用户名: 密码: 验证码:
PARP-1功能缺失与乳腺癌的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是女性最常见的恶性肿瘤之一,其发病率逐年提高。尽管在乳腺癌的早期诊断和治疗等方面取得了进展,但是全球每年仍有约50万妇女死于乳腺癌,占女性恶性肿瘤死亡率第二位,因此,明确乳腺癌的发病机理从而防治乳腺癌是医学界乃至整个社会需迫切解决的问题。
     目前,针对乳腺癌的遗传学和分子生物学研究发现,许多参与DNA损伤反应的基因—如BRCA1、BRCA2、ATM、CHK2以及p53等,它们的胚系突变与家族性乳腺癌的发生密切相关,表明DNA修复和细胞周期检验点的联合缺陷在乳腺癌的发生中具有重要作用但是,仍有约40%的家族性乳腺癌,其致病基因尚未明确。
     自聚ADP-核糖聚合酶1(PARP-1)发现以来,大量的研究表明,其在DNA损伤的修复以及基因组稳定性的维持等方面具有重要作用,因此推测,PARP-1功能缺失可能与癌症的发生密切相关这方面的证据主要来自对PARP-1敲除小鼠模型的研究,PARP-1~(-/-)小鼠可出现自发肿瘤或致癌剂诱发肿瘤的发生率增高。
     通过对PARP-1缺失小鼠模型的研究,Tong等发现,PARP-1的缺失改变了p53~(+/-)小鼠的肿瘤类型,使其出现大量的上皮来源的肿瘤,包括乳腺癌。进一步针对PARP-1~(-/-)小鼠乳腺癌的研究显示,PARP-1~(-/-)缺失导致19.5%的雌性小鼠出现晚发的乳腺癌,而p53的缺失可促进PARP-1~(-/-)小鼠乳腺癌的发生,提示在抑制乳腺癌发生过程中,PARP-1和p53之间可能存在协同作用。
     一、研究内容:我们主要从两个方面进行研究1.从分子遗传学角度,筛查人类散发乳腺癌病例PARP-1基因突变;同时分析其SNP基因型与散发乳腺癌的相关性。2.从细胞和分子生物学角度,探讨PARP-1功能缺失对小鼠原代乳腺上皮细胞(PME)染色体稳定性的影响;以及PARP-1缺失对DNA损伤反应网络中相关因子—γH2AXBRCA1和p53功能的影响
     二、研究结果:从本论文工作中我们得出如下结果:
     1.通过对83例法国人群散发乳腺癌PARP-1的突变分析,并与100例同一人群正常人进行对比,共发现了20个杂合变异或突变。这些变异或突变分别位于启动子区(n=1)、5'非翻译区(n=1)、内含子(n=13)、编码外显子区(n=3)和3'非翻译区(n=2)。在编码区发现的3个变异中,2个为错义改变—Tyr383Ser和Arg940Lys,虽然它们已被列入SNP数据库中,但在本研究中仅出现于病例另一个为新发现的同义改变—Arg452Arg本研究提示,PARP-1基因的功能性突变在散发性乳腺癌中较为少见。
     通过对正常人PARP-1基因多态性的分析,我们共检测到25个常见SNP(次等位基因频率≥10%),并根据基因型分布的一致性,将它们分为5组。我们发现A组SNP基因型的分布在病例—对照之间存在显著差异(P=0.035),提示PARP-1中某些SNP的基因型可能与乳腺癌的易感性相关。
     进一步分析发现,A组SNP基因型也与乳腺癌细胞雌激素受体(ER)和孕激素受体(PR)的表达状况相关,例如,该组中的gtSNP—c.852T>C,其基因型为TT者,与基因型为CC者相比,ER PR表达丧失的风险均明显增高(for ER,OR=38,95%CI 4.6-316;for PR,OR=5.17,95%CI 1.2-22.7)。由此我们推测,PARP-1的多态性可能会影响乳腺癌细胞ER和/或PR的表达。
     2.本论文工作中,我们同时分析了PARP-1~(-/-)小鼠原代乳腺上皮细胞(PME)的早期细胞和分子生物学改变,发现:
     (1) PARP-1的缺失可导致PME细胞染色体不稳定,出现非整倍体以及染色体结构异常等同时,PARP-1缺失也导致中心体的异常扩增而且,PARP-1与p53可协同维持PME细胞染色体的稳定性以及中心体的正常功能。
     (2)在DNA损伤反应中,PARP-1的缺失影响p53功能的发挥。虽然PARP-1的缺失并不影响PME细胞p53~(ser15)的基础磷酸化水平;然而,经阿霉素诱导DNA产生双链断裂(DSB)后,与野生型相比,PARP-1~(-/-)PME细胞p53~(ser15)磷酸化水平的升高明显减弱,提示,PARP-1功能缺失导致p53在DNA损伤反应中的功能失调。这表明,PARP-1—p53相互作用对于DNA损伤反应中p53功能的发挥至关重要。
     (3)经阿霉素(Adriamycin)诱导DNA产生双链断裂(DSB)损伤后,PARP-1的缺失并不影响PME细胞γH2AX聚集点(foci)的形成;但是与野生型相比,BRCA1聚集点的形成却显著减少,研究提示,在PME细胞中,PARP-1缺失影响BRCA1聚集点的形成免疫沉淀分析显示,BRCA1与PARP-1之间存在直接的相互作用。
     综上所述,突变分析表明,PARP-1基因的功能性突变在散发性乳腺癌中较为少见;PARP-1的多态性可能与乳腺癌的易感性相关通过对小鼠PARP-1~(-/-)PME细胞的分析,我们认为PARP-1~(-/-)小鼠发生乳腺癌的部分机制是:PARP-1功能缺失导致PME细胞染色体不稳定,出现非整倍体以及染色体结构异常;而中心体异常扩增进一步导致PME细胞染色体不稳定当细胞DNA发生损伤时,由于PARP-1功能缺失,影响DNA修复因子BRCA1等的募集,同时造成p53-p21功能失调最终可能导致PME细胞在细胞周期调控DNA损伤修复以及细胞凋亡等方面出现异常,PME细胞出现增生和发育异常在此过程中,如果出现其它遗传学或表遗传学改变,例如p53的杂合性丢失等,PME细胞可能发生恶性转化,最终导致乳腺癌的发生。
     本论文工作表明,(1) PARP-1基因的功能性突变在人类散发性乳腺癌中较为少见;PARP-1的多态性可能与乳腺癌的易感性相关。(2)PARP-1及聚ADP-核糖化(Poly(ADP-ribosyl)ation)修饰在DNA损伤反应中发挥重要作用,其功能缺失可导致小鼠乳腺上皮细胞基因组不稳定,从而促进了乳腺癌的发生。
PARP-1 functional deficiency with breast cancer carcinogenesis
     Speciality:Biochemistry and Molecular Biology,School of Basic Medicine, Peking Union Medical College
     PhD Candidate:Cao,Wen-Hui
     Supervisor:Professor Shen,Yan
     Breast cancer is one of the most common malignancies among females worldwide and its incidence is increasing with every year.Although there have been improvements in early diagnosis and therapy,this disease is still the second leading cause of cancer mortality in women.It is urgent to clarify its molecular mechanism.
     It has been shown that germ line mutations in many genes,such as BRCA1、BRCA2、ATM、CHK2 and p53,which involve in DNA damage response,contribute to familial breast cancer,implying that combinational deficiency in both DNA repair and cell cycle checkpoint plays an important role in breast cancer carcinogenesis.For~40%familial breast cancer cases,their breast cancer-related genes are still not clear.
     PARP-1 encodes a multifunctional protein,studies showed that loss of PARP-1 function lead to deficiencies in DNA-damage repair and chromosome instability,implying that PARP-1 deficiency may play a role in carcinogenisis.After more than ten years' studies on PARP-1 knockout mice,it is clear that loss of PARP-1 function would give rise to late-onset spontaneous tumors in mice,and carcinogenic agents could accelerate tumor formation in PARP-1~(-/-)mice.
     Tong's studies indicate that PARP-1 deficiency changed tumor types in p53~(+/-) mice,and gave rise to many cancers,including breast cancer.Further studies showed that PARP-1 deficiency caused late onset breast cancer in 19.5%female mice,and p53 deficiency could promote the incidence of breast cancer,indicating that PARP-1 and p53 have synergistic functions in suppressing breast cancer carcinogenesis.
     1.Our studies in this work
     Based on the above evidences,our work mainly focused on two sides.First,we study the molecular and cellular changes existed in primary epithelial cells,which were separated from the PARP-1~(-/-) mice model.Second,we also analyzed PARP-1 mutations and single nucleotide polymorphisms(SNP) in sporadic French breast cancer cases to evaluate the correlation between PARP-1 mutation/polymorphism and human sporadic breast cancer.
     2.Results
     1) In this study,twenty rare heterozygous variants were found in nine(10.8%) breast cancer cases,including novel variants in promoter g.2772371T>C(n=1),at 5'UTR c.-62C>T(n=1),at introns(n=9),and at exon c.2819A>G(Arg452Arg,n=1).Although two exon variants c.1148C>A(Tyr383Ser) and c.2819A>G(Arg940Lys),two 3'UTR variants c.3140G>A and c.3415T>C,and 4 intron variants of PARP-1 are registered in SNPs database,none of these rare variants was detected in the 100 controls.Mutational analysis indicated that functional mutation are rare in sporadic breast cancer.
     In this study,we detected a total of Twenty-five common SNPs(minor allele frequency>10%) in 100 controls.We next divided them into 5 groups according to their genotype distribution.The genotype distribution for group A was significantly different between cases and controls(P=0.035),suggesting that their genotypes may be associated with susceptibility for breast cancer.We further performed association analysis between expression of ER,PR and PARP-1 SNPs.Interestingly,gtSNP of PARP-1 c.852T>C CC-carriers had a significantly increased frequency of loss of ER expression compared with homozygote TT carriers(OR=38,95%CI 4.6-316).In addition,CC-carriers also showed a strong association of loss of PR expression compared with homozygote TT carriers(OR=5.17,95%CI 1.2-22.7).
     In summary,the results imply that functional PARP-lmutations are rare in sporadic breast cancer cases,but PARP-1 polymorphisms may confer susceptibility to breast cancer. 2) In this work,we mainly analyzed the early molecular and cellular changes in PARP-1~(-/-) PME cell,which may lead to carcinogenesis,and found that
     (1) PARP-1 deficiency causes aneupoidy,chromosome aberration and centrosome amplification in PME cells;PARP-1 and p53 play a synergistic role in the maintenance of centrosome function and chromosomal stability in PME cells.
     (2) PARP-1 deficiency compromises p53 function upon DNA damage response(DDR). Although Western blotting analysis revealed a similar basal level of p53 phosphorylation at serl5 in PARP-1-proficient and-deficient PME cells,upon DNA damage induced by adriamycin,phosphorylation of p53 in wild-type PME cells was significantly increased at 4 hrs.Although phosphorylation of p53 at ser15 could occur in response to DNA damage,PARP-1 deficiency reduced level of p53 activation.In addition,PARP-1 deficiency compromised activation of p21.
     (3) Upon DNA DSB damage induced by adriamycin treatment,PARP-1 deficiency didn't affectγH2AX foci formation.But compared to wild-type cells,BRCA1 foci were dramatically reduced in PARP-1~(-/-) PME cells,suggesting that PARP-1 deficiency compromises BRCA1 foci formation after DSB induction.Immunoprecipitation analysis showed that PARP-1 and BRCA1 has direct interaction.
     In summary,this study indicates that,(1) PARP-1 functional mutations are rare in sporadic breast cancer cases;polymorphisms existed in PARP-1 gene may contribute to breast cancer susceptibility.(2) PARP-1 and Poly(ADP-ribosyl)ation play an important role in DNA damage response;PARP-1 functional deficiency could result in genomic instability in PME cell,promoting breast cancer carcinogenesis.
引文
1. Chambon P, Weil JD, Mandel P. 1963. Nicotinamide mononucleotide activation of a new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 11:39.
    2. Sugimura T. 1973. Poly(adenosine diphosphate ribose). Prog Nucleic Acid Res Mol Biol 13:127-151.
    
    3. D'Amours, D., Desnoyers, S., D'Silva, I., and Poirier, G.G. 1999. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342 (Pt 2): 249-268. Chem. 276: 45588-45597.
    4. Kurosaki, T., H. Ushiro, et al. 1987. "Primary structure of human poly(ADP-ribose) synthetase as deduced from cDNA sequence." J Biol Chem 262(33): 15990-7.
    5. Gradwohl, G., J. M. Menissier de Murcia, et al. 1990. "The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA." Proc Natl Acad Sci U S A 87(8): 2990-4.
    6. Simonin, F., L. Hofferer, et al. 1993. "The carboxyl-terminal domain of human poly(ADP-ribose) polymerase. Overproduction in Escherichia coli, large scale purification, and characterization." J Biol Chem 268(18): 13454-61.
    7. Sastry, S. S., K. G. Buki, et al. 1989. "Binding of adenosine diphosphoribosyltransferase to the termini and internal regions of linear DNAs." Biochemistry 28(13): 5670-80.
    8. Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G. 1998. XRCC1 is speci.cally associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18:3563-3571.
    9. Dantzer F, Schreiber V, Niedergang C, Trucco C, Flatter E, de La Rubia G, Oliver J, Rolli V, Menissier-de Murcia J, de Murcia G.1999. Involvement of poly(ADP-ribose) polymerase in base excision repair. Biochimie 81:69 - 75.
    10. Kawaichi, M., K. Ueda, et al. 1981. "Multiple autopoly(ADP-ribosyl)ation of rat liver poly(ADP-ribose) synthetase. Mode of modification and properties of automodified synthetase." J Biol Chem 256(18): 9483-9.
    11. de Murcia, G., V. Schreiber, et al. 1994. "Structure and function of poly(ADP-ribose) polymerase." Mol Cell Biochem 138(1-2): 15-24.
    12. Virag L, Szabo C. 2002. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54: 375-429
    13. Ame, J.C., Spenlehauer, C., and de Murcia, G. 2004. The PARP superfamily. Bioessays 26: 882-893.
    14. Tulin, A. and Spradling, A. 2003. Chromatin loosening by poly-(ADP)-ribose polymerase (PARP) at Drosophila puff loci. Science 299: 560-562.
    15. Kim, M. Y., T. Zhang, et al. (2005). "Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal." Genes Dev 19(17): 1951-67.
    16. Narod, S. A. and W. D. Foulkes (2004). "BRCA1 and BRCA2: 1994 and beyond." Nat Rev Cancer 4(9): 665-76.
    17. Bu¨rkle, A. 2001. Physiology and pathophysiology of poly(ADPribosyl)ation. Bioessays 23: 795-806.
    18. Masutani, M., Nakagama, H., and Sugimura, T. 2003. Poly- (ADP-ribose) and carcinogenesis. Genes Chromosomes Cancer 38: 339-348.
    19. Wang, Z.Q., Auer, B., Stingl, L., Berghammer, H., Haidacher, D., Schweiger, M., and Wagner, E.F. 1995. Mice lacking ADPRTand poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes & Dev. 9: 509-520.
    20. Wang, Z.Q., Stingl, L., Morrison, C., Jantsch, M., Los, M., Schulze-Osthoff, K., and Wagner, E.F. 1997. PARP is important for genomic stability but dispensable in apoptosis. Genes & Dev. 11: 2347-2358.
    21. Menissier-de Murcia J, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M,Walztinger C, Chambon P, de Murcia G. 1997. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage inmice and in cells. Proc Natl Acad Sci USA 94:7303-7307.
    22. Nozaki T, Masutani M, Watanabe M, Ochiya T, Hasegawa F, Nakagama H, Suzuki H, Sugimura T. 1999. Syncytiotrophoblastic giant cells in teratocarcinoma-like tumors derived from Parpdisrupted mouse embryonic stem cells. Proc Natl Acad Sci USA96:13345-13350.
    
    23. Lindahl, T., M. S. Satoh, et al. (1995). "Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks." Trends Biochem Sci 20(10): 405-11.
    24. Malanga, M. and Althaus, F.R. 2005. DNA damage signaling through poly(ADP-ribose). In Poly(ADP-ribosyl)ation (ed. A. Burkle), pp. 41-50. Landes Bioscience, Georgetown, TX.
    25. Masson, M., Niedergang, C, Schreiber, V., Muller, S., Menissier de Murcia, J., and de Murcia, G. 1998. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol. Cell.Biol. 18:3563-3571.
    26. Ruscetti, T., Lehnert, B.E., Halbrook, J., Le Trong, H., Hoekstra, M.F., Chen, D.J., and Peterson, S.R. 1998. Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J. Biol. Chem. 273: 14461-14467. Carcinogenesis 22: 1-3.
    27. Okano, S., Lan, L., Caldecott, K.W., Mori, T., and Yasui, A. 2003. Spatial and temporal cellular responses to singlestrand breaks in human cells. Mol. Cell. Biol. 23: 3974-3981.
    28. Lan, L., Nakajima, S., Oohata, Y., Takao, M., Okano, S., Masutani, M., Wilson, S.H., and Yasui, A. 2004. In situ analysis of repair processes for oxidative DNA damage in mammalian cells. Proc. Natl. Acad. Sci. 101: 13738-13743.
    29. Morrison, C, Smith, G.C., Stingl, L., Jackson, S.P., Wagner, E.F.,and Wang, Z.Q. 1997. Genetic interaction between PARP and DNA-PK in V(D)J recombination and tumorigenesis. Nat. Genet. 17: 479-482.
    30. Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., Meuth, M., Curtin, N.J., and Helleday, T. 2005. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434: 913-917.
    31. Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N., Johnson, D.A.,Richardson, T.B., Santarosa, M., Dillon, K.J., Hickson, I., Knights, C., et al. 2005. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434: 917-921.
    32. Tutt, A. and Ashworth, A. 2002. The relationship between the roles of BRCA genes in DNA repair and cancer predisposition. Trends Mol. Med. 8: 571-576.
    33. Wooster, R. and Weber, B.L. 2003. Breast and ovarian cancer. N. Engl. J. Med. 348: 2339-2347.
    34. Poirier, G.G., de Murcia, G., Jongstra-Bilen, J., Niedergang, C., and Mandel, P. 1982. Poly(ADP-ribosyl)ation of polynucleosomescauses relaxation of chromatin structure. Proc. Natl. Acad. Sci. 79: 3423-3427.
    35. Mathis, G. and Althaus, F.R. 1987. Release of core DNA from nucleosomal core particles following (ADP-ribose)n-modification in vitro. Biochem. Biophys. Res. Commun. 143: 1049-1054.
    36. Huletsky, A., de Murcia, G., Muller, S., Hengartner, M., Menard, L., Lamarre, D., and Poirier, G.G. 1989. The effect of poly(ADP-ribosyl)ation on native and H1-depleted chromatin. A role of poly(ADP-ribosyl)ation on core nucleosome structure. J. Biol. Chem. 264: 8878-8886.
    37. Kim, M.Y., Mauro, S., Gevry, N., Lis, J.T., and Kraus, W.L. 2004. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 119: 803-814.
    38. Zardo, G., Reale, A., De Matteis, G., Buontempo, S., and Caiafa, P. 2003. A role for poly(ADP-ribosyl)ation in DNA methylation. Biochem. Cell Biol. 81: 197-208.
    39. Robertson, K.D. 2002. DNA methylation and chromatin—Unraveling the tangled web. Oncogene 21: 5361-5379.
    40. Reale, A., Matteis, G.D., Galleazzi, G., Zampieri, M., and Caiafa, P. 2005. Modulation of DNMT1 activity by ADPribose polymers. Oncogene 24: 13-19.
    41. Hassa, P.O. and Hottiger, M.O. 2002. The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-B in inflammatory disorders. Cell Mol. Life Sci. 59: 1534-1553.
    42. Kraus, W.L. and Lis, J.T. 2003. PARP goes transcription. Cell 113: 677-683.
    43. Oikawa A, Tohda H, Kanai M, Miwa M, Sugimura T. 1980. Inhibitors of poly(adenosine diphosphate ribose) polymerase induce sister chromatid exchanges. Biochem Biophys Res Commun 97: 1311-1316.
    
    44. Dominguez I, Mateos S, Cortes F. 2000. Yield of SCEs and translocations produced by 3-aminobenzamide in cultured Chinese hamster cells. Mutat Res 448:29 -34.
    
    45. Burkle A, Meyer T, Hilz H, zur Hausen H. 1987. Enhancement of N-methyl-N_-nitro-N-nitrosoguanidine-induced DNA ampli.cation in a Simian virus 40-transformed Chinese hamster cell line by 3-aminobenzamide. Cancer Res 47:3632-3636.
    
    46. Ding R, Smulson M. 1994. Depletion of nuclear poly(ADP-ribose) polymerase by antisense RNA expression: in.uences on genomic stability, chromatin organization, and carcinogen cytotoxicity. Cancer Res 54:4627- 4634.
    47. de Murcia, J.M., Niedergang, C., Trucco, C., Ricoul, M., Dutrillaux, B., Mark, M., Oliver, F.J., Masson, M., Dierich, A., LeMeur, M., et al. 1997. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc. Natl. Acad. Sci. 94: 7303-7307.
    48. Trucco C, Oliver FJ, de Murcia G, Me' nissier-de Murcia J. 1998. DNA repair defect in poly(ADP-ribose) polymerase-de.cient cell lines. Nucleic Acids Res 26:2644 -2649.
    49. Simbulan-Rosenthal CM, Haddad BR, Rosenthal DS, Weaver Z, Coleman A, Luo R, Young HM, Wang ZQ, Ried T, Smulson ME. 1999. Chromosomal aberrations in PARP(-/-) mice: genome stabilization in immortalized cells by reintroduction of poly(ADPribose) polymerase cDNA. Proc Natl Acad Sci USA 96:13191-13196.
    
    50. d'Adda di Fagagna, F., M. P. Hande, W. M. Tong, P. M. Lansdorp, Z.-Q. Wang, and S. P. Jackson. 1999. Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability. Nat. Genet. 23:76-80.
    51. Nozaki T, Fujihara H, Watanabe M, Tsutsumi M, Nakamoto K, Kusuoka O, Kamada N, Suzuki H, Nakagama H, Sugimura T, Masutani M. 2003. Parp-1 de.ciency implicated in colon and liver tumorigenesis induced by azoxymethane. Cancer Sci 94:497-500.
    52. Kanai M, Tong WM, Sugihara E, Wang ZQ, Fukasawa K, Miwa M. 2003. Involvement of poly(ADP-ribose) polymerase and poly-(ADP-ribosyl)ation in regulation of centrosome function. Mol Cell Biol 23:2441-2462.
    53. Augustin, A., Spenlehauer, C., Dumond, H., Menissier De Murcia, J., Piel, M., Schmit, A.C., Apiou, F., Vonesch, J.L., Kock, M, Bornens, M., et al. 2003. PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression. J. Cell Sci. 116: 1551-1562.
    54. Lingle WL, Barrett SL, Negron VC, et al.Centrosome amplification drives chromosomal instability in breast tumor development.Proc Natl Acad Sci USA, 2002, 99 (4) :1978-1983.
    55. Pihan GA, Wallace J, Zhou Y, et al.Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas.Cancer Res, 2003, 63:1398-1404.
    56. Chang, P., Jacobson, M.K., and Mitchison, T.J. 2004. Poly(ADP-ribose) is required for spindle assembly and structure. Nature 432: 645-649.
    57. Bakondi, E., Bai, P., Szabo, E.E., Hunyadi, J., Gergely, P., Szabo, C, and Virag, L. 2002. Detection of poly(ADP-ribose) polymerase activation in oxidatively stressed cells and tissues using biotinylated NAD substrate. J. Histochem. Cytochem. 50: 91-98.
    58. Vandre, D. D., and G. G. Borisy. 1989. The centrosome cycle in animal cells.Academic Press, Inc., San Diego, Calif.
    59. Fukasawa, K., T. Choi, R. Kuriyama, S. Rulong, and G. F. Vande Woude.1996. Abnormal centrosome amplification in the absence of p53. Science 271:1744-1747.
    60. DePinho, R. A. (2000). "The age of cancer." Nature 408(6809): 248-54.
    61. Tong, W. M., U. Cortes, et al. (2001). "Poly(ADP-ribose) polymerase: a guardian angel protecting the genome and suppressing tumorigenesis." Biochim Biophys Acta 1552(1): 27-37.
    62. Hanahan, D. and R. A. Weinberg (2000). "The hallmarks of cancer." Cell 100(1): 57-70.
    63. Masutani, M., Nakagama, H., and Sugimura, T. 2003. Poly-(ADP-ribose) and carcinogenesis. Genes Chromosomes Cancer 38: 339-348.
    64. Menissier de Murcia, J., Ricoul, M, Tartier, L., Niedergang, C.,Huber, A., Dantzer, F., Schreiber, V., Ame, J.C., Dierich, A., LeMeur, M., et al. 2003. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 22: 2255-2263.
    65. Shiokawa,M., Masutani,M., Fujihara,H., Ueki,K., Nishikawa,R., Sugimura,T., Kubo,H. and Nakagama,H. (2005) Genetic alteration of poly(ADP-ribose) polymerase-1 in human germ cell tumors. Jpn. J. Clin. Oncol., 35, 97-102.
    66. Zong, W.X., Ditsworth, D., Bauer, D.E., Wang, Z.Q., and Thompson, C.B. 2004. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes & Dev. 18:1272-1282.
    67. Masutani, M., Gunji, A., Tsutsumi, M., Ogawa, K., Kamada, N., Shirai, T., Jishage, K., Nakagama, H., and Sugimura, T. 2005. Role of poly-ADP-ribosylation in cancer development. In Poly(ADP-ribosyl)ation (ed. A. Burkle), pp. 205-219. Landes Bioscience, Georgetown, TX.
    68. Tong, W.M., Hande, M.P., Lansdorp, P.M., and Wang, Z.Q. 2001. DNA strand break-sensing molecule poly(ADP-ribose)polymerase cooperates with p53 in telomere function, chromosome stability, and tumor suppression. Mol. Cell. Biol.21: 4046—4054.
    69. Tong WM, Cortes U, Hande MP, Ohgaki H, Cavalli LR, Lansdorp PM, Haddad BR, Wang ZQ. 2002. Synergistic role of Ku80 and poly(ADP-ribose) polymerase in suppressing chromosomal aberrations and liver cancer formation. Cancer Res 62:6990-6996.
    
    70. Tong WM, Ohgaki H, Huang H, Granier C, Kleihues P, Wang ZQ. 2003. Null mutation of DNA strand break-binding molecule poly-(ADP-ribose) polymerase causes medulloblastomas in p53-/- mice. Am J Pathol 162:343-352.
    
    71. Tsutsumi M, Masutani M, Nozaki T, Kusuoka O, Tsujiuchi T,Nakagama H, Suzuki H, Konishi Y, Sugimura T. 2001. Increased susceptibility of poly(ADP-ribose) polymerase-1 knockout mice to nitrosamine carcinogenicity. Carcinogenesis 22:1-3.
    
    72. Levine, A. J. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323-331.
    73. Hollstein, M, D. Sidransky, B. Vogelstein, and C. C. Harris. 1991. p53 mutations in human cancers. Science 253:49-53.
    74. Lockett,K.L., Hall,M.C., Xu,J., Zheng,S.L., Berwick,M., Chuang,S.C., Clark,P.E., Cramer,S.D., Lohman,K. and Hu,J.J. (2004) The ADPRT V762A genetic variant contributes to prostate cancer susceptibility and deficient enzyme function. Cancer Res., 64, 6344-6348.
    75. Hao,B., Wang,H., Zhou,K., Li,Y., Chen,X., Zhou,G, Zhu,Y., Miao,X., Tan,W., Wei,Q., Lin,D. and He,F. (2004) Identification of genetic variants in base excision repair pathway and their associations with risk of esophageal squamous cell carcinoma. Cancer Res., 64, 4378-4384.
    76. Zhang,X., Miao,X., Liang,G., Hao,B., Wang,Y, Tan,W., Li,Y., Guo,Y, He,F., Wei,Q. and Lin,D. (2005) Polymorphisms in DNA base excision repair genes ADPRT and XRCC1 and risk of lung cancer. Cancer Res., 65,722-726.
    77. Zhang, Y., P. A. Newcomb, et al. (2006). "Genetic polymorphisms in base-excision repair pathway genes and risk of breast cancer." Cancer Epidemiol Biomarkers Prev 15(2): 353-8.
    78. Stewart, B.W., and Kleihues, P. (2003). World cancer report. (Lyon: IARC press), pp.188-197.
    79. Miki, Y. et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66-71.
    80. Wooster, R. et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 378, 789-792 (1995).
    81. Venkitaraman, A.R. (2002). Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108, 171-182.
    82. Cressman, V.L., Backlund, D.C., Hicks, E.M., Gowen, L.C., Godfrey, V., and Koller, B.H. (1999). Mammary tumor formation in p53- and BRCA1-deficient mice. Cell Growth Differ. 10, 1-10.
    83. Xu, X., Wagner, K.U., Larson, D., Weaver, Z., Li, C., Ried, T., Hennighausen, L.,Wynshaw-Boris, A., and Deng, C.X. (1999). Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat. Genet. 22, 37-43.
    84. Ludwig, T., Fisher, P., Murty, V., and Efstratiadis, A. (2001). Development of mammary adenocarcinomas by tissue-specific knockout of Brca2 in mice. Oncogene 20, 3937-3948.
    85. Crook, T., Crossland, S., Crompton, MR., Osin, P., and Gusterson, B.A. (1997). p53 mutations in BRCA1-associated familial breast cancer. Lancet 350, 638-639.
    86. Tavassoli,F.A. and Devilee,P. (2003) World Health Organization Classification of Tumours: Pathology and Genetics Tumours of the Breast and Female Genital Organs, IARC Press, Lyon.
    87. Stephens,M., Smith,N.J. and Donnelly,P. (2001) A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet., 68, 978-989.
    88. Edwards, P.A.W., Abram, C.L., and Bradbury, J.M. (1996). Genetic manipulation of mammary epithelial by transplantation. J. Mammary Gland Biol. Neoplasia 1, 75-89.
    89. Donehower, L.A., Harvey, M., Slagle, B.L., McArthur, M.J., Montgomery, C.A. Jr.,Butel, J.S., and Bradley, A. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356,215-221.
    90. Kinzler, K.W. and B. Vogelstein. 1997. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386: 761-763.
    91. Goodwin, P. M., P. J. Lewis, et al. (1978). "The effect of gamma radiation and neocarzinostatin on NAD and ATP levels in mouse leukaemia cells." Biochim Biophys Acta 543(4): 576-82.
    92. Skidmore, C. J., M. I. Davies, et al. (1979). "The involvement of poly(ADP-ribose) polymerase in the degradation of NAD caused by gamma-radiation and N-methyl-N-nitrosourea." Eur J Biochem 101(1): 135-42.
    93. Juarez-Salinas, H., J. L. Sims, et al. (1979). "Poly(ADP-ribose) levels in carcinogen-treated cells." Nature 282(5740): 740-1.
    94. Schreiber, V., D. Hunting, et al. (1995). "A dominant-negative mutant of human poly(ADP-ribose) polymerase affects cell recovery, apoptosis, and sister chromatid exchange following DNA damage." Proc Natl Acad Sci U S A 92(11): 4753-7.
    95. Szabo, C, B. Zingarelli, et al. (1996). "DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite." Proc Natl Acad Sci U S A 93(5): 1753-8.
    96. Schultz N, Lopez E, Saleh-Gohari N, HelledayT. Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic Acids Res 2003; 31: 4959-4964
    97. Jackson SP. Sensing and repairing DNA double strand breaks. Carcinogenesis 2002; 23: 687-696
    98. Lakhani, S. R. et al. The pathology of familial breast cancer: histological features of cancers in families not attributable to mutations in BRCA1 or BRCA2. Clin. Cancer Res. 6, 782-789 (2000).
    99. Hedenfalk, I. et al. Molecular classification of familial non-BRCA1/BRCA2 breast cancer. Proc. Natl Acad. Sci. USA 100, 2532-2537 (2003).
    100. Chenevix-Trench, G. et al. Dominant negative ATM mutations in breast cancer families. J. Natl Cancer Inst. 94, 205-215 (2002).
    101. Stankovic, T. et al. ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am. J. Hum. Genet. 62, 334-345 (1998).
    102. Meijers-Heijboer, H. et al. Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nature Genet. 31, 55-59 (2002).
    103. Pero,R.W., Roush,G.C., Markowitz,M.M. and Miller,D.G. (1990) Oxidative stress, DNA repair, and cancer susceptibility. Cancer Detect. Prev., 14, 555-561.
    104. Shiokawa,M., Masutani,M., Fujihara,H., Ueki,K., Nishikawa,R., Sugimura,T., Kubo,H. and Nakagama,H. (2005) Genetic alteration of poly(ADP-ribose) polymerase-1 in human germ cell tumors. Jpn. J. Clin. Oncol., 35, 97-102.
    105. Laniel,M.A., Poirier,G.G. and Guerin,S.L. (2004) A conserved initiator element on the mammalian poly(ADP-ribose) polymerase-l promoters, in combination with flanking core elements, is necessary to obtain high transcriptional activity. Biochim. Biophys. Acta, 1679, 37-46.
    106. Pascual,M., Lopez-Nevot,M.A., Caliz,R., Ferrer,M.A., Balsa,A., Pascual-Salcedo,D. and Martin,J. (2003) A poly(ADP-ribose) polymerase haplotype spanning the promoter region confers susceptibility to rheumatoid arthritis. Arthritis Rheum., 48, 638-641.
    107. Althaus,F.R. (2005) Poly(ADP-ribose): a co-regulator of DNA methylation? Oncogene, 24, 11-12
    108. Miyamoto,T., Kakizawa,T. and Hashizume,K. (1999) Inhibition of nuclear receptor signalling by poly(ADP-ribose) polymerase. Mol. Cell. Biol., 19, 2644-2649.
    109. Mowat, M. R. (1998). "p53 in tumor progression: life, death, and everything." Adv Cancer Res 74: 25-48.
    110. Bargonetti, J. and J. J. Manfredi (2002). "Multiple roles of the tumor suppressor p53." Curr Opin Oncol 14(1): 86-91.
    111. Giaccia, A. J. and Kastan, M. B. (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973-2983.
    112. Maki, C. G. and Howley, P. M. (1997) Ubiquitination of p53 and p21 is differentially affected by ionizing and UV radiation. Mol. Cell. Biol. 17, 355-363.
    113. Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387: 299-303.
    114. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387: 296-299.
    115. Wesierska-Gadek J, Schmid G, Cerni C (1996b) ADP-ribosylation of wild-type p53 in vitro: binding of p53 protein to speci.c p53 consensus sequence prevents its modi.cation. Biochem Biophys Res Commun 224: 96-102.
    116. Wesierska-Gadek J, Wojciechowski J, Schmid G (2003a) Central and carboxy-terminal regions of human p53 protein are essential for interaction and complex formation with PARP-1. J Cell Biochem 89: 220-232.
    117. Wesierska-Gadek J, Wojciechowski J, Schmid G (2003b) Phosphorylation regulates the interaction and complex formation between wt p53 protein and PARP-1. J Cell Biochem 89: 1260-1284.
    118. Homayoun Vaziri, Michael D.West, Richard C. et al. (1997) ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase EMBO Journal Vol.16 No. 19 pp.6018-6033.
    119. Gerald Schmid, Jacek Wojciechowski et al.2005. Advantage of a baculovirus expression system for protein - protein interaction studies. Involvement of pos.ranslational phosphorylation in the interaction between wt p53 protein and poly(ADP-ribose) polymerase-1
    
    120. Petrini, J. H. and T. H. Stracker (2003). "The cellular response to DNA double-strand breaks: defining the sensors and mediators." Trends Cell Biol 13(9): 458-62.
    121. Celeste, A., O. Fernandez-Capetillo, et al. (2003). "Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks." Nat Cell Biol 5(7): 675-9.
    122. Venkitaraman,A.R. (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell, 108, 171-182.
    123. Deng,C.X. (2002) Tumor formation in Brca1 conditional mutant mice. Environ. Mol. Mutagen., 39, 171-177.
    124. Brodie,S.G. and Deng,C.X. (2001) BRCA1-associated tumorigenesis: what have we learned from knockout mice? Trends Genet., 17,S18-S22.
    125. Deng,C.X. (2001) Tumorigenesis as a consequence of genetic instability in Brcal mutant mice. Mutat. Res., 477, 183-189.
    126. Kinzler,K.W. and Vogelstein,B. (1997) Cancer-susceptibility genes. Gatekeepers and caretakers. Nature, 386, 761-763.
    127. Wang, Y., D. Cortez, et al. (2000). "BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures." Genes Dev 14(8): 927-39.
    128. Yang YG, Cortes U, Patnaik S, Jasin M, Wang ZQ (2004) Ablation of PARP-1 does not interfere with the repair of DNA double-strand breaks, but compromises the reactivation of stalled replication forks. Oncogene 23: 3872-3882
    129. Hochegger, H., D. Dejsuphong, et al. (2006). "Parp-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells." Embo J 25(6): 1305-14.
    130. Hochegger, H., D. Dejsuphong, et al. (2006). "Parp-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells." Embo J 25(6): 1305-14.
    131. Li B, Navarro S, Kasahara N, Comai L (2004) Identification and biochemical characterization of a Werner's syndrome protein complex with Ku70/80 and poly(ADP-ribose) polymerase-1. J Biol Chem 279: 13659-13667
    132. Jackson, S. P. (2002). "Sensing and repairing DNA double-strand breaks." Carcinogenesis 23(5): 687-96.
    133. Zhou, B. B. and S. J. Elledge (2000). "The DNA damage response: putting checkpoints in perspective." Nature 408(6811): 433-9.
    134. Shiloh, Y. (2001). "ATM and ATR: networking cellular responses to DNA damage." Curr Opin Genet Dev 11(1): 71-7.
    135. Abraham, R. T. (2001). "Cell cycle checkpoint signaling through the ATM and ATR kinases." Genes Dev 15(17): 2177-96.
    136. Shiloh, Y. (2003). "ATM and related protein kinases: safeguarding genome integrity." Nat Rev Cancer 3(3): 155-68.
    137. Noel G, Giocanti N, Fernet M, Megnin-Chanet F, Favaudon V (2003) Poly(ADP-ribose) polymerase (PARP-1) is not involved in DNA double-strand break recovery. BMC Cell Biol 4: 7
    138. H, Nakagama H, Wakabayashi K, Sugimura T (1999) Function of poly(ADP-ribose) polymerase in response to DNA damage: genedisruption Schultz N, Lopez E, Saleh-Gohari N, Helleday T (2003) Poly(ADPribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic Acids Res 31: 4959-4964.
    139. Dantzer F, Giraud-Panis MJ, Jaco I, Ame' JC, Schultz I, et al. 2004. Functional Interaction between Poly(ADP-Ribose) Polymerase 2 (PARP-2) and TRF2: PARP Activity Negatively Regulates TRF2. Mol Cell Biol 24: 1595-1607.
    140. Schreiber V, Ame JC, Dolle P, Schultz I, Rinaldi B, et al. 2002. Poly(ADPribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 277:23028-23036.
    141. Augustin A, Spenlehauer C, Dumond H, Menissier-De Murcia J, Piel M, et al. 2003. PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression. J Cell Sci 116:1551-1562.
    142. Delaney CA, Wang LZ, Kyle S, White AW, Calvert AH, Curtin NJ, Durkacz BW, Hostomsky Z, Newell DR. Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly (adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin Cancer Res 2000; 6: 2860-2867
    143. Tentori L, Leonetti C, Scarsella M, D'Amati G,Vergati M, Portarena I, Xu W, Kalish V, Zupi G,Zhang J, Graziani G. Systemic administration ofGPI 15427, a novel poly(ADP-ribose) polymerase-1 inhibitor, increases the antitumor activity of temozolomideagainst intracranial melanoma, glioma ,lymphoma. Clin Cancer Res 2003; 9: 5370-5379 2: 371-382
    144. Calabrese CR, Almas sy R, Bar ton S, Batey et al., Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose)polymerase-l inhibitor AG14361. J Natl Cancer Inst 2004; 96: 56-67
    145. Miknyoczki SJ, Jones-Bolin S, Pritchard S,et al., Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADPribose) polymerase inhibitor. Mol Cancer Ther 2: 371-382
    146. Tentori L, Leonetti C, Scarsella M, et al., distribution and efficacy as chemosensitizer of an oral formulation of PARP-1 inhibitor GPI 15427 in experimental models of CNS tumors. Int J Oncol 2005; 26: 415-422.
    Ahnstrom, G. and Ljungman, M. (1988) Mutat. Res. 194, 17-22
    Anderson, M.G., Scoggin, K.E., Simbulan-Rosenthal, C.M., 2002 J. Virol. 74, 2169-2177.
    
    Brown, D.T. 2003. Cell Biol. 81, 221-227.
    Buki, K. G., Bauer, P. I., Hakam, A. and Kun, E. 1995. J. Biol. Chem. 270, 3370-3377
    Caldecott, K. W., Aoufouchi, S., et al, 1996, Nucleic Acids Res. 24, 4387-4394
    Cervellera, M.N., and Sala, A. (2000). J. Biol. Chem. 275, 10692-10696.
    Chambon P, Weil JD, Mandel P. 1963. Biochem Biophys Res Commun 11:39.
    D'Amours, D., Desnoyers, S., D'Silva, I., and Poirier, G. G. 1999. Biochem. J.342, 249-268.
    
    Dantzer F, Schreiber V, Niedergang C, Trucco C.1999. Biochimie 81:69 -75.
    De Murcia, G. and Menissier-de Murcia, J. 1994. Trends Biochem. Sci. 19,172-176
    Durkacz, B. W., Omidiji, O., Gray, A. and Shall, S. (1980) Nature (London) 283, 593-596
    Friedberg, E. C., et al. (1995) DNA Repair and Mutagenesis, ASM Press, Washington, DC Goodwin, P. M., Lewis, P. J., Davies, M. I., et al, (1978)Biochim. Biophys. Acta 543, 576-582
    
    Gradwohl, G., Menissier-de Murcia, J. 1990. Proc. Natl. Acad. Sci. U.S.A. 87, 2990—2994.
    
    Gradwohl, G., Mazen, A., et al, 1987. Biochem. Biophys. Res. Commun. 148,913-919
    Hassa, P.O., and Hottiger, M.O. (2002). Cell. Mol. Life Sci. 59, 1534-1553.
    Ikejima, M., Noguchi, S., Yamashita, R., et al. 1990. J. Biol. Chem. 265, 21907-21913
    Jean-Christophe Ame , Catherine Spenlehauer, et al. 2004. BioEssays 26:882-893
    John T. Lis., et al, 2003. Cell, Vol. 113, 677-683
    Ju B. G. et al., 2004, Cell. 119, 815-829
    Junod, A. F., Jornot, L. and Peterson, H. (1989) J. Cell. Physiol. 140, 177-185
    Kawaichi, M., Ueda, K. and Hayaishi, O. 1981. J. Biol. Chem. 256, 9483-9489
    Kellum, R. (2003). Curr. Top. Microbiol. Immunol. 274, 53-77.
    Kraus, W.L., and Lis, J.T. (2003). PARP goes transcription. Cell 113, 677-683.
    Kubota, Y., Nash, R. A., Klungland, A., Schar, P., et al. (1996) EMBO J. 15, 6662-6670
    Kun, E., Kirsten, E., and Ordahl, C.P. (2002). J. Biol. Chem. 277, 39066-39069.
    Kupper, J. H., Muller, M. and Burkle, A. (1996) Cancer Res. 56, 2715±2717
    Kupper, J.-H., Muller, M., Jacobson, M. K., et al. (1995) Mol. Cell. Biol. 15, 3154-3163
    Kurosaki, T., Ushiro, H., Mitsuuchi, Y., et al. 1987. J. Biol. Chem.262, 15990-15997
    Lindahl, T., Satoh, M. S., Poirier, G. G.et al. 1995. Trends Biochem. Sci. 20, 405-411
    Margrit-Airin Hans, Marcus Muller, Mirella M. F, et al. 1999. Oncogene, 18, 7010-7015
    Masson, M., Niedergang, C., et al. 1998. Mol. Cell. Biol. 18, 3563-3571
    Masson, M., Menissier-de Murcia, J., et al. 1997. Gene 190, 287-296
    Masson M, Niedergang C, Schreiber V, Muller S. 1998. Mol Cell Biol 18:3563-3571.
    Masutani, M., Suzuki, H.,, et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 2301-2304
    Menissier-de Murcia, J., Niedergang, C, et al. (1997) Proc. Natl.Acad. Sci. U.S.A. 94, 7303-7307
    Michelle Ricoull, Laurence Tartier, et al. 2003. EMBO J. 22 , 2255-2263
    Miyazawa, K., Kitamura, A. & Kitamura, N. (1991) Biochemistry 30, 9170-9176.
    Miyamoto, T., Kakizawa, T., and Hashizume, K. (1999). Cell. Biol. 19, 2644-2649.
    Molinete, M., Vermeulen, W., Burkle, A., et al. (1993) EMBO J. 12, 2109-2117
    Narushima, Y., Unno, M., Nakagawara, K., Mori, M., et al. (1997) Gene 185, 159-168.
    Nie, J., Sakamoto, S., Song, D., Qu, Z., Ota, K., et al, 1998, FEBS Lett.424, 27-32
    Oei, S.L., and Shi, Y. (2001). Biochem. Biophys.Res. Commun. 284, 450-454.
    Oei, S. L., Griesenbeck, J., et al. 1997. Biochem. Biophys. Res. Commun. 240, 108-111
    Okamoto, H. (1996) in Lessons from Animal Diabetes VI, (Birkha"user,Boston), pp. 97-111.
    Richmond, T.J., and Davey, C.A. 2003. Nature 423, 145-150.
    Sastry, S. S., Buki, K. G. and Kun, E. 1989. Biochemistry 28, 5670-5680
    Satoh, M. S. and Lindahl, T. (1992) Nature (London) 356, 356-358

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700