用户名: 密码: 验证码:
人SIRT1H363Y心脏特异转基因小鼠的建立及其导致扩张型心肌病和心力衰竭的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会老龄人口逐渐增加,心力衰竭已经成为最为重要的心血管问题,也成为人们最为关心的健康问题之一。研究表明在扩张型心肌病中心肌细胞凋亡大量增加,导致心脏逐渐发展成为心力衰竭:心肌细胞凋亡也是发生扩张型心肌病和心力衰竭一个主要事件和中心机制。去乙酰化酶Sir2α(the murine ortholog of silent informationregulator 2)敲除的小鼠发生心脏发育缺陷,只有很少一部分敲除鼠可以存活下来;Sir2α对于氧化应激导致的心肌细胞凋亡具有保护作用。更重要的是:体外研究表明位点突变型的Sir2α(SIR2H355A)可以增加基础水平和过氧化氢诱导的心肌细胞凋亡,但是在心脏中SIRT1去乙酰化酶的作用还仍然不清楚。
     我们猜测:抑制心肌细胞中SIRT1的去乙酰化酶活性可以增加心肌细胞凋亡,导致心脏的功能失常。为了验证这个假说,我们进行了如下的研究:
     首先,在压力负荷导致大鼠心肌肥厚和心力衰竭模型心脏中检测SIRT1的表达,发现其表达相对于对照组表达显著增加。为了研究SIRT1的去乙酰化酶活性在体内的功能,将位点突变型的SIRT1(SIRT1H363Y)cDNA与α-MHC启动子连接,通过显微注射受精卵的方法制备了心脏特异性表达SIRT1H363Y的转基因小鼠,经过RT-PCR、Southern Blot、Western blot和免疫组织化学等方法证明SIRT1H3636Y在转基因小鼠心脏组织中特异性高表达。然而出乎意料的是:转基因小鼠心房和心室扩张,并且绝大部分在一周到一个月内死亡;幸运地,我们得到三株转基因小鼠能够产生后代,但是这些后代大部分在8到12天内死亡。转基因小鼠心脏重量和体重的比例显著高于阴性同窝小鼠。分别用病理、超声心动图和分子检测诊断表明转基因小鼠发生扩张型心肌病;电子显微镜显示线粒体结构明显破坏和肌小节变性与降解;用TUNNEL方法进行凋亡分析发现转基因小鼠的心肌细胞发生凋亡的细胞数目显著多于阴性同窝小鼠。对于心肌细胞凋亡机制的研究发现转基因小鼠心脏中Bax的表达显著高于阴性同窝小鼠,同时Caspase-9发生显著剪切和Apaf-1的表达显著增高;而c-FLIP和Caspase-8并没有明显的改变。因此,Bax介导的线粒体途径的凋亡通路在转基因小鼠心肌细胞凋亡中起到主要作用。进一步研究SIRT1H363Y和Bax介导的细胞凋亡之间的内在关系,我们发现p53的乙酰化水平显著增加:在细胞水平,通过腺病毒过表达突变型的SIRT1(ad-SIRT1H363Y)同样可以导致原代培养心肌细胞中p53的乙酰化水平和Bax的表达显著增加。
     综合上述结果可以得出结论:利用α-MHC启动子可以使SIRT1H363Y在心肌细胞中高表达。心脏组织特异性过表达SIRT1H363Y显著增加了心肌细胞凋亡,导致心脏在早期就发生严重的扩张型心肌病,进而迅速影响心脏功能,最终导致心力衰竭和早期致死。
Heart failure has become the most important cardiovascular health problem worldwide and will probably become a major concern as the aging population grows in size. Cardiomyocyte apoptosis is greatly increased in dilated cardiomyopathy which is characterized by the gradual development of heart failure.Several studies have subsequently suggested that cardiomyocyte apoptosis is a key event and a central mechanism in the development of dilated cardiomyopathy and heart failure.Both the intrinsic(mitochondrial) and the extrinsic(death receptor mediated) pathway have been shown to activate caspase-3.Activation of caspase-3 is followed by cardiomyocyte apoptosis,which is sufficient to induce dilated cardiomyopathy and heart failure.Recently, loss of a basal survival mechanism has been noted to undergo apoptosis in various animal models of heart failure.Chronically elevated but low levels of apoptosis may play a causal role in the pathogenesis of dilated cardiomyopathy and heart failure.
     SIRT1,the mammalian ortholog of Sir2,is a NAD-dependent deacetylase belonging to the classⅢhistone deacetylase(HDAC) family and functions in a wide array of cellular processes,including gene silencing,longevity,muscle differentiation,and DNA damage repair.Sir2αoverexpression was shown to inhibit p53 transcriptional activity and p53-dependent apoptosis in response to DNA damage and oxidative stresses.SIRT1 also inhibits apoptosis and promotes DNA repair by deacetylating FOXO transcription factors. However,a point mutation at the highly conserved histidine residue at the core domain (SIRT1-363Y) effectively abolished the deacetylase activity and overexpression of this catalytically inactive Sir2αprotein potentiated these cellular stress responses.Mice deficient in Sir2αexhibit developmental abnormality in the heart and only infrequently survive postnatally.Recent published data indicate that SIRT1 plays an essential role in mediating survival of cardiomyocytes under stress in vitro.Importantly,dominant negative Sir2αwhich express mouse Sir2H355A in neonatal rat ventricular myocytes has been showed to enhance basic cell death as well as slightly potentiating hydrogen peroxide-induced cell death,but in vivo the function of the deacetylase activity of SIRT1 in the heart is still largely unknown.
     We develop our hypothesis that cardiac overexpression of dominant Negative SIRT1 in cardiomyocytes can induce cardiac apoptosis and cause cardiac dysfunction.We carried out the following experiments to test the hypothesis.
     SIRT1 expression is up-regulated in the failing heart induced by 8 weeks of pressure overload.In an attempt to determine the requirement for the deacetylase activity of SIRT1 in the heart,we generated transgenic(TG) mice with cardiac-specific expression of a dominant negative form of SIRT1(SIRT1H363Y).Reverse transcription polymerase chain reaction(RT-PCR),Western blot and Immunohistochemistry show that SIRT1H363Y was properly expressed in cardiomyocytes.Unexpectedly,these mice exhibiting cardiac specific dominant negative SIRT1 overexpression had dilated atrial and ventricular chambers and lead to premature death and died from one week to four weeks after birth. Fortunately,three lines of TG founder mice survived to generate TG-positive offspring, and their offspring died mainly from postnatal days 8 to 12.The heart weight/body weight ratio of transgenic mice was significantly higher compared with nontransgenic mice. Pathology,echocardiography and molecular phenotype confirmed a dilated cardiomyopathy.Electronic microscopy revealed mitochondrial deterioration in hearts of transgenic mice and myofilaments degeneration in some limited regions of the hearts. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling analysis revealed greater abundance of apoptotic nuclei in TG mice hearts.To further investigate the mechanism of apoptosis in TG mice hearts,we found that the level of Bax protein was significantly increased.The level of Apaf-1 protein and the cleavage of Caspase-9 were significantly increased in transgenic mice hearts,whereas the protein abundance of c-FLIP and Caspase-8 were similar with WT controls.These data suggest that increased apoptosis in TG mice hearts is predominantly due to increased Bax-mediated mitochondria apoptosis pathway rather than FasL/TNF signaling pathway.To further examine potential connections between SIRT1H363Y and Bax-mediated apoptosis,we found that the level of p53 acetylation was upregulated upon dominant negative SIRT1 overexpression. Consistent with results in TG mice,adenoviral expression of SIRT1H363Y significantly upregulated Bax protein in neonatal rat ventricular myocytes,and the level of p53 acetylation was increased upon adenoviral SIRT1H363Y overexpression.
     In the present study,we generated TG mice exhibiting cardiac dominant negative SIRT1 overexpression using theα-myosin heavy chain(α-MHC) promoter.Cardiac overexpression of dominant negative SIRT1 is sufficient to cause cardiomyocytes apoptosis and dilated cardiomyopathy leading to a rapid deterioration in cardiac function and death in the early postnatal period.
引文
Alcendor,R.R.,S.Gao,et al.(2007)."Sial Regulates Aging and Resistance to Oxidative Stress in the Heart." Circ Res.
    Alcendor,R.R.,L.A.Kirshenbaum,et al.(2004)."Silent information regulator 2alpha,a longevity factor and class Ⅲ histone deacetylase,is an essential endogenous apoptosis inhibitor in cardiac myocytes." Circ Res 95(10):971-80.
    Araki,T.,Y.Sasaki,et al.(2004)."Increased nuclear NAD biosynthesis and SIRT1activation prevent axonal degeneration." Science 305(5686):1010-3.
    Barlev,N.A.,L.Liu,et al.(2001)."Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases." Mol Cell 8(6):1243-54.
    Blander,G.and L.Guarente(2004)."The Sir2 family of protein deacetylases." Annu Rev Biochem 73:417-35.
    Bordone,L.,M.C.Motta,et al.(2006)."Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells." PLoS Biol 4(2):e31.
    Brunet,A.,L.B.Sweeney,et al.(2004)."Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase." Science 303(5666):2011-5.
    Bryant,D.,L.Becker,et al.(1998)."Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha." Circulation 97(14):1375-81.
    Chandrashekhar,Y.and J.Narula(2003)."Death hath a thousand doors to let out life."Circ Res 92(7):710-4.
    Cheng,H.L.,R.Mostoslavsky,et al.(2003)."Developmental defects and p53hyperacetylation in Sir2 homolog(SIRT1)-deficient mice." Proc Natl Acad Sci U S A 100(19):10794-9.
    Chipuk,J.E.,T.Kuwana,et al.(2004)."Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis." Science 303(5660):1010-4.
    Chua,K.F.,R.Mostoslavsky,et al.(2005)."Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress." Cell Metab 2(1):67-76.
    Cohen,H.Y.,C.Miller,et al.(2004)."Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase." Science 305(5682):390-2.
    Condorelli,G.,C.Morisco,et al.(1999)."Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat." Circulation 99(23):3071-8.
    Crow,M.T.(2004)."Sir-viving cardiac stress:cardioprotection mediated by a longevity gene." Circ Res 95(10):953-6.
    Daitoku,H.,M.Hatta,et al.(2004)."Silent information regulator 2 potentiates Foxol-mediated transcription through its deacetylase activity." Proc Natl Acad Sci U S A 101(27):10042-7.
    Del Re,D.P.,S.Miyamoto,et al.(2007)."RhoA/Rho kinase up-regulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis." J Biol Chem 282(11):8069-78.
    Fabrizio,P.,C.Gattazzo,et al.(2005)."Sir2 blocks extreme life-span extension." Cell 123(4):655-67.
    Fontana,L.,T.E.Meyer,et al.(2004)."Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans." Proc Natl Acad Sci U S A 101(17):6659-63.
    Foo,R.S.,K.Mani,et al.(2005)."Death begets failure in the heart." J Clin Invest 115(3):565-71.
    Frye,R.A.(1999)."Characterization of five human cDNAs with homology to the yeast SIR2 gene:Sir2-like proteins(sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity." Biochem Biophys Res Commun 260(1):273-9.
    Frye,R.A.(2000)."Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins." Biochem Biophys Res Commun 273(2):793-8.
    Fu,M.,M.Liu,et al.(2006)."Hormonal control of androgen receptor function through SIRT1." Mol Cell Biol 26(21):8122-35.
    Fulco,M.,R.L.Schiltz,et al.(2003)."Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state." Mol Cell 12(1):51-62.
    Gasser,S.M.and M.M.Cockell(2001)."The molecular biology of the SIR proteins."Gene 279(1):1-16.
    Giordano,F.J.(2005)."Oxygen,oxidative stress,hypoxia,and heart failure." J Clin Invest 115(3):500-8.
    Gu,W.and R.G.Roeder(1997)."Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain." Cell 90(4):595-606.
    Gulick,J.,A.Subramaniam,et al.(1991)."Isolation and characterization of the mouse cardiac myosin heavy chain genes." J Biol Chem 266(14):9180-5.
    Gupta,S.and A.A.Knowlton(2005)."HSP60,Bax,apoptosis and the heart." J Cell Mol Med 9(1):51-8.
    Hare,J.M.and J.S.Stamler(2005)."NO/redox disequilibrium in the failing heart and cardiovascular system." J Clin Invest 115(3):509-17.
    Haupt,S.,M.Berger,et al.(2003)."Apoptosis-the p53 network." J Cell Sci 116(Pt 20):4077-85.
    Hayakawa,K.,G.Takemura,et al.(2003)."Inhibition of granulation tissue cell apoptosis during the subacute stage of myocardial infarction improves cardiac remodeling and dysfunction at the chronic stage."Circulation 108(1):104-9.
    Hirota,H.,J.Chen,et al.(1999)."Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress."Cell 97(2):189-98.
    Huss,J.M.and D.P.Kelly(2005)."Mitochondrial energy metabolism in heart failure:a question of balance." J Clin Invest 115(3):547-55.
    Kume,S.,M.Haneda,et al.(2007)."SIRT1 Inhibits Transforming Growth Factor beta-Induced Apoptosis in Glomerular Mesangial Cells via Smad7 Deacetylation." J Biol Chem 282(1):151-158.
    Lagouge,M.,C.Argmann,et al.(2006)."Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-lalpha." Cell 127(6):1109-22.
    Lakhani,S.A.,A.Masud,et al.(2006)."Caspases 3 and 7:key mediators of mitochondrial events of apoptosis." Science 311(5762):847-51.
    Langley,E.,M.Pearson,et al.(2002)."Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence." Embo J 21(10):2383-96.
    Leri,A.,S.Franco,et al.(2003)."Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation." Embo J 22(1):131-9.
    Levine,B.,J.Kalman,et al.(1990)."Elevated circulating levels of tumor necrosis factor in severe chronic heart failure." N Engl J Med 323(4):236-41.
    Li,F.,X.Wang,et al.(1996)."Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development." J Mol Cell Cardiol 28(8):1737-46.
    Li,H.L.,A.B.Wang,et al.(2005)."Isorhapontigenin,a new resveratrol analog,attenuates cardiac hypertrophy via blocking signaling transduction pathways." Free Radic Biol Med 38(2):243-57.
    Liedtke,C.,N.Groger,et al.(2003)."The human caspase-8 promoter sustains basal activity through SP1 and ETS-like transcription factors and can be up-regulated by a p53-dependent mechanism." J Biol Chem 278(30):27593-604.
    Luo,J.,M.Li,et al.(2004)."Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo." Proc Natl Acad Sci U S A 101(8):2259-64.
    Luo,J.,A.Y.Nikolaev,et al.(2001)."Negative control of p53 by Sir2alpha promotes cell survival under stress." Cell 107(2):137-48.
    McBumey,M.W.,X.Yang,et al.(2003)."The absence of SIR2alpha protein has no effect on global gene silencing in mouse embryonic stem cells." Mol Cancer Res 1(5):402-9.
    Miyashita,T.and J.C.Reed(1995)."Tumor suppressor p53 is a direct transcriptional activator of the human bax gene." Cell 80(2):293-9.
    Morita,H.,J.Seidman,et al.(2005)."Genetic causes of human heart failure." J Clin Invest 115(3):518-26.
    Motta,M.C.,N.Divecha,et al.(2004)."Mammalian SIRT1 represses forkhead transcription factors." Cell 116(4):551-63.
    Moynihan,K.A.,A.A.Grimm,et al.(2005)."Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice." Cell Metab 2(2):105-17.
    Muller,M.,S.Strand,et al.(1997)."Drug-induced apoptosis in hepatoma cells is mediated by the CD95(APO-1/Fas) receptor/ligand system and involves activation of wild-type p53." J Clin Invest 99(3):403-13.
    Nakano,K.and K.H.Vousden(2001)."PUMA,a novel proapoptotic gene,is induced by p53." Mol Cell 7(3):683-94.
    Narula,J.,N.Haider,et al.(2006)."Mechanisms of disease:apoptosis in heart failure--seeing hope in death." Nat Clin Pract Cardiovasc Med 3(12):681-8.
    Narula,J.,N.Haider,et al.(1996)."Apoptosis in myocytes in end-stage heart failure." N Engl J Med 335(16):1182-9.
    Nemoto,S.,M.M.Fergusson,et al.(2004)."Nutrient availability regulates SIRT1 through a forkhead-dependent pathway." Science 306(5704):2105-8.
    Oda,E.,R.Ohki,et al.(2000)."Noxa,a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis." Science 288(5468):1053-8.
    Olivetti,G.,R.Abbi,et al.(1997)."Apoptosis in the failing human heart." N Engl J Med 336(16):1131-41.
    Pagans,S.,A.Pedal,et al.(2005)."SIRT1 regulates HIV transcription via Tat deacetylation." PLoS Biol 3(2):e41.
    Picard,F.,M.Kurtev,et al,(2004)."Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma." Nature 429(6993):771-6.
    Pillai,J.B.,A.Isbatan,et al.(2005)."Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity." J Biol Chem 280(52):43121-30.
    Pouleur,H.G.,M.A.Konstam,et al.(1993)."Changes in ventricular volume,wall thickness and wall stress during progression of left ventricular dysfunction.The SOLVD Investigators." J Am Coll Cardiol 22(4 Suppl A):43A-48A.
    Reed,J.C.and G.Patemostro(1999)."Postmitochondrial regulation of apoptosis during heart failure." Proc Natl Acad Sci U S A 96(14):7614-6.
    Rodgers,J.T.,C.Lerin,et al.(2005)."Nutrient control of glucose homeostasis through a complex of PGC-lalpha and SIRT1." Nature 434(7029):113-8.
    Sakamoto,J.,T.Miura,et al.(2004)."Predominant expression of Sir2alpha,an NAD-dependent histone deacetylase,in the embryonic mouse heart and brain."FEBS Lett 556(1-3):281-6.
    Sano,M.,T.Minamino,et al.(2007)."p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload." Nature 446(7134):444-8.
    Shabetai,R.(1999)."Function of the normal pericardium." Clin Cardiol 22(1 Suppl 1):14-5.
    Syed,F.,A.Odley,et al.(2004)."Physiological growth synergizes with pathological genes in experimental cardiomyopathy." Circ Res 95(12):1200-6.
    Sykes,S.M.,H.S.Mellert,et al.(2006)."Acetylation of the p53 DNA-binding domain regulates apoptosis induction." Mol Cell 24(6):841-51.
    Takata,T.and F.Ishikawa(2003)."Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1- and HEY2-mediated transcriptional repression." Biochem Biophys Res Commun 301(1):250-7.
    Thom,T.,N.Haase,et al.(2006)."Heart disease and stroke statistics--2006 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee." Circulation 113(6):e85-151.
    Vaquero,A.,M.Scher,et al.(2004)."Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin." Mol Cell 16(1):93-105.
    Vaziri,H.,S.K.Dessain,et al.(2001)."hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase." Cell 107(2):149-59.
    yon Harsdorf,R.(2004).""Fas-ten" your seat belt:anti-apoptotic treatment in heart failure takes off." Circ Res 95(6):554-6.
    Wang,C.,L.Chert,et al.(2006)."Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage." Nat Cell Biol 8(9):1025-31.
    Welch,S.,D.Plank,et al.(2002)."Cardiac-specific IGF-1 expression attenuates dilated cardiomyopathy in tropomodulin-overexpressing transgenic mice." Circ Res 90(6):641-8.
    Wencker,D.,M.Chandra,et al.(2003)."A mechanistic role for cardiac myocyte apoptosis in heart failure." J Clin Invest 111(10):1497-504.
    Xiong,S.,C.S.Van Pelt,et al.(2007)."Loss of Mdm4 results in p53-dependent dilated cardiomyopathy." Circulation 115(23):2925-30.
    Yamamoto,S.,G.Yang,et al.(2003)."Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy."J Clin Invest 111(10):1463-74.
    Yano,M.,Y.Ikeda,et al.(2005)."Altered intracellular Ca2+ handling in heart failure." J Clin Invest 115(3):556-64.
    Yeung,F.,J.E.Hoberg,et al.(2004)."Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase." Embo J 23(12):2369-80.
    Zhang,D.,V.Gaussin,et al.(2000)."TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice." Nat Med 6(5):556-63.
    Zhao,X.S.,W.Pan,et al.(2006)."Endogenous endothelin-1 is required for cardiomyocyte survival in vivo." Circulation 114(8):830-7.
    [1]Dirks AJ and Leeuwenburgh C.Tumor necrosis factor alpha signaling in skeletal muscle:effects of age and caloric restriction J Nutr Biochem,2006,17(8):501-8.
    [2]Blander G and Guarente L.The Sir2 family of protein deacetylases Annu Rev Biochem,2004,73(2):417-35.
    [3]Koubova J and Guarente L.How does calorie restriction work? Genes Dev,2003,17(3):313-21.
    [4]Howitz KT,Bitterman K J,Cohen HY,et al.Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan Nature,2003,425(6954):191-6.
    [5]Frye RA.Characterization of five human cDNAs with homology to the yeast SIR2gene:Sir2-like proteins(sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity Biochem Biophys Res Commun,1999,260(1):273-9.
    [6]Frye RA.Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins Biochem Biophys Res Commun,2000,273(2):793-8.
    [7]Tanno M,Sakamoto J,Miura T,et al.Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1 J Biol Chem,2007,282(9):6823-32.
    [8]Haigis MC and Guarente LP.Mammalian sirtuins--emerging roles in physiology,aging,and calorie restriction Genes Dev,2006,20(21):2913-21.
    [9]Luo J,Nikolaev AY,Imai S,et al.Negative control of p53 by Sir2alpha promotes cell survival under stress Cell,2001,107(2):137-48.
    [10]Vaziri H,Dessain SK,Ng Eaton E,et al.hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase Cell,2001,107(2):149-59.
    [11]Cohen HY,Miller C,Bitterman K J,et al.Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase Science,2004,305(5682):390-2.
    [12] Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase Science, 2004, 303 (5666): 2011-5.
    [13] Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors Cell, 2004, 116 (4): 551-63.
    [14] Daitoku H, Hatta M, Matsuzaki H, et al. Silent information regulator 2 potentiates Foxol-mediated transcription through its deacetylase activity Proc Natl Acad Sci U S A, 2004, 101(27): 10042-7.
    [15] Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase Embo J, 2004, 23 (12): 2369-80.
    [16] Kume S, Haneda M, Kanasaki K, et al. SIRT1 Inhibits Transforming Growth Factor beta-Induced Apoptosis in Glomerular Mesangial Cells via Smad7 Deacetylation J Biol Chem, 2007, 282 (1): 151-158.
    [17] Fu M, Liu M, Sauve AA, et al. Hormonal control of androgen receptor function through SIRT1 Mol Cell Biol, 2006, 26 (21): 8122-35.
    [18] Wang C, Chen L, Hou X, et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage Nat Cell Biol, 2006, 8 (9): 1025-31.
    [19] Pagans S, Pedal A, North BJ, et al. SIRT1 regulates HIV transcription via Tat deacetylation PLoS Biol, 2005, 3 (2): e41.
    [20] Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1 Nature, 2005, 434 (7029): 113-8.
    [21] Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma Nature, 2004, 429 (6993): 771-6.
    [22] Fulco M, Schiltz RL, Iezzi S, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state Mol Cell, 2003,12 (1): 51-62.
    [23] Vaquero A, Scher M, Lee D, et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin Mol Cell, 2004, 16 (1): 93-105.
    [24] Nemoto S, Fergusson MM and Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway Science, 2004, 306 (5704): 2105-8.
    [25] Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice Cell Metab, 2005, 2 (2): 105-17.
    [26] Bordone L, Motta MC, Picard F, et al. Sirtl regulates insulin secretion by repressing UCP2 in pancreatic beta cells PLoS Biol, 2006, 4 (2): e31.
    [27] Kitamura YI, Kitamura T, Kruse JP, et al. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction Cell Metab, 2005, 2 (3): 153-63.
    [28] Picard F and Guarente L. Molecular links between aging and adipose tissue Int J Obes (Lond), 2005, 29 Suppl 1 (S36-9.
    [29] Frescas D, Valenti L and Accili D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes J Biol Chem, 2005,280 (21): 20589-95.
    [30] Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet Nature, 2006, 444 (7117): 337-42.
    [31] Baur JA and Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence Nat Rev Drug Discov, 2006, 5 (6): 493-506.
    [32] Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha Cell, 2006, 127(6): 1109-22.
    [33] Guarente L. Diverse and dynamic functions of the Sir silencing complex Nat Genet, 1999, 23(3): 281-5.
    [34] Tanny JC, Dowd GJ, Huang J, et al. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing Cell, 1999, 99 (7): 735-45.
    [35] Tanny JC and Moazed D. Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product Proc Natl Acad Sci U S A, 2001,98 (2): 415-20.
    [36] Tsukamoto Y, Kato J and Ikeda H. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae Nature, 1997, 388 (6645): 900-3.
    [37] Fabrizio P, Gattazzo C, Battistella L, et al. Sir2 blocks extreme life-span extension Cell, 2005, 123 (4): 655-67.
    [38] Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence Embo J, 2002, 21 (10): 2383-96.
    [39] Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice Proc Natl Acad Sci U S A, 2003,100(19): 10794-9.
    [40] Ota H, Tokunaga E, Chang K, et al. Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells Oncogene, 2006, 25 (2): 176-85.
    [41] Ford J, Jiang M and Milner J. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival Cancer Res, 2005, 65 (22): 10457-63.
    [42] Pruitt K, Zinn RL, Ohm JE, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation PLoS Genet, 2006, 2 (3): e40.
    [43] Chen WY, Wang DH, Yen RC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses Cell, 2005, 123 (3): 437-48.
    [44] Chua KF, Mostoslavsky R, Lombard DB, et al. Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress Cell Metab, 2005, 2(1): 67-76.
    [45] Kamel C, Abrol M, Jardine K, et al. SirT1 fails to affect p53-mediated biological functions Aging Cell, 2006, 5 (1): 81-8.
    [46] Guarente L. Calorie restriction and SIR2 genes—towards a mechanism Mech Ageing Dev, 2005, 126 (9): 923-8.
    [47] Sakamoto J, Miura T, Shimamoto K, et al. Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain FEBS Lett, 2004, 556 (1-3): 281-6.
    [48] Araki T, Sasaki Y and Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration Science, 2004, 305 (5686): 1010-3.
    [49] Chen J, Zhou Y, Mueller-Steiner S, et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling J Biol Chem, 2005, 280 (48): 40364-74.
    [50] Wang J, Zhai Q, Chen Y, et al. A local mechanism mediates NAD-dependent protection of axon degeneration J Cell Biol, 2005, 170 (3): 349-55.
    [51] Guarente L. Sir2 links chromatin silencing, metabolism, and aging Genes Dev, 2000, 14(9): 1021-6.
    [52] McCay CM, Crowell MF and Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935 Nutrition, 1989, 5 (3): 155-71; discussion 172.
    [53] Walford RL, Mock D, Verdery R, et al. Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period J Gerontol A Biol Sci Med Sci, 2002, 57 (6): B211-24.
    [54] Fontana L, Meyer TE, Klein S, et al. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans Proc Natl Acad Sci U S A, 2004, 101 (17): 6659-63.
    [55] Bordone L and Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity Nat Rev Mol Cell Biol, 2005, 6 (4): 298-305.
    [56] Ingram DK, Zhu M, Mamczarz J, et al. Calorie restriction mimetics: an emerging research field Aging Cell, 2006, 5 (2): 97-108.
    [57] Tissenbaum HA and Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans Nature, 2001, 410 (6825): 227-30.
    [58] Qiao L and Shao J. SIRT1 Regulates Adiponectin Gene Expression through Foxo1-C/Enhancer-binding Protein {alpha} Transcriptional Complex J Biol Chem, 2006, 281 (52): 39915-24.
    [59] Chen D, Steele AD, Lindquist S, et al. Increase in activity during calorie restriction requires Sirt1 Science, 2005, 310 (5754): 1641.
    [60] Barzilai N, Banerjee S, Hawkins M, et al. Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat J Clin Invest, 1998, 101 (7): 1353-61.
    [61] Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase Nat Med, 2002, 8(11): 1288-95.
    [62] Guarente L. NO link between calorie restriction and mitochondria Nat Chem Biol, 2005, 1 (7): 355-6.
    [63] Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS Science, 2005, 310 (5746): 314-7.
    [64] Rogina B, Helfand SL and Frankel S. Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction Science, 2002, 298 (5599): 1745.
    [65] Barbieri M, Bonafe M, Franceschi C, et al. Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans Am J Physiol Endocrinol Metab, 2003, 285 (5): E1064-71.
    [66] Rudman D, Kutner MH, Rogers CM, et al. Impaired growth hormone secretion in the adult population: relation to age and adiposity J Clin Invest, 1981, 67 (5): 1361-9.
    [67] Longo VD and Finch CE. Evolutionary medicine: from dwarf model systems to healthy centenarians? Science, 2003, 299 (5611): 1342-6.
    [68] McBurney MW, Yang X, Jardine K, et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis Mol Cell Biol, 2003, 23 (1): 38-54.
    [69] Longo VD and Kennedy BK. Sirtuins in aging and age-related disease Cell, 2006, 126 (2): 257-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700