79] Storhoff J J, Elghanian R, Mucic R C, et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Journal of the American Chemical Society, 1998, 120(9): 1959-1964
    [80] Huang C C, Huang Y F, Cao Z H, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Analytical Chemistry, 2005, 77(17): 5735–5741
    [81] Thanh N T, Rosenzweig Z. Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Analytical Chemistry, 2002, 74(7): 1624–1628.
    [82] Schofield C L, Field R A, Russell D A. Glyconanoparticles for the colorimetric detection of cholera toxin. Analytical Chemistry, 2007, 79(4): 1356-1361
    [83] Han M Y, Gao X H, Nie S M, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature biotechnology, 2001, 19(7): 631-635
    [84] Chan W C, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(25): 2016-2018
    [85] Bruchez Jr M, Morone M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(25): 2013-2016
    [86] Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of QDs encapsulated in phospholipid micelles. Science, 2002, 298(5599): 1759-1762
    [87] Wang J. Carbon-Nanotube Based Electrochemical Biosensors: A Review. Electroanalysis, 2005, 17(1): 7-14
    [88] Gooding J J. Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochimica Acta, 2005, 50(15): 3049-3060
    [89] Iijima S. Helicalmicrotubes of graphitic carbon. Nature, 1991, 354(7): 56-58
    [90] Gao Z Q, Agarwal A, Trigg A D, et al. Silicon nanowire arrays for label-free detection of DNA. Analytical Chemistry, 2007, 79(9): 3291-3297
    [91] Maxwell D J, Taylor J R, Nie S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. Journal of the American Chemical Society, 2002, 124(32): 9606-9612
    [92] Singh R, Pantarotto D, McCarthy D, et al. Binding and Condensation of Plasmid DNA onto Functionalized Carbon Nanotubes: Toward the Construction of Nanotube-Based Gene Delivery Vectors. Journal of the American Chemical Society, 2005, 127(12): 4388-4396
    [93]余荣清,程大典,詹梦熊.液相化学腐蚀法用于碳纳米管的纯化及顶端开口研究.化学通报, 1996, 4(1): 25-26
    [94] Chen R J, Zhang Y, Wang D, et al. Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization . Journal of the American Chemical Society, 2001, 123(16): 3838-3839
    [95] Chen J, Liu H, Weimer W A, Halls M D, et al. Noncovalent Engineering of Carbon Nanotube Surfaces by Rigid, Functional Conjugated Polymers. Journal of the American Chemical Society, 2002, 124(31): 9034-9035
    [96] Dalton A B, Stephan C, Coleman J N. Selective Interaction of a Semiconjugated Organic Polymer with Single-Wall Nanotubes. Journal Physical Chemistry B, 2000, 104(43): 10012-10016
    [97] Star A, Steuerman D W, Heath J R. Starched carbon nanotubes. Angewandte Chemie, 2002, 41(14): 2508-2512
    [98]Chambers G, Carroll C, Farrell G F. Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes. Nano letters, 2003, 3(6): 843-846.
    [99] Williams K A, Veenhuizen P M, Dela Torre B G. Carbon nanotubes with DNA recognition. Nature, 2002, 420(6917): 761
    [100] Tsang S C, Guo Z, Chen Y K. Immobilization of Platinated and Iodinated Oligonucleotides on Carbon Nanotubes. Angewandte Chemie, 1997, 36(20): 2198-2200
    [101] Prakash R , Washburn S , Superfine R , et al. Visualization of individual carbon nanotubes with fluorescence microscopy using conventional fluorophores. Appllied Physics Letters, 2003, 83(6): 1219-1221.
    [102] Wang J, Musameh M, Lin Y H. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society, 2003, 125(9): 2408-2409.
    [103]Zhang M G, Smith A, Gordki W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Analytical Chemistry, 2004, 76(17): 5045-5050.
    [104] Kong K P, Zhang M N, Yan Y M, et al. Sol-Gel-Derived ceramic-carbon nanotube nanocomposite electrodes: tunable electrode dimension and potential electrochemical applications. Analytical Chemistry, 2004, 76(21): 6500-6505
    [105] Chen R S, Huang W H, Tong H, et al. Carbon Fiber Nanoelectrodes Modified by Single-Walled Carbon Nanotubes. Analytical Chemistry, 2003, 75(22): 6341-6345
    [106] Luo H, Shi Z, Li N, et al. Investigation of the Electrochemical and Electrocatalytic Behavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode. Analytical Chemistry, 2001, 73(5): 915-920
    [107] Liu Y, Male K B, Luong J H T. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes Sabahudin Hrapovic. Analytical Chemistry, 2004, 76(4): 1083-1088
    [108] Amine A, Orlanducci S, Terranova M L, et al. Carbon Nanotube Purification: Preparation and Characterization of Carbon Nanotube Paste Electrodes Federica Valentini. Analytical Chemistry, 2003, 75(20): 5413-5421
    [109] Okuno J, Maehashi K, Kerman K, et al. Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosensors and Bioelectronics, 2007, 22(9-10): 2377-2381
    [110] Panchapakesan B, Cesarone G, Liu S X, et al. Single-wall carbon nanotubes with adsorbed antibodies detect live breast cancer cells. NanoBiotechnol, 2005, 1(4): 353-360
    [111] Elkin T, J iang X Q, Taylor S, et al. Immuno-Carbon Nanotubes and Recognition of Pathogens. ChemBioChem, 2005, 6(4): 640-643
    [112] Dwyer C, Guthold M, Falvo M. DNA functionalized single walled carbonnanotubes. Nanotechnology, 2002, 13(5): 601-604
    [113] Baker S E, Cai W, Lassester T L. Covalently Bonded Adducts of Deoxyribonucleic Acid (DNA) Oligonucleotides with Single-Wall Carbon Nanotubes: Synthesis and Hybridization. Nano Letters, 2002, 2(2): 1413-1417.
    [114] Taft B J, Lazareck A D, Withey G D, et al. Site-specific assembly of DNA and appended cargo on arrayed carbon nanotubes. Journal of the American Chemical Society, 2004, 126(40): 12750-12751
    [115] Zhao X, Johnson K J. Simulation of Adsorption of DNA on Carbon Nanotubes Journal of the American Chemical Society, 2007, 129(34): 10438-10445
    [116] Nepal D, Sohn J I, Aicher W K, et al. Supramolecular conjugates of carbon nanotubes and DNA by a solid-state reaction. Bioacromolecules, 2005, 6(6): 2919-2922
    [117] Goux-Capes L, Filoramo A, Cote D, et al. Coupling carbon nanotubes through DNA linker using a biological recognition complex. Physica Status Solidi A Applications and Materials, 2006, 203(6): 1132-1136
    [118] Moghaddam M J, Taylor S, Gao M, et al. Highly Efficient Binding of DNA on the Sidewalls and Tips of Carbon Nanotubes Using Photochemistry. Nano Letters, 2004, 4(1): 89-93
    [119] Lu Y, Bangsaruntip S, Wang X, et al. DNA Functionalization of Carbon Nanotubes for Ultrathin Atomic Layer Deposition of High K Dielectrics for Nanotube Transistors with 60 mV/Decade Switching. Journal of the American Chemical Society, 2006, 128(11): 3518-3519
    [120] Zheng M, Rostovtsev V V. Photoinduced Charge Transfer Mediated by DNA-Wrapped Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128(24): 7702-7703
    [121] Hobbie E K, Bauer B J, Stephens J, et al. Colloidal Particles Coated and Stabilized by DNA-Wrapped Carbon Nanotubes. Langmuir, 2005, 21(23): 10284-10287
    [122] Lu G, Maragakis P, Kaxiras E. Carbon Nanotube Interaction with DNA. NANO LETTERS, 2005, 5(5): 897-900
    [123] Napier M E, Hull D O, Thorp H H. Electrocatalytic Oxidation of DNA-Wrapped Carbon Nanotubes. Journal of the American Chemical Society, 2005, 127(34): 11952-11953
    [124] Chen Y, Liu H, Ye T, et al. DNA-Directed Assembly of Single-Wall Carbon Nanotubes. Journal of the American Chemical Society, 2007, 129(28): 8696-8697
    [125] Li S, He P, Dong J, et al. DNA-directed self-assembling of carbon nanotubes. Journal of the American Chemical Society, 2005, 127(1): 14-15
    [126] Lu Y, Yang X, Ma Y, et al. Self-assembled branched nanostructures of single-walled carbon nanotubes with DNA as linkers. Chemical Physics Letters, 2006, 419(4-6): 390-393
    [127] Kohli P, Martin C R. Template-synthesized nanotubes for biotechnology and biomedical applications. Journal of Drug Delivery Science and Technology, 2005, 15(1): 49-57
    [128] Gao H, Kong Y, Cui D, et al. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Letters, 2003, 3(4): 471-473
    [129] Okada T, Kaneko T, Hatakeyama R, et al. Electrically triggered insertion of single-stranded DNA into single-walled carbon nanotubes. Chemical Physics Letters, 2006, 417(4-6): 288-292
    [130] Brooks X A, Allen J R, Feldhoff P W, et al. Effect of surface-attached heparin on the response of potassium-selective electrodes. Analytical Chemistry, 1996, 68(8): 1439-1443
    [131] Wang J, Chen S H, Ogorevc B. One-step electropolymeric co-immobilization of glucose oxidase and heparin for amperometric biosensing of glucose. Analyst, 2000, 125(8): 1431-1434
    [132] Perez-Amodio S, Holownia P, Davey C L, et al. Effects of the ionic environment, charge, and particle surface chemistry for enhancing a latex homogeneous immunoassay of C-reactive protein. Analytical Chemistry, 2001, 73(14): 3417-3425
    [133] Holownia P, Perez-Amodio S, Price C P. Effect of poly(ethylene glycol), tetramethylammonium hydroxide, and other surfactants on enhancing performance in a latex particles immunoassay of C-reactive protein. Analytical Chemistry, 2001, 73(14): 3426-3431.
    [134] Sauerbrey G. Use of a quartz vibrator for weighing thin layers on a microbalance. Zeitschrift für Physik A Hadrons and Nuclei, 1959, 155(2): 206-222
    [135] Bunde R L, Jarvi E J, Rosentreter J J. Piezoelectric quartz crystal biosensors. Talanta, 1998, 46(6): 1223-1236
    [136] O’Sullivan C K, Vaughan R, Guibault G G. Piezoelectric immunosensors-theory and applications. Analytical Letters., 1999, 32(12): 2353-2377
    [137]姚守拙.压电化学与生物传感.长沙:湖南师范大学出版社, 1997: 1-4
    [138] Konash P L, Bastiaans G J. Piezoelectric crystals as detectors in liquidchromatography. Analytical Chemistry, 1980, 52(12): 1929-1931
    [139]陈令新,关亚风,杨丙成,等.压电晶体传感器的研究进展.化学进展, 2002, 14(1): 68-76
    [140] Kanazawa K K, Gordon J G H. Frequency of a quartz microbalance in contact with liquid. Analytical Chemistry, 1985, 57(8): 1770–1771
    [141] Bruckenstein S, Shay M. Experimental aspects of use of the quartz crystal microbalance in solution. Electrochimca Acta, 1985, 30(10): 1295-1300
    [142] Roederer J E, Bastiaans G J. Microgravimetric immunoassay with piezoelectric crystals. Analytical Chemistry, 1983, 55(14): 2333-2336
    [143] Fung Y S, Wong Y Y. Self-assembled monolayers as the coating in a quartz piezoelectric crystal immunosensor to detect Salmonella in aqueous solution. Analytical Chemistry, 2001, 73(21): 5302-5309.
    [144] Wang H, Zeng H, Liu Z, et al. Immunophenotyping of Acute Leukemia using an integrated piezoelectric immunosensor array. Analytical Chemistry, 2004, 76(8): 2203-2209.
    [145] Davis K A, Leary T R. Continuous liquid-phase piezoelectric biosensor for kinetic immunoassays. Analytical Chemistry, 1989, 61(11): 1227-1230.
    [146]Kurosawa S, Tawara E, Kamo N, et al. Latex piezoelectric immunoassay detection of agglutination of antibody-bearing latex using a piezoelectric quartz crystal. Chemical & pharmaceutical bulletin, 1990, 38(5): 1117-1120.
    [147] Muratsugu M, Kurosawa S, Kamo N. Detection of antistreptolysin O antibody: applicationof an initial rate method of latex piezoelectric immunoassay. Analytical Chemistry, 1992, 64(21): 2483-2487.
    [148] Ghourchian H O, Kamo N. Improvement of latex piezoelectric immunoassay: detectionof rheumatoid factor. Talanta, 1994, 41(3): 401-406.
    [149] Ghourchian H O, Kamo N, Latex piezoelectric immunoassay: effect of interfacial properties. Analytica Chimica Acta, 1995, 300(1): 99-105.
    [150] Chu X, Shen G L, Xie F Y, et al. Polymer agglutination-based piezoelectric immunoassayfor the detection of human serum albumin. Analytical Letters, 1997, 30(10): 1783-1796.
    [151] Wu Z Y, Shen G L, Xie L J, et al. A PEG piezoelectric immunoassay for determination of transferrin in human serum. Sensors and Actuators B: Chemical, 2000, 71(1-2): 99–105.
    [152] Wang H, Lei C X, Li J S, et al. A piezoelectric immunoagglutination assay for Toxoplasma gondii antibodies using gold nanoparticles. Biosensors andBioelectronics, 2004, 19(7): 701–709.
    [153] Wang H, Zhang Y, Yan B, et al. Rapid, Simple, and Sensitive Immunoagglutination Assay with SiO2 Particles and Quartz Crystal Microbalance for Quantifying Schistosoma japonicum Antibodies. Clinical Chemistry, 2006, 52(11): 2065 -2071
    [154] Singh A K, Kilpatrick P K, Carbonell R G. Noncompetitive immunoassays using bifunctional unilamellar vesicles or liposomes. Biotechnology Progress, 1995, 11(3): 333–341
    [155] Nakano Y, Mori M, Nishinohara S, et al. Surface-Linked Liposomal Antigen Induces IgE-Selective Unresponsiveness Regardless of the Lipid Components of Liposomes. Bioconjugate Chemistry, 2001, 12(3): 391–395
    [156] Caruso F, Rodda E, Furlong DF, et al. Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development. Analytical Chemistry, 1997, 69(12): 2043-2049
    [157] Zhou X C, Huang L Q, Li S F Y. Microgravimetric DNA sensor based on quartz crystal microbalance: comparison of oligonucleotide immobilization methods and the application in genetic diagnosis. Biosensors and Bioelectronics, 2001, 16(1-2): 85-95
    [158] Minunni M, Tombelli S, Scielzi R, et al. Detection ofβ-thalassemia by a DNA piezoelectric biosensor coupled with polymerase chain reaction. Analtica Chimica Acta, 2003, 481(1): 55–64
    [159] Luo Y, Chen M, Wen Q J, et al. Rapid and simultaneous quantification of 4 urinary proteins by piezoelectric quartz crystal microbalance immunosensor array. Clin Chem, 2006, 52(12): 2273–2280
    [160] Chen H, Jiang J H, Li Y F, et al. A novel piezoelectric immunoagglutination assay technique with antibody-modified liposome. Biosensors and Bioelectronics, 2007, 22(6): 993–999
    [161] Zuo B L, Li S M, Guo Z, et al. Piezoelectric immunosensor for SARS-associated coronavirus in sputum. Analytical Chemistry, 2004, 76(13): 3536-3540.
    [162] Sai V V R, Mahajan S, Contractor A Q, et al. Immobilization of antibodies on polyaniline films and its application in a piezoelectric immunosensor. Analytical Chemistry, 2006, 78(24): 8368-8373
    [163] Percival C J, Stanley S, Galle M, et al. Molecular-imprinted, polymer-coated quartz crystal microbalances for the detection of terpenes. Analytical Chemistry, 2001, 73(17): 4225-4228
    [164] Tai D F, Lin C Y, Wu T Z, et al. Artificial receptors in serologic tests for theearly diagnosis of dengue virus infection. Clinical Chemistry, 2006, 52(8): 1486–1491
    [165] Deng T, Wang H, Li J S, et al. A novel biosensing interfacial design based on the assembled multilayers of the oppositely charged polyelectrolytes. Analytica Chimica Acta, 2005, 53(2): 137–144
    [166] Caruso F, Mohwald H. Protein multilayer formation on colloids through a stepwise self-assembly technique. Journal of the American Chemical Society, 1999, 121(25): 6039-6046
    [167] Pei R J, Cui X Q, Yang, X R, et al. Assembly of alternating polycation and DNA multilayer films by electrostatic layer-by-layer adsorption. Biomacromolecules, 2001, 2(2): 463-468
    [168] Wang B Q, Li B, Wang Z X, et al. Sol-gel thin-film immobilized soybean peroxidase biosensor for the amperometric determination of hydrogen peroxide in acid medium. Analytical Chemistry, 1999, 71(10): 1935-1939
    [169] Jiang D C, Tang J, Liu B H, et al. Ultrathin alumina sol-gel-derived films: allowing direct detection of the liver fibrosis markers by capacitance measurement. Analytical Chemistry, 2003, 75(17): 4578-4584
    [170] Fujikawa S, Muto E, Kunitake T. Embedding of individual ferritin molecules in large, self-supporting silica nanofilms. Langmuir, 2007, 23(8): 4629-4633
    [171] Stein E W, Grant P S, Zhu H G, et al. Microscale enzymatic optical biosensors using mass transport limiting nanofilms. 1. fabrication and characterization using glucose as a model analyte. Analytical Chemistry, 2007, 79(4): 1339-1348
    [172] Han L, Daniel D R, Maye M M, et al. Core-shell nanostructured nanoparticle films as chemically sensitive interfaces. Analytical Chemistry, 2001, 73(18): 4441-4449
    [173] Wang M J, Wang L Y, Wang G, et al. Application of impedance spectroscopy for monitoring colloid Au-enhanced antibody immobilization and antibody–antigen reactions. Biosensors and Bioelectronics, 2004, 19(6): 575–582
    [174] Chou S F, Hsu W L, Hwang J M, et al. Determination ofα-Fetoprotein in human serum by a quartz crystal microbalance-based immunosensor. Clinical Chemistry, 2002, 48(6): 913–918
    [175] Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemistry Society, 2004, 126(38): 11768-11769
    [176] Liu T, Tang J A, Zhao H Q, et al. Particle size effect of the DNA sensoramplified with gold nanoparticles. Langmuir, 2002, 18(14): 5624-5626
    [177] Patolsky F, Lichtenstein A, Willner I. Electronic transduction of DNA sensing processes on surfaces: amplification of DNA detection and analysis of single-base mismatches by tagged liposomes. Journal of the American Chemistry Society, 2001, 123(22): 5194-5205
    [178] Patolsky F, Katz E, Bardea A, et al. Enzyme-linked amplified electrochemical sensing of oligonucleotide-DNA interactions by means of the precipitation of an insoluble product and using impedance spectroscopy. Langmuir, 1999, 15(11): 3703-3706
    [179] Feng K J, Li J S, Jiang J H, et al. QCM detection of DNA targets with single-base mutation based on DNA ligase reaction and biocatalyzed deposition amplification. Biosensors and Bioelectronics, 2007, 22(8): 1651–1657
    [180] De Lucca A J, Jacks T J, Brogden K A. Binding between lipopolysaccharide and cecropin A. Molecular and Cellular Biochemistry, 1995, 151(2): 141-148
    [181] Singh A K, Kilpatrick P K, Carbonell R G. Application of antibody and fluorophore-derivatized liposomes to heterogeneous immunoassays for D-dimer. Biotechnology Progress, 1996, 12(2): 272–280
    [182] Spangler B D, Tyler B J. Capture agents for a quartz crystal microbalance-continuous flow biosensor: functionalized self-assembled monolayers on gold. Analytica Chimica Acta, 1999, 399(1-2): 51–62.
    [183] Stine R, Pishko M V. Heat-Stabilized Glycosphingolipid Films for Biosensing Applications. Langmuir, 2004, 20(15): 6501-6506
    [184] Williams T L, Jenkins A T A. Measurement of the Binding of Cholera Toxin to GM1 Gangliosides on Solid Supported Lipid Bilayer Vesicles and Inhibition by Europium (III) Chloride. Journal of the American Chemical Society, 2008, 130(20): 6438–6443
    [185] Zayats M, Raitman O A, Chegel V I, et al. Probing antigen-antibody binding processes by impedance measurements on ion-sensitive field-effect transistor devices and complementary surface plasmon resonance analyses: development of cholera toxin sensors. Analytical Chemistry, 2002, 74(18): 4763-4773
    [186] Taitt C R, Anderson G P, Lingerfelt B M, et al. Nine-analyte detection using an array-based biosensor. Analytical Chemistry, 2002, 74(23): 6114-6120
    [187] Terrettaz S, Stora T, Duschl C, et al. Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance. Langmuir,1993, 9(5): 1361-1369
    [188] Phillips K S, Han J H, Martinez M, et al. Nanoscale glassification of gold substrates for surface plasmon resonance analysis of protein toxins with supported lipid membranes. Analytical Chemistry, 2006, 78(2): 596-603
    [189] Kuziemko G M, Stroh M, Stevens R C. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry, 1996, 35(20): 6375-6384
    [190] Fisher M I, Tjarnhage T. Structure and activity of lipid membrane biosensor surfaces studied with atomic force microscopy and a resonant mirror. Biosensors and Bioelectronics, 2000, 15(9-10): 463–471
    [191] Pan J J, Charych D. Molecular recognition and colorimetric detection of cholera toxin by poly(diacetylene) liposomes incorporating Gm1 ganglioside. Langmuir, 1997, 13(6): 1365-1367
    [192] Song X D, Nolan J, Swanson B I. Optical signal transduction triggered by protein-ligand binding: detection of toxins using multivalent binding. Journal of the American Chemical Society, 1998, 120(19): 4873-4874
    [193] Song X D, Swanson B I. Direct, ultrasensitive, and selective optical detection of protein toxins using multivalent interactions. Analytical Chemistry, 1999, 71(11): 2097-2107.
    [194] Song X D, Shi J, Swanson B I. Flow cytometry-based biosensor for detection of multivalent proteins. Analytical Biochemistry, 2000, 284(1): 35–41
    [195] Ma G, Cheng Q. Manipulating FRET with Polymeric Vesicles: Development of a "Mix-and-Detect" Type Fluorescence Sensor for Bacterial Toxin. Langmuir, 2006, 22(16): 6743-6745
    [196] Singh A K, Harrison S H, Schoeniger J S. Gangliosides as receptors for biological toxins: development of sensitive fluoroimmunoassays using ganglioside-bearing liposomes. Analytical Chemistry, 2000, 72(24): 6019-6024
    [197] Ho J A, Wu L C, Huang M R, et al. Application of ganglioside-sensitized liposomes in a flow injection immunoanalytical system for the determination of cholera toxin. Analytical Chemistry, 2007, 79(1): 246-250
    [198] Rowe-Taitt C A, Cras J J, Patterson C H, et al. A ganglioside-based assay for cholera toxin using an array biosensor. Analytical Biochemistry, 2000, 281(1): 123–133
    [199] Edwards K A, March J C, GM1-functionalized liposomes in a microtiter plate assay for cholera toxin in Vibrio cholerae culture samples. AnalyticalBiochemistry, 2007, 368(1): 39–48
    [200] Viswanathan S, Wu L C, Huang M R, et al. Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes. Analytical Chemistry, 2006, 78(4): 1115-1121
    [201] Radler J, Strey H, Sackmann E. Phenomenology and kinetics of lipid bilayer spreading on hydrophilic surfaces. Langmuir, 1995, 11(11): 4539-4548
    [202] Reviakine I, Brisson A. Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy. Langmuir, 2000, 16(4): 1806-1815
    [203] Lee H Y, Jung H S, Fujikawa K, et al. New antibody immobilization method via functional liposome layer for specific protein assays. Biosensors and Bioelectronics, 2005, 21(5): 833–838
    [204] Puu G. An approach for analysis of protein toxins based on thin films of lipid mixtures in an optical biosensor. Analytical Chemistry, 2001, 73(1): 72-79
    [205] Vamvakaki V, Fournier D, Chaniotakis N A. Fluorescence detection of enzymatic activity within a liposome based nano-biosensor. Biosensors and Bioelectronics, 2005, 21(2): 384–388
    [206] Easton P M, Simmonds A C, Rakishev A, et al. Quantitative Model of the Enhancement of Peroxidase-Induced Luminol Luminescence. Journal of the American Chemical Society, 1996, 118(28): 6619-6624
    [207] Kapeluich Y L, Rubtsova M Y, Egorov A M. Enhanced Chemiluminescence Reaction Applied To The Study Of Horseradish-Peroxidase Stability In The Course Of P-Iodophenol Oxidation. Journal of bioluminescence and chemiluminescence, 1997, 12(6): 299-308
    [208] Boring C C, Suires T S, Tong T, Montgomery S. Cancer statistics, CA a Cancer Journal for Clinicians,1994, 44(1): 7-26
    [209] Polascik T J, Oesterling J E, Partin A W. Prostate specific antigen: a decade of discovery-what we have learned and where we are going. The Journal of Urology, 1999, 162(2): 293-306
    [210] Christensson A, Laurell C B, Lilja H. Enzymatic activity of prostate-specific antigen and its reactions with extracellular serine proteinase inhibitors. European Journal of Biochemistry, 1990, 194(3): 755-763
    [211] Christensson A, Lilja H. Complex formation between protein C inhibitor and prostate-specific antigen in vitro and in human semen. European Journal of Biochemistry, 1994, 220(1): 45-53
    [212] Leinonen J, Zhang W M, Stenman U H. Complex formation between PSA isoenzymes and protease inhibitors. The Journal of Urology, 1996, 155(3): 1099–1103
    [213] Lilja H, Christensson A, Dahlén U, et al. Prostate-specific antigen in serum occurs predominantly in complex withα1-antichymotrypsin. Clinical Chemistry, 1991, 37(9): 1618-1625
    [214] Aus G, Abbou C C, Bolla M, et al. EAU Guidelines on Prostate Cancer. European Urology, 2005, 48(4): 546–551
    [215] Thompson I M, Pauler D K, Goodman P J, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or = 4.0 ng per milliliter. The New England Journal of Medicine, 2004, 350(22): 2239–2246
    [216] Ward A M, Catto, J W F, et al. Prostate specific antigen: biology, biochemistry and available commercial assays. Annals of Clinical Biochemistry, 2001, 38(6): 633-51
    [217] Acevedo B, Perera Y, Ruiz M, et al. Development and validation of a quantitative ELISA for the measurement of PSA concentration. Clinica Chimica Acta, 2002, 317(1-2): 55-63
    [218] Soukka T, Paukkunen J, H?rm? H, et al. Supersensitive time-resolved immunofluorometric assay of free prostate-specific antigen with nanoparticle label technology. Clinical Chemistry, 2001, 47(7): 1269-1278
    [219] Fang Y, Bj?rn P, Stefan L, et al. Surface Plasmon Fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level. Analytical Chemistry, 2004, 76(22): 6765-6770
    [220] Seto Y, Iba T, Abe K. Development of ultra-high sensitivity bioluminescent enzyme immunoassay for prostate-specific antigen(PSA) using firefly luciferase. Luminescence, 2001, 16(4): 285
    [221] Fernández-Sánchez C, McNeil C J, Rawson K, et al. Disposable noncompetitive immunosensor for free and total prostate-specific antigen based on capacitance measurement. Analytical Chemistry, 2004, 76 (19): 5649
    [222] Grubisha D S, Lipert R J, Park H Y, et al. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced raman scattering and immunogold labels. Analytical Chemistry, 2003, 75(21): 5936-5943
    [223] Roberts M A, Kelley S O. Ultrasensitive detection of enzymatic activity with nanowire electrodes. Journal of the American Chemical Society, 2007, 129(37):11356-11357
    [224] Nam J M, Thaxton C S, Mirkin C A. Nanoparticle-Based Bio–Bar Codes for the Ultrasensitive Detection of Proteins. Science, 2003, 301(5641): 1884-1886
    [225] Wu G H, Datar R H, Hansen K M, et al. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnology, 2001, 19(9): 856-860
    [226] Kricka L J, Clinical applications of chemiluminescence. Analytica Chimica Acta, 2003, 500(1-2): 279–286
    [227] Chouhana R S, Vivek Babu K, Kumarc M A, et al. Detection of methyl parathion using immuno-chemiluminescence based image analysis using charge coupled device. Biosensors and Bioelectronics, 2006, 21(7): 1264–1271
    [228] Zhang C, Zhang Z Y, Yu B B, et al. Application of the biological conjugate between antibody and colloid au nanoparticles as analyte to inductively coupled plasma mass spectrometry. Analytical Chemistry, 2002, 74(1): 96-99
    [229] Zhou X C, Zhou J Z. Improving the signal sensitivity and photostability of dna hybridizations on microarrays by using dye-doped core-shell silica nanoparticles. Analytical Chemistry, 2004, 76(18): 5302-5312
    [230] Medina M B. Development of a fluorescent latex immunoassay for detection of a spectinomycin antibiotic. Journal of Agriculture and Food Chemistry, 2004, 52(11): 3231-3236
    [231] Medina M B. Development of a fluorescent latex microparticle immunoassay for the detection of staphylococcal enterotoxin b (seb). Journal of Agriculture and Food Chemistry, 2006, 54(14): 4937-4942
    [232] Dykman L A, Bogatyrev V A, Khlebtsov B N, et al. A protein assay based on colloidal gold conjugates with trypsin. Analytical Biochemistry, 2005, 341(1): 16–21
    [233] Rozema D, Gellman S H. Artificial Chaperone-Assisted Refolding of Denatured-Reduced Lysozyme: Modulation of the Competition between Renaturation and Aggregation. Biochemistry, 1996, 35(49): 15760
    [234] Yoshimoto M, Shimanouchi T, Umakoshi H, et al. Immobilized liposome chromatography for refolding and purification of protein. Journal of Chromatography B, 2000, 743(1-2): 93.
    [235] Imura T, Gotoh T, Otake K, et al. Control of physicochemical properties of liposomes using a supercritical reverse phase evaporation method. Langmuir, 2003, 19(6): 2021-2025
    [236] Koide K, Karel M. Encapsulation and stimulated release of enzymes usinglecithin vesicles. Intertratiotial Journal of Food Science and Technology, 1987, 22(6): 707-723
    [237]Abdel-Hamid I, Ghindilis A L, Atanasov P, et al. Flow-through Immunoassay System for Determination of Staphyloccocal Protein A. Analytical Letters, 1999, 32(6): 1081-1094
    [238] Romero J M F, Stiene M, Kast R, et al. Application of screen-printed electrodes as transducers in affinity flow-through sensor systems. Biosensors and Bioelectronics, 1998, 13(10): 1107-1115
    [239] Ivnitski D, Wolf T, Solomon B, et al. An amperometric biosensor for real-time analysis of molecular recognition. Bioelectrochemistry and Bioenergetics, 1998, 45(1): 27–32
    [240] Pemberton R M, Hart J P, Stoddard P, et al. A comparison of 1-naphthyl phosphate and 4 aminophenyl phosphate as enzyme substrates for use with a screen-printed amperometric immunosensor for progesterone in cows’milk. Biosensors and Bioelectronics, 1999, 14(5): 495–503
    [241] O’Regan T M, Pravda M, O’Sullivan C K, et al. Development of a disposable immunosensor for the detection of human heart fatty-acid binding protein in human whole blood using screen-printed carbon electrodes. Talanta, 2002, 57(3): 501–510
    [242] Pemberton R M, Hart J P, Mottram T T. An electrochemical immunosensor for milk progesterone using a continuous flow system. Biosensors and Bioelectronics, 2001, 16(9-12): 715–723
    [243] Hadas E, Soussan L, Rosen-Margalit I, et al. A rapid and sensitive heterogeneous immunoelectrochemical assay using disposable electrode. Journal of Immunoassay, 1992, 13(2): 231-252
    [244] Ghindilis A L, Krishnan R, Atanasov P, et al. Flow-through amperometric immunosensor: Fast‘sandwich’Scheme Immunoassay. Biosensors and Bioelectronics, 1997, 12(5): 415-423
    [245] Limoges B, Degrand C, Brossier P, et al. Homogeneous electrochemical immunoassay using a perfluorosulfonated ionomer-modified electrode as detector for a cationic-labeled hapten. Analytical Chemistry, 1993, 65(8): 1054-1060
    [246] Liu G D, Wu Z Y, Wang S P, et al. Renewable Amperometric Immunosensor for Schistosoma japonium Antibody Assay. Analytical Chemistry, 2001, 73(14): 3219-3226
    [247] Ghindilis A L, Skorobotko O, Gavnlova V, et al. A new approach for theconstruction of potentiometric immunosensors. Biosensors and Bioelectronics, 1992, 7(4): 301-304
    [248] Gracheva S, Livingstone C, Davis J. Development of a Disposable Potentiometric Sensor for the Near Patient Testing of Plasma Thiol Concentrations. Analytical Chemistry, 2004, 76 (13): 3833-3836
    [249] Alexander P W, Maltra C. Enzyme-linked immunoassay of human immunoglobulin G with the fluoride ion selective electrode. Analytical Chemistry, 1982, 54(1): 68-71
    [250] Alexander P W, Rechnitz G A. Ion-electrode based immunoassay and antibody-antigen precipitin reaction monitoring. Analytical Chemistry, 1974, 46(9): 1253-1257
    [251] Solsky R L, Rechnitz G A. Automated immunoassay with a silver sulfide ion-selective electrode. Analytica Chimica Acta, 1987, 99(2): 241-246
    [252] Fonong T, Rechnitz G A. Homogeneous potentiometric enzyme immunoassay for human immunoglobulin G. Analytical Chemistry, 1984, 56(13): 2586-2590
    [253] Orazlo P D, Rechnitz G A. Ion electrode measurements of complement and antibody levels using marker-loaded sheep red blood cell ghosts. Analytical Chemistry, 1977, 49(13): 2083-2086
    [254] Bataillard P, Gardies F, Jaffrezic-Renault N, et al. Direct Detection of Immunospecies by Capacitance Measurements. Analytical Chemistry, 1988, 60(20-21): 2374-2379
    [255] Mirsky V M, Riepl M, Wolfbeis O S. Capacitance monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol film on gold electrodes. Biosensors and Bioelectronics,1997, 12(9-10): 977-985
    [256] Berggren C, Johansson G. Capacitance measurements of antibody-antigen interactions in flow system. Analytical Chemistry, 1997, 69(18): 3651-3657.
    [257] Gebbert A, Alvarez-Lcaza M, Stocklein W, et al. Real-time monitoring of immunochemical interaction with a Tantalum capacitance flow-through cell. Analytical Chemistry, 1992, 64(9): 997-1003
    [258] Mceil C J, Athey D. Electrochemical sensors based on impedance measurement of enzyme-catalyzed polymer dissolution: Theory and Applications. Analytical Chemistry, 1995, 67(21): 3928-3935
    [259] Terry L A, White S F, Tigwell L J. The Application of Biosensors to Fresh Produce and the Wider Food Industry, Journal of Agriculture and Food Chemistry, 53(5) (2005) 1309-1316
    [260] Rowe C A, Scruggs S B, Feldstein M J, et al. An Array Immunosensor for Simultaneous Detection of Clinical Analytes. Analytical Chemistry, 1999, 71(2): 433-439
    [261] González-Mart′ynez M A, Puchades R, Maquieira A. On-line immunoanalysis for environmental pollutants: from batch assays to automated sensors. Trends in Analytical Chemistry, 1999, 18 (3): 204-218
    [262] L Yang, Y Li, Erf G F. Interdigitated Array Microelectrode-Based Electrochemical Impedance Immunosensor for Detection of Escherichia coliO157:H7. Analytical Chemistry, 2004, 76(4): 1107-1113
    [263] Darain F, Park D S, Park J S, et al. Development of an immunosensor for the detection of vitellogenin using impedance spectroscopy. Biosensors and Bioelectronics, 2004, 19(10): 1245-1252
    [264] Sadik O A, Xu H, Gheorghiu E, et al. Differential Impedance Spectroscopy for Monitoring Protein Immobilization and Antibody-Antigen Reactions. Analytical Chemistry, 2002, 74(13): 3142-3150
    [265] Kharitonov A B, Wasserman J, Katz E, et al. The Use of Impedance Spectroscopy for the Characterization of Protein-Modified ISFET Devices: Application of the Method for the Analysis of Biorecognition Processes. Journal of Physical Chemistry B, 2001,105(19): 4205-4213
    [266] Ruan C M, Yang L J, Li Y B. Immunobiosensor Chips for Detection of Escherichia coliO157: H7 Using Electrochemical Impedance Spectroscopy. Analytical Chemistry, 2002, 74(18): 4814-4820
    [267] Su X D, Chew F T, Li S F Y. Self-assembled monolayer-based piezoelectric crystal immunosensor for the quantification of total human immunoglobulin E. Analytical Biochemistry, 1999, 273(1): 66-72
    [268] Ebato H, Gentry C A, Herron J N, et al. Investigation of specific binding of antifluorescyl antibody and Fab to fluorescein lipids in Langmuir-Blodgett deposited films using quartz crystal microbalances methodology. Analytical Chemistry, 1994, 66(10): 1683-1689
    [269] Sargent A, Sadik O A. Monitoring antibody–antigen reactions at conducting polymer-based immunosensors using impedance spectroscopy. Electrochimica Acta, 1999, 44(26): 4667–4675
    [270] Nakanishi K, Muguruma H, Karube I. A novel method of immobilizing antibodies on a quartz crystal microbalance using plasma-polymerized films for immunosensors. Analytical Chemistry, 1996, 68(10): 1695-1700
    [271] Wang H, Li D, Wu Z Y, et al. A reusable piezo-immunosensor with amplified sensitivity for ceruloplasmin based on plasma-polymerized film. Talanta, 2004, 62(1): 199-206
    [272] Wang M J, Wang L Y, Wang G, et al. Application of impedance spectroscopy for monitoring colloid Au-enhanced antibody immobilization and antibody–antigen reactions. Biosensors and Bioelectronics, 2004,19(6): 575–582
    [273] Grabar K C, Reeman R G, Hommer M B, et al. Preparation and characterization of Au colloid monolayers. Analytical Chemistry, 1995, 67(4): 735-743
    [274] Hayat M A. Colloidal Gold: Principles, Methods and Applications. New York: Academic Press, 1989: 105-108
    [275] Xu Y W. Detection Techniques in Immunology. Beijing: Science Press, 1997: 304-308
    [276] Atassi M Z, van Oss C J, Absolom D R. Molecular Immunology. New York: Marcel Dekker, 1984: Chapters 16 and 22
    [277] Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001, 409 (6822): 928–933
    [278] Kwok P Y ,Carlson C, Yager T D, et al.. Comparative analysis of human DNA variations by fluorescence-based sequencing of PCR products. Genomics, 1994, 23(1): 138-144
    [279] Zakeri H, Amparo G, Chen S M, et al.. Peak height pattern in dichloro-rhodamine and energy transfer dye termintor sequencing.Biotechniques, 1998, 25(3): 406-414
    [280] Hayashi K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods and Applications, 1991, 1(1): 34-38
    [281] Inazuka M, Wenz H M, Sakabe M, et al. A Streamlined Mutation Detection System: Multicolor Post-PCR Fluorescence Labeling and Single-Strand Conformational Polymorphism Analysis by Capillary Electrophoresis. Genome Research, 1997, 7(11): 1094-1103
    [282] Henco K, Harders J, Wiese U, et al. Temperature gradient gel electrophoresis (TGGE) for the detection of polymorphic DNA and RNA. Methods in Molecular Biology, 1994, 31(2): 211-228
    [283] Gelfi C, Cremonesi L, Ferrari M, et al. Temperature-programmed capillary electrophoresis for detection of DNA point mutations. BioTechniques, 1996, 21(5): 926-932
    [284] Wang D G, Fan J B, Siao C J, et al. Large-scale identification,mapping,and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280(5366): 1077-1082
    [285] Hacia J G, Sun B, Hunt N, et al. Strategies for mutational analysis of the large multiexon ATM gene using high-density oligonucleotide arrays. Genome Research, 1998, 8(12): 1245-1258
    [286] Livak K J, Marmaro J, Todd J A. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. Nature Genetics, 1995, 9(4): 341-342
    [287] Chen X, Kwok P Y. Template-directed dye-terminator incorporation (TDI) assay: A homogeneous DNA diagnostic method based on fluorescence resonance energy transfer. Nucleic Acids Research, 1997, 25(2): 347-353
    [288] Tobe V O, Taylor S L, Nickerson D A. Single-well genotyping of diallelic sequence variations by a two-color ELISA-based oligonucleotide ligation assay. Nucleic Acids Research, 1996, 24(19): 3728-3732
    [289] Lishanski A, Ostrander E A, Rine J. Mutation detection by mismatch binding protein MutS in amplified DNA: Application to the cystic fibrosis gene. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(7): 2674-2678.
    [290] Ellis L A, Taylor G R, Banks R, et al. MutS binding protects heteroduplex DNA from exonuclease digestion in vitro: A simple method for detecting mutations. Nucleic Acids Research, 1994, 22(13): 2710-2711
    [291] Geschwind D H, Rhee R, Nelson S F. A biotinylated MutS fusion protein and its use in a rapid mutation screening technique. Genetic Analysis: Biomolecular Engineering, 1996, 13(4): 105- 111
    [292] Nelson S F. Genomic mismatch scanning: Current progress and potential applications. Electrophoresis, 1995, 16(2): 279-285
    [293] Wagner R E, Debbie P, Radman M. Mutation detection using immobilized mismatch binding protein (MutS). Nucleic Acids Research, 1995, 23(19): 3944- 3948
    [294] Su X, Robelek R, Wu Y, et al. Detection of Point Mutation and Insertion Mutations in DNA Using a Quartz Crystal Microbalance and MutS, a Mismatch Binding Protein. Analytical Chemistry, 2004, 76(2): 489-494
    [295] Behrensdorf H A, Pignot M, Windhab N, et al. Rapid parallel mutation scanning of gene fragments using a microelectronic protein-DNA chip format. NucleicAcids Research, 2002, 30(14): e64(1-6)
    [296] Bi L J, Zhou Y F, Zhang X E, et al. A mutS-based protein chip for detection of DNA mutations. Analytical Chemistry, 2003, 75(16): 4113-4119
    [297]Wagner R, Debbie P, Radman M. Mutation detection using immobilized mismatch binding protein(MutS). Nucleic Acids Research, 1995, 23(19): 3944-3948
    [298] Cho M, Lee S, Han S Y. et al. Electrochemical detection of mismatched DNA using a MutS probe. Nucleic Acids Research, 2006, 34(10) e75
    [299] Masarík M, CahováK, Kizek R, et al. Label-free voltammetric detection of single-nucleotide mismatches recognized by the protein MutS. Analytical and Bioanalytical Chemistry, 2007, 388(1): 259-270
    [300] Palecek E, Masarík M, Kizek R, et al. Sensitive electrochemical determination of unlabeled mutS protein and detection of point mutations in DNA. Analytical Chemistry, 2004, 76(19): 5930-5936
    [301] Li C Z, Long Y T, Lee J S, et al. Protein-DNA interaction: Impedance study of MutS binding to a DNA mismatch. Chemical Communications, 2004, 10(5): 574-575
    [302] Han A, Shibata T, Takarada T, et al. Gene mutation assay using a MutS protein-modified electrode. Nucleic Acids Research supplement, 2002, 2(1): 287-288.
    [303] Han A, Takarada T, Shibata T, et al. A MutS protein-immobilized Au electrode for detecting single-base mismatch of DNA. Analytical Sciences, 2006, 22(5): 663-666
    [304] Fan C H, Plaxco K W, Heeger A J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proceedings of the National Academy of Sciences, 2003, 100(16): 9134-9137
    [305]De Lumley-Woodyear T, Campbell C N, Heller A. Direct enzyme-amplified electrical recognition of a 30-base model oligonucleotide. Journal of American Chemistry Society, 1996, 118(23): 5504-5505
    [306] Odom T W, Huang J L, Kim P, et al. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998, 391(6662): 62-64
    [307] Fan S, Chaphine M G, Frarcklin N R, et al. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science, 1999, 283(5401): 512-514
    [308] Kong J, Franklin N R, Zhou C, et al. Nanotube Molecular Wires as ChemicalSensors. Science, 2000, 287(5453): 622-625
    [309] OConnell M J, Bachilo S M, Huffman C B, et al. Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes. Science, 2002, 297(5581): 593-596
    [310] Vigolo B, Pénicaud A, Coulon C, et al. Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes. Science, 2000, 290(5495): 1331-1334
    [311] Baughman R H, Zakhidov A A, de Heer W A. Carbon Nanotubes-the Route Toward Applications. Science, 2002, 297(5582): 787-792
    [312] Chen R S, Huang W H, Tong H, et al. Carbon Fiber Nanoelectrodes Modified by Single-Walled Carbon Nanotubes. Analytical Chemistry, 2003, 75(22): 6341-6345
    [313] Li N, Gu Z, Zhuang Q, et al. Investigation of the Investigation of the Electrochemical and Electrocatalytic Behavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode. Analytical Chemistry, 2001, 73(5): 915-920
    [314] Joshi P P, Merchant S A, Wang Y, et al. Amperometric Biosensors Based on Redox Polymer-Carbon Nanotube-Enzyme Composites. Analytical Chemistry, 2005, 77(10): 3183-3188
    [315] R Wilson N, Guille M, Dumitrescu I, et al. Assessment of the Electrochemical Behavior of Two-Dimensional Networks of Single-Walled Carbon Nanotubes. Analytical Chemistry, 2006, 78(19): 7006-7015
    [316] Chen Y, Liu H, Ye T, et al. DNA-Directed Assembly of Single-Wall Carbon Nanotubes. Journal of the American Chemical Society, 2007, 129(28): 8696-8697
    [317]吕亚芬,蔡称心.铁氧化还原蛋白在多壁碳纳米管上的固定、表征及直接电子转移.化学学报, 2006, 64(24): 2396~2402
    [318] Wang J X, Li M X, Shi Z J, et al. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Analytical Chemistry, 2002, 74(9): 1993-1997
    [319] Erdem A, Papakonstantinou P, Murphy H. Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes. Analytical Chemistry, 2006, 78(18): 6656-6659
    [320] Zhao Y D, Zhang W D, Chen H, et al. Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode. Sensors and Actuators B: Chemical, 2002, 87(1): 168-172
    [321] Su L, Gao F, Mao L. Electrochemical Properties of Carbon Nanotube (CNT) Film Electrodes Prepared by Controllable Adsorption of CNTs onto an Alkanethiol Monolayer Self-Assembled on Gold Electrodes. Analytical Chemistry, 2006, 78(8): 2651-2657
    [322] Balavoine F, Schultz P, Mioskowski C, et al. Helical crystallization of proteins on carbon nanotubes:a first step towards the development of new biosensors. Angewandte Chemie International Edition, 1999, 38(13-14): 1912-1915
    [323] Grossiord N, Regev O, Loos J, et al. Time-Dependent Study of the Exfoliation Process of Carbon Nanotubes in Aqueous Dispersions by Using UV-Visible Spectroscopy. Analytical Chemistry, 2005, 77(16): 5135-5139
    [324] Zheng M, Jagota A, Strano M S, et al. Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly. Science, 2003, 302(5650): 1545-1548
    [325] Zheng M, Jagota A, Semke E D, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Materials, 2003, 2(5): 338-342
    [326] Strano M S, Zheng M, Jagota A, et al. Understanding the Nature of the DNA-Assisted Separation of Single-Walled Carbon Nanotubes Using Fluorescence and Raman Spectroscopy. Nano Letters, 2004, 4(4): 543-550
    [327] Zheng M, Diner B A. Solution Redox Chemistry of Carbon Nanotubes. Journal of the American Chemical Society, 2004, 126(47): 15490-15494
    [328] Chen R J, Zhang Y. Controlled Precipitation of Solubilized Carbon Nanotubes by Delamination of DNA. Journal of. Physical Chemistry B, 2006, 110(1): 54-57
    [329] Gigliotti B, Sakizzie B, Bethune D S, et al. Sequence-Independent Helical Wrapping of Single-Walled Carbon Nanotubes by Long Genomic DNA. Nano Letters, 2006, 6(2): 159-164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700