用户名: 密码: 验证码:
核桃醌诱导白血病HL-60细胞凋亡的作用及分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核桃楸是我国的传统中药材,具有广泛的药理作用。近年来,国内外的许多研究表明,核桃楸在体内、外对多种肿瘤细胞有抑制作用。我们研究表明,核桃楸中抗肿瘤成分主要为核桃醌,其对人白血病HL-60细胞有明显的抑制作用,但详细的作用机制尚不明确。
     本研究应用MTT法、荧光染色法、流式细胞术、实时荧光PCR和蛋白免疫印迹技术等方法,从形态学、基因及蛋白表达水平,探讨核桃醌诱导HL-60细胞凋亡的作用及分子机制。
     研究结果表明:核桃醌通过上调Bax/Bcl-2的比率,增加线粒体膜通透性、降低线粒体膜电位,促进Cyt c、AIF和Smac等凋亡相关因子由线粒体向细胞质转移,导致caspase蛋白酶原的剪切活化,通过线粒体途径诱导HL-60细胞凋亡。此外,在核桃醌诱导细胞凋亡的同时,可检测到细胞内ROS产生增加和GSH含量减少;应用抗氧化剂NAC可降低Bax/Bcl-2的比率,改变线粒体膜电位,减弱Cyt c等凋亡相关因子向细胞质转移,抑制caspase蛋白酶原的激活,阻断核桃醌诱导细胞凋亡作用,提示核桃醌诱导HL-60细胞凋亡的作用与ROS的产生增加密切相关。核桃醌诱导HL-60细胞凋亡过程亦可能有ERK通路和PI3K/AKT通路的参与。
     结论:核桃醌能刺激细胞内部ROS产生增加,消耗GSH,改变线粒体膜电位,通过线粒体途径诱导HL-60细胞凋亡。
Background:
     Juglans Mandshurica Maxim, one of traditional Chinese herb, was known to induce apoptosis in a variety of tumor cells in vitro. Juglone, one of the main active components from the roots and barks of Juglans Mandshurica Maxim. However, the molecular mechanism of apoptosis induced by Juglone in HL-60 cell remains elusive. Nowadays, it is of particular significance to use molecular biological methods to study the pharmacologic effects of traditional Chinese herbs to reiterate the underlying pharmacological mechanism and to do research in finding new anti-tumor drugs, which has also become the trend in exploiting the Chinese medicine. In such a circumference, a deeper study on the molecular mechanism of Juglone in anti-tumor effect is promising and valuable.
     Objects:
     To investigate the molecular mechanism of apoptosis induced by Juglone in HL-60 cells.
     Methods:
     1. Fluorescence microscope was used to detect the morphological changes of nuclear chromatin stained by Hoechst 33342 and AO/EB.
     2. Flow cytometric analysis was used to detect the percentage of apoptotic cells, mitochondrial membrane potential and ROS
     3. Spectrophotometric method was used to detect the activities of caspase-3, -9 and the content of GSH.
     4. Western blotting was used to detect the protein level of caspase-3, -9, Bcl-2, Bax, PARP, Smac, Cyt C and AIF.
     5. QPCR to detect the gene changes of Bcl-2 and Bax.
     6. Western blotting was used to detect the effect of NAC on the apoptotic protein expression.
     7. Western blotting was used to detect the effect of Juglone on MAPK and PI3K/AKT pathway.
     Results:
     The main results were divided into some sections as follows:
     1 Juglone inhibited HL-60 cells proliferation and induced apoptosis
     1.1 Juglone inhibited HL-60 cells proliferation
     The proliferation inhibition effect of Juglone on HL-60 cells was determined with the MTT colorimetric assay. MTT results showed that after treated with different dose Juglone for 24h, the proliferation inhibition rates of HL-60 cells were 13.56±2.87% 28.58±3.08%, 56.00±1.73%, 73.72±3.50% and 92.37±1.41%, respectively at various concentrations (0.39, 0.78, 1.56, 3.125, 6.25μg/ml) and at the dosage of 1.56μg/ml, the inhibition rate sharply rised to 56%. The IC50 was 1.5μg/ml. The results showed exposure of HL-60 cells to Juglone caused significant growth inhibition in a dose- and time-dependent manner.
     1.2 Juglone induce apoptosis in HL-60 cell
     1.2.1 Morphological changes
     1.2.1.1 Hoechst 33342 fluorescent staining assay was used to observe cell apoptosis. The results showed the cells of control group appeared normal appearance. Cells Juglone-treated group showed typical apoptotical morphological changes, for example condensed or fragmented nuclei.
     1.2.1.2 AO/EB double fluorescent staining assay was used to observe cell apoptosis. The results showed the apoptotic cells appeared in the cell Juglone-treated groups. Normal cells had a regular nuclear with green fluorimetric stain, while apoptotic cell had unregular nuclear with yellowish green stain and the capacity of cell became smaller.
     1.2.2 Detect apoptosis by flow cytometry
     1.2.2.1 PI staining assay was used to detect apoptosis. The results showed that the percentage of apoptotic cells was increased significantly from 0.16±0.04% to 28.42±4.76%.
     1.2.2.2 Annexin V-FITC/PI double staining was used to detect cell apoptosis. The results showed that the percentage of apoptotic cells was increased significantly from 9.44±3.48% to 71.96±5.26%.
     2 Molecular mechanism of apoptosis induced by Juglone in HL-60 cell
     2.1 The effect of Juglone on the mitochondrial function
     2.1.1 The effect of Juglone on the mitochondrial transmembrane potential (ΔΨm) The results showed thatΔΨm was decreased.
     2.1.2 The effect of Juglone on the apoptotosis-related proteins expression
     2.1.2.1 The effect of Juglone on the Bcl-2 and Bax
     The results showed that Bax protein and gene expression was increased and Bcl-2 protein and gene expression was decreased. The ratio of Bax/Bcl-2 was increased. Results indicated that apoptosis induced by Juglone involved the changes of Bcl-2 family.
     2.1.2.2 The effect of Juglone on the Cyt C, Smac and AIF proteins
     The results showed that Juglone could increase the release Cyt C, Smac and AIF proteins from mitochondrion to cytoplasm in a dose- and time-dependent manner.
     2.1.2.3 The effect of Juglone on the caspase-3, -9, PARP proteins expression and activity of caspase.
     The results showed that procaspase-3 and procaspase-9 were cut and PARP substrate of caspase was decomposed along with the elevating of concentration. The activities of caspase-3, -9 were also increased in a dose- and time-dependent manner.
     2.2 The effect of ROS on the apoptosis induced by Juglone in HL-60 cell
     2.2.1 The effect of Juglone on ROS
     The results showed that the ROS increased significantly with concentration 1.0 and 1.5μg/mL compared with control group. It indicated that the ROS could be increased by Juglone in HL-60 cells.
     2.2.2 The effect of Juglone on GSH
     Results showed that the content of GSH was significantly decreased. It indicated that Juglone could induce oxidative stress in HL-60 cells.
     2.2.3 The effect of NAC on the apoptosis induced by Juglone in HL-60 cell
     The results showed that the percentage of apoptotic cells was 6.85±1.89%, 7.71±2.54%, 82.26±10.85% and11.67±3.26%, respectively. It indicated that NAC could inhibit the apoptosis induced by Juglone.
     2.2.4 The effect of NAC on the apoptotosis-related proteins expression
     2.2.4.1 The effect of NAC on the Bcl-2 and Bax proteins expression
     The results showed that NAC had no obviously effect on Bcl-2 and Bax proteins expression. Julgone could increase Bax protein expression and decrease Bcl-2 protein expression. The ratio of Bax/Bcl-2 was increased, While NAC could inhibit the procession.
     2.2.4.2 The effect of NAC on the Cyt C and Smac proteins
     The results showed that NAC had no obviously on Cyt C and Smac proteins. Juglone could increase the Cyt C and Smac protein releasing to cytoplasm, While NAC could inhibit the procession.
     2.2.4.3 The effect of NAC on the caspase-3, -9 proteins expression
     The results showed that NAC had no obviously effect on the procaspase-3 and procaspase-9 protein expression. Juglone could promote the procaspase-3 and procaspase-9 to cutting, while the NAC could inhibit the procession.
     2.3 The effect of Juglone on the MAPK pathway
     The results showed that Juglone had no obviously effect on the p38 and JNK protein levels. But Juglone promoted an increase of p-ERK in a dose dependent way. It suggested that the ERK involved in the apoptosis induced by Juglone.
     2.4 The effect of Juglone on the PI3K/AKT pathway
     The results showed that Juglone could induce a significant decrease p-AKT at 0.5μg/mL, p-AKT expression was inhibited by Juglone. It suggested that PI3K/AKT pathway involved in the apoptosis induced by Juglone.
     Conclusion:
     1. Juglone could inhibit the cell proliferation in a dose- and time-dependent manner.
     2. Juglone could induce apoptosis in HL-60 cell.
     3. Juglone could induce apoptosis through mitochondrial pathway in HL-60 cell.
     4. Juglone could increase the ROS in HL-60 cells and activate the mitochondrial pathway to induce apoptosis.
     5. Juglone could activate ERK pathway and inhibit PI3K/AKT pathway.
引文
[1] McKenzie SB. Advances in understanding the biology and genetics of acute myelocytic leukemia [J]. Clin Lab Sci. 2005; 18(1):28-37.
    [2] Kimby E, Nygren P, Glimelius B, et al. A systematic overview of chemotherapy effects in acute myeloid leukaemia [J]. Acta Oncol. 2001; 40(2-3): 231-252.
    [3] Voliotis D , Diehl V. Challenges in treating hematologic malignancies. [J]. Semin Oncol. 2002; 29(s8):30-39.
    [4] Frankel AE, Baer MR, Hogge DE, et al. Immunotherapy of acute myeloid leukemia [J]. Currr Pharm Biotechnol. 2001; 2(3):209-215.
    [5] Hamblin TJ. Disappointments in treating acute leukemia in the elderly [J]. N Engl J Med. 1995; 332(25):1712-1713.
    [6] Sun SY, Hail N Jr, Lotan R. Apoptosis as a novel target for cancer chemoprevention [J]. J Natl Cancer Inst. 2004; 96(9):662-672.
    [7] Thompson CB. Apoptosis in pathogenesis and treatment do disease [J]. Science. 1995; 267(5203):1456-1462.
    [8]Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics [J]. Br J Cancer. 1972 ;26(4): 239-257.
    [9]Wyllie AH Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation [J]. Nature. 1980; 284(5756):555-556.
    [10]Saraste A, Pulkki K. Moprhologic and biochemical hallmarks of apoptosis [J].Cardiovase Res. 2000; 45(3):528-537.
    [11]Leist M, J??ttel? M. Four deaths and a funeral: from caspases to altenrative mechanisms [J]. Nat Rev Mol Cell Biol. 2001; 2(8):589-595.
    [12]Tamm I, Wang Y, Sausville E, et al. IAP-family protein surviving inhibits caspase activity and apoptosis induced by Fas(CD95), Bax, caspases and anticancer drugs [J]. Cancer Res. 1998; 58(23):5315-5320.
    [13]Huang Y, Park YC, Rich RL, et al. Structrual basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain [J]. Cell. 2001; 104(5):781-790.
    [14]Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP-interaction motif incaspase-9 and Smac/DIABLO regulates caspase activity and apoptosis [J]. Nature. 2001; 410(6824):112-116.
    [15]Jin TG, Kurakin A, Benhaga N, et al. Fas-associated protein with death domain (FADD)-independent recruitment of c-FLIPL to death receptor 5 [J]. J Bio Chem. 2004; 279(53):55594-55601.
    [16]Han YH, Kim SH, Kim SZ, et al. Caspase inhibitor decreases apoptosis in pyrogallol-treated lung cancer Calu-6 cells via the prevention of GSH depletion. [J]. Int J Oncol. 2008; 33(5):1099-1105.
    [17]Verheij M, Bartelink H. Radiation induced apoptosis [J]. Cell Tissue Res. 2000; 301 (1): 133-142.
    [18]Schuler M, Green DR. Mechanisms of p53-dependent apoptosis [J]. Biochem Soc Trans. 2001; 29 (pt6) : 684-688.
    [19]She QB, Chen N, Dong Z. Erks and p38 kinase phosphorylate p53 protein at serine 15 inresponse to UV radiation [J]. J Bio l Chem. 2000; 275 (27): 20444-20449.
    [20]Datta K, Babbar D, Srivastava T, et al. p53 dependent apoptosis in glioma cell lines in response to hydrogen peroxide induced oxidative stress [J]. Int J Biochem Cell Biol. 2002; 34 (2):148-157.
    [21]Wu X, Deng Y. Bax and BH3 domain only proteins in p53 mediated apoptosis [J]. Front Biosci. 2002; 7:151-156.
    [22]Sheard MA. Ionizing radiation as a response-enhancing agent for CD95-mediated apoptosis [J]. Int J Cancer. 2001; 96(4): 213-220.
    [23]Richardson H, Kumar S. Death to flies: drosophila as a model system to study programmed cell death [J]. J Immunol Methods. 2002; 265(1-2):21-38.
    [24]Denault JB, Salvesen GS. Caspase:keys in the ignition of cell death [J]. Chem Rev. 2002; 102(12):4489-4500.
    [25]Boatright KM, Salvesen GS. Mechanisms of caspase activation [J]. Curr Opin Cell Biol. 2003; 15(6):725-731.
    [26]Peter ME, Krammer PH. Mechanisms of CD95(APO-1/Fas)-mediated apoptosis [J].Curr Opin Immunol. 1998; 10(5):545-551.
    [27]Chen EH, Kirsch DG, Clem RJ, et al. Conversion of Bcl-2 to a Bax-like death effector by caspase [J]. Science. 1997; 278(5345):1966-1968.
    [28]McDonnell JM, Fushman D, Miliman CL, et al. Solution structure of the propapotptic molecule BID: A structural basis for apoptotic agonists and natagonists [J]. Cell.1999; 96(5):625.
    [29]Cory S, Adams JM. The Bcl-2 family: regulators of the cellular life-or-death switch [J]. Nature Rev Cancer. 2002; 2(9):647-656.
    [30] Deng L, Adachi T, Kitayama K, et al. Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway. [J]. J Virol. 2008; 82(21):10375-10385.
    [31]Shimizu S, Eguchi Y, Kamiike W, et al. Retardation of chemieal hypoxia-induced necrotic cell death by Bcl-2 and ICE inhibitors: Possible involvement of common mediators in apoptotic and necrotic signal transduetions [J].Oncogene. 1996; 12(10):2045-2050.
    [32]Degterev A, Boyce M, Yuan J. The channel of death [J]. J Cell Biol. 2001; 155(5):695-698.
    [33]Shimizu S, Shinohara Y, Tsujimoto Y. Bax and Bcl-xLindependtly reglate apoptotic changes of yeastmitochondira that require VDAC but not adenine nucleotide translocator [J]. Oncogene. 2000; 19(38):4309-4318.
    [34]Huang X, Zhai D, Huang Y. Study on the relationship between chacium-induced calcium release from mitochondria and PTP opening [J]. Mol Cell Biochem. 2000; 213(1-2):29-35.
    [35]Tian W, Zhang Z, Cohen DM.MAPK signaling and the kidney [J]. Am J Physiol Renal Physiol. 2000; 279(4):F593-F604.
    [36]Fecher LA, Amaravadi RK, Flaherty KT. The MAPK pathway in melanoma [J].Curr Opin Onco. 2008; 20(2):183-189.
    [37] Truter SL, Catanzaro DF, Supino PG, et al. Fibronectin Gene Expression in Aortic Regurgitation: Relative Roles of Mitogen-Activated Protein Kinases[J]. Cardiology. 2009;113(4):291-298.
    [38]Davis RJ. Signal transduction by the JNK group of MAP kinases [J]. Cell. 2000; 103(2): 239-252.
    [39]Varghese J, Cattopadhaya S, Sarin A. Inhibition of p38 kinase reveals a TNF-α-mediated, Caspase-dependent, apoptotic death pathway in a human myelomonocyte cell line [J].J Immunol. 2001; 166(11):6570-6577.
    [40]Zhuang S, Demirs JT, Kochevar IE. P38 mitogen-activated protein kinase mediated bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide [J]. J Bio Chem. 2000; 275(34):25939-25948.
    [41]Martin DS, Lonergan PE, Boland B, et al. Apoptotic changes in the aged brain are triggered by interleukin-1beta-induced activation of p38 and reversed by treatment with eicosapentaenoic acid [J]. J Bio Chem. 2002; 277(37):34239-34246.
    [42]Lee JC, KumarS,Griswold DE, et al. Inhibition ofp38MAP kinase as a therapeutic strategy [J]. Immunopharmacology. 2000; 47(2): 185-201.
    [43]Lee JC, Kumar S, Griswold DE, et al. Inhibition of p38 MAP kinase as a therapeutic strategy [J]. Immunopharmacology. 2000; 47(2):185-201.
    [44]Ferrer I, Friguls B, DalfóE, et al. Earlymodifications in the expression ofmitogen activated protein kinase (MAPK/ERK), stress activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia [J]. Acta Neuropatho. 2003; 105(5): 425-427.
    [45]Stoneley M, Chapped SA, Jopling CL, et al . c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis [J]. Mol Cell Biol. 2000; 20(4):1162-1169.
    [46]Ghatan S, Larner S, Kinoshita Y, et al. P38 MAPKinase mediate bax translocation in nitric oxide-induced apoptosis in nerurons [J]. J Cell Biol. 2000; 150(2):335-347.
    [47]Hemmings BA. Akt signaling: linking membrane events to life and death decision [J]. Science. 1997; 275(5300):628-30.
    [48]Osaki M, Oshimura M, Ito H. PI3K-Akt pathway:its functions and alterations in human cancer [J].Apoptosis. 2004; 9(6):667-676.
    [49]Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival [J].J Cell Mol Med. 2005; 9(1):59-71.
    [50]Xin M, Deng X. Nicotine inactivation of the proapoptotic function of bax through phosphorylation [J].J Biol Chem. 2005; 280(11):10781-10789.
    [39]Varghese J, Cattopadhaya S, Sarin A. Inhibition of p38 kinase reveals a TNF-α-mediated, Caspase-dependent, apoptotic death pathway in a human myelomonocyte cell line [J].J Immunol. 2001; 166(11):6570-6577.
    [40]Zhuang S, Demirs JT, Kochevar IE. P38 mitogen-activated protein kinase mediated bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide [J]. J Bio Chem. 2000; 275(34):25939-25948.
    [41]Martin DS, Lonergan PE, Boland B, et al. Apoptotic changes in the aged brain are triggered by interleukin-1beta-induced activation of p38 and reversed by treatment with eicosapentaenoic acid [J]. J Bio Chem. 2002; 277(37):34239-34246.
    [42]Lee JC, KumarS,Griswold DE, et al. Inhibition ofp38MAP kinase as a therapeutic strategy [J]. Immunopharmacology. 2000; 47(2): 185-201.
    [43]Lee JC, Kumar S, Griswold DE, et al. Inhibition of p38 MAP kinase as a therapeutic strategy [J]. Immunopharmacology. 2000; 47(2):185-201.
    [44]Ferrer I, Friguls B, DalfóE, et al. Earlymodifications in the expression ofmitogen activated protein kinase (MAPK/ERK), stress activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia [J]. Acta Neuropatho. 2003; 105(5): 425-427.
    [45]Stoneley M, Chapped SA, Jopling CL, et al . c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis [J]. Mol Cell Biol. 2000; 20(4):1162-1169.
    [46]Ghatan S, Larner S, Kinoshita Y, et al. P38 MAPKinase mediate bax translocation in nitric oxide-induced apoptosis in nerurons [J]. J Cell Biol. 2000; 150(2):335-347.
    [47]Hemmings BA. Akt signaling: linking membrane events to life and death decision [J]. Science. 1997; 275(5300):628-30.
    [48]Osaki M, Oshimura M, Ito H. PI3K-Akt pathway:its functions and alterations in human cancer [J].Apoptosis. 2004; 9(6):667-676.
    [49]Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival [J].J Cell Mol Med. 2005; 9(1):59-71.
    [50]Xin M, Deng X. Nicotine inactivation of the proapoptotic function of bax through phosphorylation [J].J Biol Chem. 2005; 280(11):10781-10789.
    [62]Kim EC, Yun BS, Ryoo IJ, et al. Complestatin prevents apoptotic cell death: inhibition of a mitochondrial caspase pathway through AKT/PKB activation [J].Biochem Biophys Res Commun. 2004; 313(1):193-204.
    [63]Gruss HJ, Dower SK. Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas [J]. Blood. 1995; 85(12):3378-3404.
    [64]Cui H, Sherr DH, el-Khatib M, et al. Regulation of T-cell death genes: selective inhibition of FasL-but not Fas-mediated function [J].Cell Immunol. 1996; 167(2):276-284.
    [65]Debatin KM, Krammer PH.Death receptors in chemotherapy and cancer [J]. Oncogene. 2004; 23(16):2950-2966. H[66]De Maria R, Lentil L, Malisan F, et al. Requirement for GD3 ganglioside in CD95 and ceramide-induced apoptosis [J] . Science. 1997; 277(5332): 1652 - 1655.
    [67]Pellegrini M, Bath S, Marsden VS, et al. FADD and caspase-8 are required for cytokine-induced proliferation of hemopoietic progenitorcells [J]. Blood. 2005; 106(5): 1581 - 1589.
    [68]Zha J, Weiler S, Oh KJ, et al. Posttranslational N-myristoy-lation of Bid as a molecular switch for targeting mitochondria and apoptosis [J]. Science. 2000; 290(5497):1761-1765.
    [69]Rothe M, Pan MG, Henzel WJ. et al. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins [J]. Cell.1995; 83(7):1243-1252.
    [70]Hsu H, Shu HB, Pan MG, et al.TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways [J]. Cell. 1996; 84(2):299-308.
    [71]Wang CY, Mayo MW, Korneluk RG, et al.[J]. NF-κB Antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to Suppress Caspase-8 Activation [J] Science. 1998; 281(5383):1680-1683
    [72]Irmler M, Steiner V, Ruegg C,et al.. Caspase-induced inactivation of the anti-apoptotic TRAF1 during Fas ligand-mediated apoptosis [J]. FEBS Letters. 2000; 468(2-3):129-133.
    [73]Hu WH, Johnson H, Shu HB. Activation of NF- B by FADD, Casper, and Caspase-8 [J]. J Biol Chem. 2000; 275(15):10838-10844
    [74]Yeh WC, Pompa JL, McCurrach ME.FADD:Essential for embryo develop- ment and signaling from some,but not all, inducers of apoptosis [J]. Science. 1998; 279(5358):1954-1958.
    [75]Zhou H, Werti I, O′rourke K, et al.Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO [J]. Nature. 2004; 427(6970):167-171.
    [76]Ruefli-Brasse A, French DM, Dixit VM. Regulation of NF-kappaB- dependent lymphocyte activation and development by paracaspase [J]. Science. 2003; 302(5650): 1581-1584.
    [77]Gibson S, Widmann C, Johnson GL.Differential involvement of MEK kinasel(MEKK1) in the induction of apoptosis in response to microtubule2targeted drugs versus DNA damaging agents [J]. J Biol Chem. 1999; 274 (16): 10916-10922.
    [78] Du C, Fang M, Li Y,, et al. Mitochondrial protein the promotes cytochrome C-dependend caspase activation by eliminating IAP inhibition [J]. Cell. 2002; 102(1):33-42
    [79]Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP protein [J]. Cell. 2000;102(1):43
    [80]Boehning D, Patterson RL, Sedaghat L, et al. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying caldum–dependent apoptosis [J]. Nat Cell Biol. 2003; 5(12):1051- 1061.
    [81]Boehning D, van Roswm DB, Patterson RL, et al. A peptide inhibitor of rytochrome c/inositol 1,4,5- trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways [J]. Proc Natl Acad Scl US. 2005; 102(5):1466- 1471.
    [82]Miramar MD, Costantini P, Ravagnan L, et a1. NADH oxidase activity of mitochondrial apoptosis2inducing factor [J]. J Biol Chem. 2001; 276 (19): 16391- 16398
    [83]Fontaine E, Ichas F, Bernardi P. ubiquinone-binding site regulates the mitochondrial permeability transition pore [J]. J Biol Chem. 1998; 273(40):25734- 25740.
    [84]Goldstein JC, Waterhouse NJ, Juin P, et al. The coordinate release of cytochrome C during apoptosis is rapid, complete and kinetically invariant [J]. Nat Cell Biol. 2000; 2 (3): 156-162.
    [85]Zhu Y, Xu H, Huang K. Mitochondrial permeability transition and cytoch rome C 85release induced by selenite [J ]. J Inorg Biochem. 2002; 90 (1): 43-50.
    [86]Miramar MD, Costantini P, Ravagnan L, et al. NADH oxidase activity of mitochondrial aopotosis-inducing factor [J].J Biol Chem. 2001; 276(19):16391-16398
    [87]Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released form mitochondria [J]. Nature. 2001; 412(6482):95-99
    [88]Susin SA, Daugas E, Ravagnan L, et al. Two distinct pathways leading to nuclear apoptosis [J]. J Exp Med. 2000;192(4): 571-580.
    [89]Daugas E, Susin SA, Zamzami N, et al. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis [J]. FASEB J. 2000; 14(5):729-739.
    [90]Ferri KF, Jacotot E, Blanco J, et al. Apoptosis control in syncytia induced by the HIV type I-envelope glycoprotein complex: role of mitochondria and caspase [J]. J Exp Med. 2000;192(8):1081-1092.
    [91]Herr I, Debatin KM. Cellular stress response and apoptosis in cancer therapy [J] Blood. 2001; 98(9):2603-2614.
    [92]Liu Z, Sun C, Olejniczak ET, et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain [J]. Nature. 2000; 408(6815):1004-1008.
    [93]Chai J, Du C, Wu JW, et al. Structure and biochemical basis of apoptotic activation by Smac/DIABLO [J].Nature. 2000; 406(6798):855-862.
    [94]Gr?bner S, Autenrieth SE, Soldanova I, et al . Yersinia YopP-induced apoptotic cell death in murine dendritic cells is partially independent from action of caspases and exhibits necrosis-like features. [J]. Apoptosis. 2006;11(11):1959-1968..
    [95]Nakamura K, Bossy-Wetzel E, Burns K, et al. Changes in endoplasmic reticulum luminal enviroment affect cell sensitivity to apoptosis [J]. J Cell Biol. 2000; 150(4):731-740.
    [96]Szegezdi E, Fitzgerald U, Samali A. Caspase-12 and ER-stress-mediated apoptosis: the story so far [J]. Ann NY Acad Sci. 2003;1010:186-94.
    [97]Rao RV, Hermel E, Castro-Obregon S, et al. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation [J]. J Biol Chem. 2001; 276(36):33869-33874.
    [98]Momoi T. Caspases involved in ER stress-mediated cell death [J]. J Chem Neuroanat. 2004; 28(1):101-105.
    [99]Milhavet O, Marllnadi JL, Camandoia S, et al. Involvement of Gadd153 in the pathogenic action of presenilin-1 mutations [J]. J Neurochem. 2002; 83(3):6736-81.
    [100]McConkey DJ, Nutt LK. Calcium flux measurements in apoptosis [J]. Methods Cell Biol. 2001; 66 (2): 229 - 246.
    [101]Nutt LK, Pataer A, Pahler J, et al. Bax and Bak promote apoptosisby modulating endoplasmic reticular and mitochondrial Ca2 + stores [J]. J Biol Chem. 2002; 277 (11) : 9219 - 9225.
    [102]Breckenridge DG, Stojanovic M, Marcellus RC, et al. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals , enhancing cytochrome c release to the cytosol [J] . J Cell Biol. 2003; 160 (7) : 1115 -1127.
    [103]Wang B, Nguyen M, Breckenridge DG, et al. Uncleaved BAP31 in association with A4 protein at the endoplasmic reticulum is an inhibitor of Fas2initiated release of cytochrome c from mitochondrial [J]. J Biol Chem. 2003; 278 (16): 14461 - 14468.
    [104]Li H, Zhu H, Xu CJ, et al. Cleavage of BID by Caspase-8 mediatesthe mitochondrial damage in the Fas path of apoptosis [J]. Cell.1998; 94 (4): 491-501.
    [105]任宪成.树木学(北方本)[M].北京:中国林业出版社, 1997: 1
    [106]吴遒居,陈鸿英,王振国.核桃揪叶化学成分研究[J].中草药, 1994, 25(1):10-11.
    [107]许绍惠,许弘.胡桃属植物毒性成分及其应用[J].沈阳农业大学学报, 1990, 12(2):167-170.
    [108]张捷莉,何方奕,李铁纯,等.千山核桃叶中挥发油成份分析.辽宁大学学报(自然科学版) [J], 1998, 25(2)135-138.
    [109]吴征镒,周太炎,肖培根,等.新华本草纲目(第三册) [M].上海:上海科学技术出版社,1990: 158.
    [110]Kim SH, Lee KS, Son JK, et a1. Cytotoxic Compounds from the Roots of Juglans Mandshufica [J]. J Nat Prod. 1998, 61(5):643-645.
    [111]Lee SW, Lee KS, Son JK. New naphthalenyl glycosides from the roots of Juglans mandshurica. [J]. Planta Med. 2000, 66(2):184-186.
    [112]杜旭,宋永熙,彭建华,等.中药青龙衣镇痛机制的研究——青龙衣无机盐与三种钾盐的镇痛作用[J].哈尔滨医科大学学报, 1997, 31(1):30-32.
    [113]张野平,苏静洲,杨志博,等.胡桃醌抗肿瘤作用的研究[J].沈阳药学院学报,1987, 4(3):166-169.
    [114]江苏新医学院.中药大辞典(下册) [M].上海:上海科学技术出版社,1977. 792.
    [115]朱有昌.东北药用植物[M].哈尔滨:黑龙江科技出版社, 1989:207.
    [116]许绍惠.核桃楸毒性成分研究[J].沈阳农业大学学报, 1986, 17(2):34-39.
    [117]石建辉,王金辉,袁征,等.核桃楸皮的化学成分[J].沈阳药科大学学报, 2006, 23(8):501-504.
    [118]Lee K, Li G, Kim S, et al. Cytotoxic diarylheptanoids from the roots of Juglans mandshurica. [J]. J Nat Prod. 2002, 65(11):1707-1708.
    [119]Li G, Xu ML, Choi HG, et al. Four new diarylheptanoids from the roots of Juglans mandshurica. [J]. Chem Pharm Bull (Tokyo). 2003, 5(3):262-264.
    [120]Galey FD, Beasley VR, Schaeffer DJ, et al.. Antagonism in isolated equine digital vessels of contraction induced by epinephrine in the presence of hydrocortisone and an aqueous extract of black walnut (Juglans nigra). [J]. J Vet Pharmacol Ther. 1989 ;12(4):411-20.
    [121]Lee SW, Lee KS, Son JK. New naphthalenyl glyosides from the roots of juglans mandshurica[J]. Plant Medica. 2000, 66(2):184-186.
    [122]Kim SH, Lee KS, Son JK, et al. Cytotoxic compounds from the roots of Juglans mandshurica. [J]. J Nat Prod. 1998, 61(5):643-645.
    [123]Jiang ZH, Tanaka T, Inutsuka C, et al. Alkaloids, diarylheptanoid and naphthalene carboxylic acid ester from Rhoiptelea chiliantha. [J]. Chem Pharm Bull. 2001, 49(6):737-740.
    [124]王绍林,王绍东,刘今方.皮的生药鉴别和抗肿瘤作用研究[J].药学实践, 1995, 13(1):40-41.
    [125]李中原,高奎滨.“青龙衣”治疗食管贲门癌120例临床观察[J].中医药信息, 1988, 3:31.
    [126]张洪娟,桑树荣.高奎滨用青龙衣制剂治疗肿瘤用药经验[J].黑龙江中医药, 2000:62.
    [127]杜旭,李玉文,倪雁.青核桃镇痛作用研究与展望[J].中国中药杂志, 2000, 25(1):7-10.
    [128]Ihbara JJ, Chignell CF. Cytotoxic action of juglone and plumbagin: a mechanistic study using HaCaT keratinocytes [J]. Chem Res Toxicol. 2004, 17(1): 55-62.
    [129]Kamei H, Koide T, Kojima T, et al. Inhibition of cell growth in culture by quinones[J]. Cancer Biother Radiopharm. 1998,13(3): 185–88.
    [130]Rippmann JF, Hobbie S, Daiber C, et al. Phosphorylation-dependent proline isomerization catalyzed by Pin1 is essentialfor tumor cell survival and entry into mitosis[J]. Cell Growth Differ. 2000, 11(7): 409– 416.
    [131]Paulsen MT, Ljungman M, The natural toxin juglone causes degradation of p53 and induces rapid H2AX phosphorylation and cell death in human fibroblasts [J]. Toxicology and Applied Pharmacology. 2005,209(1):1-9.
    [132]王少东,脱韩伟.核桃楸青果皮抗肿瘤作用的药理研究[J].辽宁中医杂志. 1990, 11:37-39.
    [133]兰英,赵锐.核桃楸青果皮水提物对降低小鼠体内丙二醛质量浓度的研究[J].北华大学学报. 2000, l(6):476-477.
    [134]Anderson KJ , Teuber SS, Gobeille A, et al. Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. [J]. J Nutr. 2001,131(11):2837-42.
    [135]Munday R, Munday CM.. Induction of quinone reductase and glutathione transferase in rat tissues by juglone and plumbagin [J]. Planta M ed. 2000, 66 (5).399- 402..
    [136]宛蕾,陈秀芬,杜江.胡桃青皮抗炎及镇痛作用的研究[J].中药药理与临床. 1999, 15(2):29-30.
    [137]杜旭,王明晶,姜立伟,等.中药青龙衣镇痛作用机理的研究[J].中国中医药科技. 1997, 4(3):155-156.
    [138]张永贵.核桃楸幼果乙醇提取物对大鼠醋酸酸型实验性胃溃疡的作用[D].延边:延边大学, 2005.
    [139]翟梅枝,李晓明,林奇英.核桃叶抑菌成分的提取及其抑菌活性[J].西北林学院学报. 2003, 18(4):89-91.
    [140]姚振生,叶荷平,陈杰,等.野核桃叶提取物的体外抗菌作用[J].江西中医学院学报. 2001,13(3): 122.
    [141]Min BS, Miyashiro H, Hattori M. Ihibitory effects of quinones on Rnase H activity associated with HIV-1 reverse transcriptase. Phytother Res. 2002, 16(Supple 1):S57-62.
    [142]Min BS, Nakamura N, Miyashiro H, et al. Inhibition of human imuunodeficiency virus type I reverse transcriptase and ribonuclease H activities by constituents of Juglans mandshurica[J]. Chem Pharm Bull. 2000, 48(2):194-200.
    [143]印万芬.胡桃的化学成分和利用[J].中国油脂.1983.4:52-55.
    [144]翟梅枝,杨秀萍,刘路.核桃叶提取物对蚜虫的触杀作用[J].西北林学院学报. 2000, 16(4):55-56.
    [145]翟梅枝,杨秀萍,林奇英,等.核桃叶提取物对杨毒蛾生物活性的研究[J].西北林学院学报. 2003, 18(2):65-67.
    [146]朱蕴娟,钱卫星.东云芝胶囊联合复方木鸡冲剂治疗Ⅱ期原发性肝癌32例临床[J].上海中医药杂志. 1994, 10:43.
    [147]陈静岚,张国屏,孙玉波.复方青龙衣配合化疗治疗急性白血病23例[J].黑龙江中医药. 1996, 4:26-27.
    [148]吴葆杰.中草药药理学[M].北京:人民卫生出版社,1986:85.
    [149]李淑芳,孙光春,鲍淑娟,等.核桃皮酊剂毒性试验研究[J].贵阳医学院学报. 1997, 22(4):356-358.
    [150]何天有,赵亦工.核桃皮煎剂外洗治疗子宫脱垂42例[J].陕西中医. 1990, 7(11):307.
    [151]刘永久,杨良.复方木鸡颗粒治疗肝炎AFP低持阳者疗效分析[J].中成药. 2001, 23(4):302-303.
    [152]茅伯元,陈燕熙.复方木鸡冲剂治疗慢性乙型肝炎疗效观察[J].现代中西医结合杂志. 2001, 10(6):528-529.
    [153]陈凤凰,唐文明.核桃树皮化学成分分析及活性研究[J].天然产物研究与开放. 2008, 20:16-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700