用户名: 密码: 验证码:
1. 内侧颞叶癫痫的遗传易感性研究 2. 发作性运动源性舞蹈徐动症致病基因的精细定位和突变筛查
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分内侧颞叶癫痫的遗传易感性研究
     研究背景
     癫痫是最常见的神经系统疾病之一,发达国家的患病率达到5~10‰,中国的患病率为3.5~4.8‰。作为临床上主要的药物难治性癫痫,内侧颞叶癫痫(mesialtemporal lobe epilepsy,MTLE)是发病率最高的成人发作的局灶性癫痫。散发的MTLE是一类遗传因素和环境因素共同作用的复杂性疾病。基因水平变异可能通过影响抽搐发作易感性、药物反应及临床特征等多个方面对MTLE的发生、发展及预后产生效果。环境因素包括头部外伤、中枢神经系统感染、产伤、热性惊厥或颅脑肿瘤等。目前的研究提示,包括MTLE在内的癫痫等发作性疾病是一种离子通道病,但MTLE的遗传易感基因方面各种群间还没有发现一致的证据。本文应用病例对照的研究方法,以γ-氨基丁酸B型受体2亚基(γ-aminobutyric acid type B receptor 2,GABBR2)基因、γ-氨基丁酸B型受体1亚基(γ-aminobutyric acid type B receptor 1,GABBR1)基因、朊蛋白(prion protein,PRNP)基因和大电导钙离子激活钾离子通道M亚系β4亚基(potassium large conductance calcium-activated channel,subfamily M,beta member 4,KCNMB4)基因为候选基因,分析遗传因素与中国汉族人群MTLE的相关性。
     研究方法
     以MTLE患者和非癫痫受试者为研究对象,应用聚合酶链反应-限制性片段长度多态性(polymerase chain reaction-restriction fragment length polymorphism,PCR-RFLP)方法、测序方法检测中国汉族人群标签SNPs(tag SNPs),结合功能SNPs,分析这些SNPs与MTLE的相关性并探讨基因型/单倍型与癫痫临床表型的关联。
     研究结果
     1.GABBR2基因多态性与MTLE的相关性
     在315名MTLE患者和318名非癫痫对照受试者中,经logistic回归分析调整性别混杂因素影响后,GABBR2基因rs967932的A等位基因在MTLE组的频率显著高于非癫痫对照组频率(48.43%vs.41.59%;递加模型下P=0.018,OR=1.305,95%CI 1.048-1.624,显性模型下P=0.003,OR=1.667,95%CI 1.186-2.343)。Bonferroni多重比较校正后,显性模型下rs967932的基因型频率组间分布仍可见显著性差异(P=0.036)。另外,rsl999501和rs944688的基因型频率在显性模型下也可见MTLE组和非癫痫对照组间的显著性差异(P分别为0.033和0.025),但这些差异在Bonferroni校正后消失。GABBR2基因rs3780428、rs1999501、rs967932和rs944688组成的单倍型G-C-A-C在MTLE组的频率显著高于非癫痫对照组频率(12.26%vs.6.5 1%,P=0.0004)。Bonferroni校正后单倍型G-C-A-C仍为MTLE的风险因素(P=0.002,OR=2.028,95%CI 1.359-3.024)。携带此单倍型MTLE患者的发病时间较不携带患者显著提前(14岁vs.19岁,P=0.028)。
     2.GABBRl基因多态性与MTLE的相关性
     在315名MTLE患者和318名非癫痫对照受试者中,rs29259的C等位基因频率在非癫痫对照组的频率显著高于MTLE组(显性模型下P=0.046,OR=0.697,95%C1 0.488—0.994),但Bonferroni校正后显著性差异消失(P=0.276)。rs29261的各基因型/等位基因频率在递加模型、显性模型和隐性模型下均未见MTLE组和非癫痫对照组间的分布差异。G1465A位点则未检测出多态性。由rs29259和rs29261组成的单倍型频率组间分布分析中,未见各单倍型频率在MTLE组与非癫痫对照组间的显著分布差异。将MTLE患者按照是否合并海马硬化进行分组,比较有/无海马硬化患者组间rs29295和rs29261的基因型及等位基因频率,仍未见显著的组间差异。
     3.PRNP基因多态性与MTLE的相关性
     在320名MTLE患者和558名非癫痫对照受试者中,没有发现PRNP基因M129V的VV基因型。M129V的MM和MV基因型/等位基因频率在MTLE组和非癫痫对照组间的频率分布没有统计学差异(基因型:P=0.240;等位基因:P=0.240)。将受试者按照性别分组分析时,该位点的各基因型/等位基因频率未见显著的组间差异。将受试者按照小于50岁和不小于50岁分组分析时,该位点的各基因型/等位基因频率仍无组间差异。临床表型分析中未见携带该位点MV基因型MTLE患者的显著异常。
     4.KCNMB4基因多态性与MTLE的相关性
     在合计321名MTLE患者和496名非癫痫对照受试者中,KCNMB4基因的rs787931、rs9634299和rs10784846的各基因型/等位基因频率在递加模型、显性模型和隐性模型下均未见MTLE组和非癫痫对照组间的频率分布差异。这三个位点组成的单倍型频率分布分析中,未见MTLE组和非癫痫对照受试者组间频率大于3%常见单倍型的频率分布差异。将MTLE患者按照是否合并海马硬化进行分组,比较有/无海马硬化患者组间3个位点的基因型及等位基因频率,仍未见显著的组间差异。
     研究结论
     综合上述,本研究为以GABBR2基因、GABBR1基因、PRNP基因和KCNMB4基因为候选基因、以中国汉族MTLE患者为病例、以非癫痫受试者为对照开展的病例对照研究,可得出如下结论:携带GABBR2基因rs967932-A等位基因是MTLE发生的危险因素,GABBR2基因是中国汉族MTLE的遗传易感基因;而GABBR1基因、PRNP基因和KCNMB4基因对MTLE易感性的贡献可能不大。
Backgrounds
     Epilepsy is one of the most common neurological disorders with 5~10‰of morbidity in developed countries.Prevalence rate of epilepsy in China is 3.5~4.8‰and mesial temporal lobe epilepsy(MTLE) possesses the highest incidence of adult onset focal seizures. Sporadic MTLE is regarded as a complex disease attributed to the interaction of genetic factors and environmental factors.Genetic variations can affect the epileptogenesis, development and prognosis of MTLE by multiple facets including the susceptibility of seizure on-set,medication response and seizure features.Head trauma,brain infection, birth injury,and febrile convultion are environmental factors of MTLE.Although the view that the paroxysmal disorder including epilepsy is a channolapathy disease is accepted,the gene involved in genetic susceotibility of MTLE is still unknown.This study was then planned to test the hypothesis that one or more variants inγ-aminobutyric acid type B receptor 2(GABBR2),γ-aminobutyric acid type B receptor 1(GABBR1),prion protein (PRNP) and potassium large conductance calcium-activated channel subfamily M beta member 4(KCNMB4) genes are associated with sporadic MTLE using tag SNPs method in a Han Chinese MTLE patients and non-epilepsy control subjects design.
     Methods
     Eligible MTLE patients and non-epilepsy control subjects were recruited in this study. Polymorphisms including tag SNPs of 4 candidate genes were genotyped by polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP),and then the relationship between allele/gentotype distribution and MTLE presence were analyzed, the effect to disease phenotype was also discussed.
     Results
     1.Association of tag SNPs in GABBR2 gene with MTLE
     We assessed the association of each genotype by logistic regression analyses adjusting for sex in additive,dominant and recessive genetic model in a 315-case-and-318-control sample set.Three tag SNPs of GABBR2 were found to be associated with the risk of MTLE. rs967932 A-allele showed an increased risk of MTLE when applying an additive and dominant genetic model(P = 0.018,OR = 1.305,95%CI 1.048-1.624 and P = 0.003,OR = 1.667,95%CI 1.186-2.343).rs1999501 of GABBR2 gene showed an increased risk of MTLE with a dominant model(P = 0.033,OR = 1.469,95%CI 1.032-2.090),while rs944688 conferred a reduced risk of disease with a dominant model(P = 0.025,OR = 0.608,95%CI 0.393-0.939).After a Bonferroni correction,only rs967932 A-allele significantly increased the risk of MTLE in a dominant model(P = 0.036).There was no significant difference in genotype frequencies between cases and controls for rs3780428. Comparison analysis of haplotype frequencies demonstrated that the frequency of haplotype G-C-A-C(rs3780428-rs1999501-rs967932-rs944688) was significantly increased in MTLE patients compared to controls(12.26%vs.6.51%,P = 0.0004).After a Bonferroni correction was applied,haplotype G-C-A-C was still the significant risk factor (P = 0.0024,OR = 2.028,95%CI 1.359-3.024).Analyses of the relationship between haplotype G-C-A-C and clinical phenotypes revealed that haplotype G-C-A-C was associated with an earlier onset age compared to other haplotype(14 years vs.19 years,P = 0.028)
     2.Association of tag SNPs in GABBR1 gene with MTLE
     We assessed the association of each genotype by logistic regression analyses adjusting for sex in additive,dominant and recessive genetic model in a 315-case-and-318-control sample set,and one tag SNPs of GABBR1 were found to be associated with the risk of MTLE.rs29259 C-allele showed an reduced risk of MTLE when applying an dominant genetic model(P = 0.046,OR = 0.697,95%CI 0.488-0.994),but did not reach a significant level when Bonferroni correction was applied(P = 0.276).There was no significant difference in genotype frequencies between cases and controls for rs29261. The G1465A genotype of all subjects was GG.Comparison analysis of haplotype frequencies demonstrated that no haplotype of rs29259-rs29261 was significantly different in MTLE patients compared to controls.When MTLE patients were subgrouped according to the presence of hippocampal sclerosis(HS),still no differences were detected between subgroups at the genotypes/alleles of rs29259 and rs29261.
     3.Association of polymorphisms in PRNP gene with MTLE
     The frequency of V allele was 0.94%in 320 MTLE cases and 1.61%in 558 controls. No significant differences in the genotype(P = 0.24) or allele(P = 0.24) frequencies of M129V polymorphism in MTLE patients and controls were observed.Even when the samples were stratified by gender,no significant association was noted between the cases and controls.By sub-grouping control subjects in 2 age groups,i.e.,individuals aged 13-49 years(34.8%) and those aged 50-89 years(65.2%),additional statistical analysis of the relation of the genotype and M129V allele to age was obtained.No significant difference was observed between MTLE patients and controls with regard to genotype distribution(P = 0.76 and 0.43 respectively) or allelic frequency(P = 0.06 and 0.43 respectively).
     We also analyzed clinical features according to the presence of 129V allele in MTLE patients.No apparent differences were found between 6 patients heterozygous for M129V and others with the MM genotype with respect to age,ratio of males,age at onset,aura,family history,antecedent FC,MRI signs,and response to medication.
     4.Association of tag SNPs in KCNMB4 with MTLE
     We assessed the association of each genotype by logistic regression analyses adjusting for sex in additive,dominant and recessive genetic model in a total 321-cases-and-496-control sample set,and none of three tag SNPs KCNMB4 were found to be associated with the risk of MTLE.Comparison analysis of haplotype frequencies demonstrated that no haplotype of rs787931-rs9634299-rs10784846 was significantly different in MTLE patients compared to controls.When MTLE patients were subgrouped according to the presence of hippocampal sclerosis(HS),still no differences were detected between subgroups at the genotypes/alleles of rs787931,rs9634299 or rs10784846.
     Conclusions
     In summary,GABBR2,GABBR1,PRNP and KCNMB4 were selected as candidate genes to explore their genetic roles to MTLE by a tag-SNP-based method in a Han Chinese MTLE patients and non-epileptic control subjects design.It suggested that A-allele of GABBR2 rs967932 is the at-risk factor to MTLE,and the role of GABBR1, PRNP and KCNMB4 in the aeteology of MTLE may be small or modest.
引文
1. Sander JW. The epidemiology of epilepsy revisited. Curr Opin Neurol 2003; 16,165-170.
    2. Zhu Q, Yuan XR, Sun ZD. The epidemiological and sociological analysis current situation and our strategies of the epilepsy. J Shanxi Med Univ (preclinical medical education edition) 2005;7, 217-220.
    3. Samuel F. Graeme D. The hippocampal sclerosis whodunit: enter the genes. Ann Neurol, 2000;47,557-558.
    4. Kanemoto K, Kawasaki J, Miyamoto T, et al. IL-1β, IL-α and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy. Ann Neurol, 2000;47,571-574.
    5. Henshall DC, Clark RS, Adelson PD, et al. Alterations in bcl-2 and caspase gene family protein expression in human temporal lobe epilepsy. Neurol, 2000;55,250-257.
    6. Vadlamudi L, Andermann EE. Epilepsy in twins: insights from unique historical data of William Lennox .Neurol, 2004;62(7): 1127-1133.
    7. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273,1516-1517.
    8. Gudmundsson J, Sulem P, Rafnar T,et al. Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet, 2008;40,281-283.
    9. Nath SK, Han S, Kim-Howard X, et al. A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet, 2008;40,152-154.
    10. Plenge RM, Cotsapas C, Davies L et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat genet, 2007;39,1477-1482.
    11. Helgason A, Palsson S, Thorleifsson G, et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet, 2007;39,218-225.
    12. Sugawara T, Tsurubuchi Y, Agarwala KL, et al. A missense mutation of the Nat channel alpha II subunit gene, Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci, 2001;98, 6384-6389.
    13. Escayg A, MacDonald BT, Meisler MH, et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFSt2. Nat Genet, 2000;24, 343-345.
    14. Claes L, Del-Favero J, Ceulemans B, et al. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet, 2001 ;68,1327-1332.
    15. Heron SE, Phillips HA, Mulley JC, et al, Genetic variation of CACNA1H in idiopathic generalized epilepsy. Ann Neurol, 2004;55,595-596.
    16. Wallace RH, Wang DW, Singh R, et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na(+)-channel beta-1 subunit gene SCN1B. Nat Genet, 1998; 19,366-370.
    17. Chen Y, Lu J, Pan H, et al. Ann Neurol. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol, 2003;54,239-243.
    18. Escayg A, de Waard M, Lee DD,et al. Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet, 2000;66,1531-1539.
    19. Chioza B, Wilkie H, Nashef L, et al. Association between the alpha-1A calcium channel gene CACNA1A and idiopathic generalized epilepsy. Neurology, 2001 ;56, 1245-1246.
    20. Combi R, Dalpra L, Tenchini ML, et al. Autosomal dominant nocturnal frontal lobe epilepsy-a critical overview. J Neurol, 2004;251,923-934.
    21. Dedek K, Kunath B, Kananura C, et al. Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K(+) channel. Proc Nat Acad Sci, 2001;98,12272-12277.
    22. Charlier C, Singh NA, Ryan SG, et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet, 1998; 18,53-55.
    23. Eunson LH, Rea R, Zuberi SM, et al. Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability. Ann Neurol, 2000;48,647-656.
    24. Baulac S, Huberfeld G, Gourfinkel-An I, et al. First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet, 2001;28,46-48.
    25. Wallace RH, Marini C, Petrou S, et al. Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet, 2001;28,49-52.
    26. Kananura C, Haug K, Sander T, et al. A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch Neurol, 2002;59,1137-1141.
    27. Harkin LA, Bowser DN, Dibbens LM, et al. Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet, 2002;70,530-536.
    28. Cossette P, Liu, L., Brisebois, K., Dong, H., Lortie, A., Vanasse, M., Saint-Hilaire, J.M., Carmant, L., Verner, A., Lu, W.Y. et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet, 2002;31,184-189.
    29. Dibbens LM, Feng HJ, Richards MC, et al. GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet, 2004; 13,1315-1319.
    30. Haug K, Warnstedt M, Alekov AK, et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet, 2003;33,527-532.
    31. D'Agostino D, Bertelli M, Gallo S, et al. Mutations and polymorphisms of the CLCN2 gene in idiopathic epilepsy. Neurol, 2004;63,1500-1502.
    32. Kalachikov S, Evgrafov O, Ross. B, et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat Genet, 2002;30,335-341.
    33. Suzuki T, Delgado-Escueta AV, Aguan K, et al. Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet 2004;36,842-849.
    34. Pal DK, Evgrafov OV, Tabares P, et al. BRD2 (RING3) is a probable major susceptibili gene for common juvenile myoclonic epilepsy. Am J Hum Genet, 2003;73,261-270.
    35. Greenberg DA, Cayanis E, Strug L, et al. Malic enzyme 2 may underlie susceptibility to adolescent-onset idiopathic generalized epilepsy. Am J Hum Genet, 2005;76,139-146.
    36. Jackson GD. Visual analysis in mesial temporal sclerosis. In: CascinoGD, Jack CR Jr, eds. Neuroimaging in epilepsy: principles and practice. Boston: Butterworth-Heinemann, 1996;73-110.
    37. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res, 2005;15(2):97-98.
    38. Dupont WD and Plummer WD. PS power and sample size program available for free on the Internet. Controlled Clin Trials,1997;18:274.
    39. de Bakker PI, Yelensky WR. Pe'er I, et al. Efficiency and power in genetic association studies. Nat Genet, 2005;37:1217-1223.
    40. Janet AC, Eva M, Alan SL. Distribution of the GABAB receptor subunit gb2 in rat CNS.Brain Res,2000;860(1-2):41-52.
    41. Klemens K, Barbara M, Valerie S, et al GABAb-receptor subtypes assemble into functional heteromeric complexes. Lett to Nature, 396(17)683-687.
    42. Marta MM, Yuh NJ, Lily YJ, et al. A Trafficking Checkpoint Controls GABAB Receptor Heterodimerization. Neuron, 2000;27:97-106.
    43. Luigi FA, Sergi F, Carme L, et al. Molecular Mechanisms and Therapeutical Implications of Intramembrane Receptor/Receptor Interactions among Heptahelical Receptors with Examples from the Striatopallidal GABA Neurons. Pharmacol Rev, 2003;55:509-550.
    44. Nehring RB, Horikawa HP, El Far O, et al. The metabotropic GABAB receptor directly interacts with the activating transcription factor 4. J Biol Chem, 2000;275(45):35185-35191.
    45. Bernhard B, Klemens K, Johannes M, et al. Molecular structure and physiological functions of GABAb receptors. Physiol Rev, 2004; 10.1152,S4:835-867.
    46. Prosser HM, Gill CH, Hirst WD, et al. Epileptogenesis and enhanced prepulse inhibition in GABA-B1 deficient mice. Mol Cell Neurosci, 2001;17:1059-1070.
    47. Schuler V, Luscher C, Blanchet C, et al. Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA-B responses in mice lacking GABA-B1. Neuron, 2001 ;31:47-58.
    48. Gordon YKNG, Sandrine B, Richard S, et al. γ-Aminobutyric acid type b receptors with specific heterodimer composition and postsynaptic actions in hippocampal neurons are targets of anticonvulsant Gabapentin action. Mol Pharmacol, 2001; 59:144-152.
    49. Princivalle AP, Duncan JS, Thorn M, et al. GABA(B1a), GABA(B1b) AND GABA(B2) mRNA variants expression in hippocampus resected from patients with temporal lobe epilepsy. Neurosci.2003;122(4):975-984.
    50. Sabine F, Susanne P, Thomas C, et al. Increased expression of g-aminobutyric acid type B receptors in the hippocampus of patients with temporal lobe epilepsy. Neurosci Lett, 2003;352:141-145.
    51. Georg W, Richard M, Michael NS, et al. Association analysis of exonic variants of the GABAB-receptor gene and alpha electroencephalogram voltage in normal subjects and alcohol-dependent patients. Behav Genet, 2003;33(1):7-13.
    52. Georg W, Michael S, Jerzy S, et al. Association of EEG coherence and an exonic GABABR1 gene polymorphism. Am J Med Genet B, 2003; 117B:51-56.
    53. Gambardella A, Manna I, Labate A, et al. GABA(B) receptor 1 polymorphism (G1465A) is associated with temporal lobe epilepsy. Neurol, 2003;60(4):560-563.
    54. Liankun R, Liri J, Boyu Z. Lack of GABABR1 gene variation (G1465A) in a Chinese population with temporal lobe epilepsy. Seizure, 2005;14: 611-613.
    55. Salzmann A, Moulard B, Crespel A, et al. GABA receptor 1 polymorphism (G1465A) and temporal lobe epilepsy. Epilepsia, 2005;46(6):931-933.
    56. Stogmann E, Zimprich A, Baumgartner C et al. Lack of association between a GABA receptor 1 gene polymorphism and temporal lobe epilepsy. Epilepsia, 2006;47(2):437-439.
    57. Nigel CK T, Sarah EH, Ingrid ES, et al. Is variation in the GABA(B) receptor 1 gene associated with temporal lobe epilepsy. Epilepsia, 2005;46(5):778-780.
    58. Gianpiero LC, John ML, Chantal D, et al. Failure to replicate previously reported genetic associations with sporadic temporal lobe epilepsy: where to from here? Brain, 2005;128:1832-1840.
    59. Shaochun M, Bassel AK, James SS, et al. The GABBR1 locus and the G1465A variant is not associated with temporal lobe epilepsy preceded by febrile seizures. BMC Med Genet, 2005;(6)13:l-5.
    60. Kauffman MA, Levy EM, Consalvo D, et al. GABABR1 (G1465A) gene variation and temporal lobe epilepsy controversy: New evidence. Seizure, 2008 Feb 4[Epub ahead of print].
    61. Aguzzi A, Weissmann C. Prion research: the next frontiers. Nature, 1997;389:795-798.
    62. Chiarini LB, Freitas AR, Zanata SM, et al. Cellular prion protein transduces neuroprotective signals. EMBO J, 2002;21:3317-3326.
    63. Herms J, Tings T, Gall S, et al. Evidence of presynaptic localization and function of the prion protein. J Neurosci, 1999; 19:8866-8875.
    64. Martins VR, Mercadante AF, Cabral AL, et al. Insights into the physiological function of cellular prion protein. Brazilian J Med Biol Res, 2001;34:585-595.
    65. Walz R, Castro RMRPS, Velasco TR, et al. Cellular priron protein: implication in seizures and epilepsy. Cellular Mol Neurobiol, 2002;22:249-257.
    66. Walz R, Amaral OB, Rockenbach IC, et al. Increased sensitivity to seizures in mice lacking cellular prion protein. Epilepsia, 1999;40:1679-1682.
    67. Rangel A, Burgaya F, Gavin R, et al. Enhanced susceptibility of Prnp-deficient mice to kainate-induced seizures, neuronal apoptosis, and death: Role of AMPA/kainate receptors. J Neurosci Res, 2007;85:2741-2755.
    68. Walz R, Castro RM, Landemberger MC, et al. Cortical malformations are associated with a rare polymorphism of cellular prion protein. Neurol, 2004;63:557-560.
    69. Walz R, Castro RM, Landemberger MC, et al. Correction: Cortical malformations are associated with a rare polymorphism of cellular prion protein. Neurol, 2007;69:414-416.
    70. Walz R, Castro RM, Velasco TR, et al. Voluntary Retraction of: Surgical outcome in mesial temporal sclerosis correlates with prion protein gene variant. Neurol, 2007;69:405-405.
    71. Tahiri AA, Gill AC, Disterer P, et al. Methionine 129 variant of human prion protein oligomerizes more rapidly than the valine 129 variant: implications for disease susceptibility to Creutzfeldt-Jakob disease. J Biol Chem, 2004;279:31390-31397.
    72. Palmer MS, Dryden AJ, Hughes JT, et al. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. Nature, 1991:352:340-342.
    73. Labate A, Manna I, Gambardella A, et al. Association between the M129V variant allele of PRNP gene and mild temporal lobe epilepsy in women. Neurosci Lett, 2007; 421(1): 1-4..
    74. Thomas MW, Mats HH, Irwin B, et al. A novel nervous system b subunit that downregulates human large conductance calcium-dependent potassium channels, J Neurosci, 2000;20(10):3563-3570.
    75. Ping J, Thomas MW, Yuying W, et al. Phosphorylation-dependent functional coupling of hSlo calcium-dependent potassium channel and its hβ4 subunit. J Biol Chem, 2002;277(12):10014-10020.
    76. Robert B, Tim JJ, Alan W, et al. Cloning and functional characterization of novel large conductance calcium-activated potassium channel b subunits, hKCNMB3 and hKCNMB4. J Biol Chem, 2000;275(9):6453-6461.
    77. Robert B, Qing HC, Alex V, et al. BK channel b4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nat Neurosci, 2005; 12(8): 1752-1759.
    78. Wei D, Jocelyn FB, Huanghe Y, et al. Calcium-sensitive potassium channelopathy in humanepilepsy and paroxysmal movement disorder. Nat Genet, 2005;7(37):733-738.
    79. Gianpiero LC, Michael EW, Kevin VS, et al. Multicentre search for genetic susceptibility loci in sporadic epilepsy syndrome and seizure types: a case-control study. Lancet Neurol, 2007;6:970-980.
    80. Lohmueller KE, Pearce CL, Pike M, et al. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat genet, 2003;33:177-182.
    81. Freedman ML, Reich D, Penney KL, et al. Assessing the impact of population stratification on gentic association studies. Nat Genet, 2004;36:388-393.
    82. Dahlman I, Eaves IA, Kosoy R, et al. Parameters for reliable results in genetic association studies in common diseases. Nat Genet, 2002;30:149-150.
    83. Nihal C. de Lanerolle,Tih-Shih Lee. New facets of the neuropathology and molecular profile of human temporal lobe epilepsy. Epilepsy & Behavior, 2005;7:190-203.
    84. Nihal C. de Lanerolle, Jung H. Kim, et al. A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories. Epilepsia, 2003;44(5):677-687.
    [1]王春梅,韩连堂,李秀艳,等.血Ca~(2+)和脑内神经递质与癫痫发作的关系[J].基础医学与临床,2002,22(3):285-286.
    [2]Ottman R,Risch N,Hauser WA,et al.Loalization ofa gene for partial epilepsy to chromosome 10q[J].Nature Genetics,1995,10:56-60.
    [3]王晔,刚宝芝,王德生.常染色体显性遗传颞叶外侧癫痫[J].中华神经科杂志,2004,37(6):561-562.
    [4]Kalachikov S,Evgrafov O,Ross.B,et al.Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features[J].Nature Genetics,2002,30(3):335-341.
    [5]Chabrol E,Popescu C,Gourfinkel-An I,et al.Two novel epilepsy-linked mutations leading to a loss of function of LGI1[J].Archive of Neurology,2007,64(2):217-222.
    [6]Berkovic SF,Izzillo P,McMahon JM.LGI1 mutations in temporal lobe epilepsies[J].Neurology,2004,62(7):1115-1119.
    [7]Ayerdi-Izquierdo A,Stavrides G,Sellés-Martinez J J,et al.Genetic analysis of the LGI/Epitempin gene family in sporadic and familial lateral temporal lobe epilepsy[J].Epilepsy Research,2006,70(2-3):118-126.
    [8]Chabrol E,Gourfinkel-An I,Scheffer IE,et al.Absence of mutations in the LGI1 receptor ADAM22 gene in autosomal dominant lateral temporal epilepsy[J].Epilepsy Research,2007,76(1):41-48.
    [9] Sirerol-Piquer MS, Ayerdi-Izquierdo A, Morante-Redolat JM, et al. The epilepsy gene LGI1 encodes a secreted glycoprotein that binds to the cell surface[J]. Human Molecular Genetics, 2006,15(23):3436-3445.
    [10] Schulte U, Thumfart JO, Klocker N, et al. The epilepsy-linked Lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvbetal[J]. Neuron,2006,49(5):697-706.
    [11] Fukata Y, Adesnik H, Iwanaga T. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission[J]. Science, 2006,313(5794):1792-1795.
    [12] Vadlamudi L, Scheffer IE, Berkovic SF. Genetics of temporal lobe epilepsy[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 2003,74(10): 1359-1361.
    [13] Baulac S, Picard F, Herman A, et al. Evidence for digenic inheritance in a family with both febrile convulsions and temporal lobe epilepsy implicating chromosomes 18qter and 1q25-q31[J]. Annual of Neurology, 2001,49(6):786-792.
    [14] Claes L, Audenaert D, Deprez L, et al. Novel locus on chromosome 12q22-q23.3 responsible for familial temporal lobe epilepsy associated with febrile seizures[J]. Journal of Medical Genetics, 2004,41(9):710-714.
    [15] Hedera P, Blair MA, Andermann E, et al. Familial mesial temporal lobe epilepsy maps to chromosome 4p13.2-q21.3[J]. Neurology , 2007,68(9):2107-2112.
    [16] Striano P, Gambardella A, Coppola A, et al. Familial mesial temporal lobe epilepsy (FMTLE): a clinical and genetic study of 15 Italian families[J]. Jounal of Neurology, 2008,255(1): 16-23.
    [17] Scheffer IE, Phillips HA, O'Brien CE, et al. Familial partial epilepsy with variable foci: a new partial epilepsy syndrome with suggestion of linkage to chromosome 2[J]. Annual of Neurology, 1998,44(6):890-899.
    [18] Xiong L, Labuda M, Li D-S, et al. Mapping of a gene determining familial partial epilepsy with variable foci to chromosome 22q11-q12[J]. American Journal of Human Genetics, 1999,65(6): 1698-1710.
    [19] Callenbach PM, van den Maagdenberg AM, Hottenga JJ, et al. Familial partial epilepsy with variable foci in a Dutch family: clinical characteristics and confirmation of linkage to chromosome 22q[J]. Epliepsia, 2003,44(10):1298-1305.
    [20] Berkovic SF, Serratosa JM, Phillips HA, et al. Familial partial epilepsy with variable foci: clinical features and linkage to chromosome 22q12[J]. Epilepsia, 2004;45(9): 1054-1060.
    [21] Kinton L, Johnson MR, Smitj SJ, et al. Partial epilepsy with pericentral spikes: a new familial epilepsy syndrome with evidence for linkage to chromosome 4p15[J]. Annual of Neurology, 2002,51(6):740-749.
    [22] Deprez L, Peeters K, Van Paesschen W, et al. Familial occipitemporal lobe epilepsy and migraine with visual aura linkage to chromosome 9q[J]. Neurology, 2007,68:1995-2002.
    [23] Gambardella A, Manna I, Labate A, et al. GABA(B) receptor 1 polymorphism (G1465A) is associated with temporal lobe epilepsy[J]. Neurology, 2003,60(4):560-563.
    [24] Kanemoto K, Kawasaki J, Miyamoto T, et al. Interleukin (IL)1 beta, IL-1alpha, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy[J]. Annual of Neurology, 2000,47(5):571-574.
    [25] Stogmann E, Zimprich A, Baumqartner C, et al. A functional polymorphism in the prodynorphin gepromotor is associated with temporal lobe epilepsy[J]. Annual of Neurology, 2002,51(2):260-263.
    [26] Briellmann RS, Torn-Broers Y, Busuttil BE, et al. APOE epsilon4 genotype is associated with an earlier onset of chronic temporal lobe epilepsy[J]. Neurology, 2000,55(3):435-437.
    [27] Walz R, Castro RM. Surgical outcome in mesial temporal sclerosis correlates with prion protein gene variant[J]. Neurology, 2003,61(9):1204-1210.
    [28] Labate A, Manna I, Gambardella A, et al, Association between the M129V variant allele of PRNP gene and mild temporal lobe epilepsy in women[J]. Neuroscience Letters, 2007,421(1 ):1 -4.
    [29] Kanemoto K, Kawasaki J, Tarao Y, et al. Association of partial epilepsy with brain-derived neurotrophic factor (BDNF) gene polymorphisms[J]. Epilepsy Research, 2003,53(3):255-258.
    [30] Jobe PC, Dailey JW, Wernicke JF, et al. A noradrenergic and serotonergic hypothesis of the linkage between epilepsy and affective disorders[J], Critical Reviews in Neurobiology, 1999,13:317-356.
    [31] Lesch KP, Mossner R. Genetically driven variation in serotonin uptake: is there a link to affective spectrum, neurodevelopmental, and neurodegenerative disorders? [J] Biological Psychiatry, 1998,44:179-192.
    [32] Manna I, Labate A, Gambardella A, et al. Serotonin transporter gene (5-Htt): Association analysis with temporal lobe epilepsy[J]. Neuroscience Letters, 2007, doi: 10.1016/j .neulet.2007.05.022.
    [33] Lohmueller KE, Pearce CL, Pike M, et al. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease[J]. Nature genetics, 2003,33:177-182.
    [34] Nigel CKT, John CM and Samuel FB. Genetic association studies in epilepsy: "The truth is out there" [J]. Epilepsia, 2004,45(11): 1429-1442.
    [35] Daly AK, Day CP. Candidate gene case-control association studies: advantages and potential pitfalls[J]. Nature Genetics, 1999,22(1): 1-2.
    [36] Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits[J]. Nature Reviews Genetics, 2005,6(2): 95-108.
    [37] Kendy KW, Ronald JL, Nirpjit SD, et al. A Comprehensive Analysis of Common Copy-Number Variations in the Human Genome[J]. The American Journal of Human Genetics, 2007,80(2):91-104.
    [38] Stranger BE, Forrest MS, Dunning M, et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes[J]. Science, 2007,315(5813):848-853.
    [39] Lee JA, Lupski JR. Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders[J]. Neuron, 2006,52(2):103-121.
    [40] Gonzalez E, Kulkarni H, Bolivar H, et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility[J]. Science, 2005,307:1434-1440.
    [41] Yang Y, Chung EK, Wu YL, et al. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans[J]. American Journal of Human Genetics, 2007,80(8): 1037-1054.
    [42] Fellermann K, Stange DE, Schaeffeler E, et al. A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon[J]. American Journal of Human Genetics[J], 2006,79(3):439-448.
    [43] Liankun R, Liri J, Boyu Z. Lack of GABABR1 gene variation (G1465A) in a Chinese population with temporal lobe epilepsy[J]. Seizure 2005;14(8): 611-613.
    [44] Ma S, Abou-Khalil B, Sutcliffe JS, et al. The GABBR1 locus and the G1465A variant is not associated with temporal lobe epilepsy preceded by febrile seizures[J]. BMC Medecal Genetics, 2005;30(6):13.
    [45] Tan NC, Heron SE, Scheffer IE, et al. Is variation in the GABA(B) receptor 1 gene associated with temporal lobe epilepsy[J]? Epilepsia, 2005;46(5):778-780.
    [46] Salzmann A, Moulard B, Crespel A, et al. GABA receptor 1 polymorphism (G1465A) and temporal lobe epilepsy[J].Epilepsia, 2005;46(6):931-933.
    [47] Stogmann E, Zimprich A, Baumgartner C, et al. Lack of association between a GABA receptor 1 gene polymorphism and temporal lobe epilepsy[J]. Epilepsia, 2006;47(2):437-439.
    [48] Kauffman MA, Levy EM, Consalvo D, et al. GABABR1 (G1465A) gene variation and temporal lobe epilepsy controversy: New evidence[J]. Seizure, 2008 Feb 4[Epub ahead of print].
    [49] Heils A, Haug K, Kunz WS, et al. Interleukin-1beta gene polymorphism and susceptibility to temporal lobe epilepsy with hippocampal sclerosis[J]. Annual Neurology, 2000;48(6):948-950.
    [50] Buono RJ, Ferraro TN, O'Connor MJ, et al. Lack of association between an interleukin 1 beta (IL-1beta) gene variation and refractory temporal lobe epilepsy[J]. Epilepsia, 2001;42(6):782-4.
    [51] Tilgen N, Pfeiffer H, Cobilanschi J, et al. Association analysis between the human interleukin 1beta (-511) gene polymorphism and susceptibility to febrile convulsions[J]. Neuroscience Letters, 2002;334(1):68-70.
    [52] Jin L, Jia Y, Zhang B, et al. Association analysis of a polymorphism of interleukin 1 beta (IL-1 beta) gene with temporal lobe epilepsy in a Chinese population[J]. Epilepsia, 2003;44( 10): 1306-1309.
    [53] Ozkara C, Uzan M, Tanriverdi T, et al. Lack of association between IL-1 beta/alpha gene polymorphisms and temporal lobe epilepsy with hippocampal sclerosis[J]. Seizure, 2006;15(5):288-291.
    [54] Kauffman MA, Moron DG, Consalvo D, et al. Association study between interleukin 1 beta gene and epileptic disorders: a HuGe review and meta-analysis[J]. Genetics Medicine, 2008;10(2):83-88.
    [55] Tilgen N, Rebstock J, Horvath S, et al. Prodynorphin gene promoter polymorphism and temporal lobe epilepsy[J]. Ann Neurol. 2003;53(2):280-281.
    [56] Gambardella A, Manna I, Labate A, et al. Prodynorphin gene promoter polymorphism and temporal lobe epilepsy[J]. Epilepsia, 2003;44(9):1255-1256.
    [57] Kauffman MA, Consalvo D, Gonzalez MD, et al. Transcriptionally less active prodynorphin promoter alleles are associated with Temporal Lobe Epilepsy: A case-control study and meta-analysis[J]. Disease Markers, 2008;24(3):135-140.
    [58] Gambardella A, Aguglia U, Cittadella R, et al. Apolipoprotein E polymorphisms and the risk of nonlesional temporal lobe epilepsy[J]. Epilepsia, 1999;40( 12): 1804-1807.
    [59] Briellmann RS, Torn-Broers Y, Busuttil BE, et al. APOE epsilon4 genotype is associated with an earlier onset of chronic temporal lobe epilepsy[J]. Neurology, 2000; 55(3):435-437.
    [60] Yeni SN, Ozkara C, Buyru N, et al. Association between APOE polymorphisms and mesial temporal lobe epilepsy with hippocampal sclerosis[J]. European Journal of Neurology, 2005;12(2):103-107.
    [61] Kumar A, Tripathi M, Pandey RM, et al. Apolipoprotein E in temporal lobe epilepsy: a case-control study[J]. Disease Markers, 2006;22(5-6):335-342.
    [62] Busch RM, Lineweaver TT, Naugle RI, et al. ApoE-epsilon4 is associated with reduced memory in long-standing intractable temporal lobe epilepsy[J]. Neurology, 2007;68(6):409-414.
    [63] Lohoff FW, Ferraro TN, Dahl JP, et al. Lack of association between variations in the brain-derived neurotrophic factor (BDNF) gene and temporal lobe epilepsy[J]. Epilepsy Research. 2005;66(1-3):59-62.
    [64] Cavalleri GL, Lynch JM, Depondt C, et al. Failure to replicate previously reported genetic associations with sporadic temporal lobe epilepsy: where to from here?[J] Brain, 2005;128(8):1832-1840.
    [65] Gianpiero LC, Michael EW, Kevin VS, et al. Multicentre search for genetic susceptibility loci in sporadic epilepsy syndrome and seizure types: a case-control study[J]. Lancet Neurology, 2007;6:970-980.
    1.Klein C,Vieregge P.Non-epileptic paroxysmal movement disorders.Nervenarzt.1998;69:647-659.
    2.Sadamatsu M,Masui A,Sakai T,et al.Familial paroxysmal kinesigenic choreoathetosis:an electrophysiologic and genotypic analysis.Epilepsia.1999;40:942-949.
    3.Bhatia KP.The paroxysmal dyskinesias.J Neurol.1999;246:149-155.
    4.Vigevano F,Fusco L,Di Capua M,Ricci S,Sebastianelli R,Lucchini P(1992) Benign infantile familial convulsions.Eur J Pediatr 151:608-612]
    5.Nabbout R,Prud'homme JF,Herman A,et al.A locus for simple pure febrile seizures maps to chromosome 6q22-q24.Brain.2002;125:2668-2680.
    6.Singh R,Macdonnel PAL,Shefer IE,et al.Epilepsy and paroxysmal movement disorders in families:evidence for shared mechanisms.Epileptic Disord.1999;1(2):93-99.
    7.Szepetowski P,Rochette J,Berquin P,et al.Familial Infantile Convulsions and Paroxysmal Choreoathetosis:A New Neurological Syndrome Linked to the Pericentromeric Region of Human Chromosome 16.Am.J.Hum.Genet.1997;61:889-898.
    8.Tomita H,Nagamitsu S,Wakui K,et al.Paroxysmal kinesigenic choreoathetosis locus maps to chromosome 16p11.2-q12.1.Am J Hum Genet.1999;65:1688-1697.
    9.Bennett LB,Roach ES,Bowcock AM.A locus for paroxysmal kinesigenic dyskinesia maps to human chromosome 16.Neurology.2000;54:125-130.
    10.Valente EM,Spacey SD,Wali GM.A second paroxysmal kinesigenic choreoathetosis locus(EKD2)mapping on 16q13-q22.1 indicates a family of genes which give rise to paroxysmal disorders on human chromosome 16.Brain.2000;123:2040-2045.
    11.Swoboda K J,Soong B,McKenna C,et al.Paroxysmal kinesigenic dyskinesia and infantile convulsions:clinical and linkage studies.Neurology.2000;55(2):224-30.
    12.Cuenca-Leon E,Cormand B,Thomson T,et al.Paroxysmal kinesigenic dyskinesia and generalized seizures:clinical and genetic analysis in a Spanish pedigree.Neuropediatrics.2002;33(6):288-293.
    13.Spacey SD,Valente EM,Wali GM,et al.Genetic and clinical heterogeneity in paroxysmal kinesigenic dyskinesia:evidence for a third EKD gene.Mov Disord.2002;17(4):717-725.
    14.Ye D,Bin F,Xin W,et al.Localization and Mutation Detection for Paroxysmal Kinesigenic Choreoathetosis.J Mol Neurosci.2008;34:101-107.
    15.Nagamitsu S,Matsuishi T,Hashimoto K,et al.Multicenter study of paroxysmal dyskinesia in Japan -clinical and pedigree analysis.Mov Disord.1999;14:658-663.
    16.Bathia KP,Griggs RC,Ptacek LJ.Eposodic movement disorders as channelapathies.Mov Disord.2000;15;429-433.
    17.Nabbout R,Prud'homme JF,Herman A,et al.A locus for simple pure febrile seizures maps to chromosome 6q22-q24.Brain.2002;125:2668-2680.
    18.Dib C,Faure S,Fizames C,et al.A comprehensive genetic map of the human genome based on 5,264 microsatellites.Nature.1996;380:152-154.
    19.Müiller B,Golla A.An evaluation of FASTMAP with emphasis on fine-mapping.Hum Hered 1995;45:199-205.
    20.Ott J.Analysis of human genetic linkage,2d ed.Johns Hopkins University Press,Baltimore.1991.
    21.Familial paroxysmal kinesigenic choreoathetosis:an electrophysiologic and genotypic analysis.Epilepsia 40:942-949.
    22.Swoboda K J,Soong BW.Paroxysmal kinesigenic dyskinesia and infantile convulsions clinical and linkage studies.Neurology.2000;55:224-230.
    23. Tan L, Tan A. Tjia H. paroxysmal kinesigenic choreoathetosis in Singapore and its relationship to epilepsy. Clin Neurol Neurosurg 1996;100:187-192.
    24. Sian DS, Enza-Maria V, Gurusidheshwar MW, et al. Genetic and clinic heterogeneity in paroxysmal kinesgenic dyskinesia: evidence for a third EKD gene. Movement disorders 2002;17(4):717-725.
    25. Taeko K, Masayo N, Hiroaki T. et al. Paroxysmal kinesigenic choreoathetosis (PKC): confirmation of linkage to 16pll-q21, but unsuccessful detection of mutations among 157 genes at the PKC-critical region in seven PKC families. J Hum Genet. 2007; 52:334-341.
    26. Burgess DL, Davis CF, Gefrides LA, et al. Identification of three novel Ca(2+) channel gamma subunit genes reveals molecular diversification by tandem and chromosome duplication. Genome Res. 1999; 9: 1204-1213.
    27. Jaana T, Catherine P, Isabelle A, et al. Two new genes from the human ATP-binding cassette transporter superfamily, ABCC11 and ABCC12, tandemly duplicated on chromosome 16q12. Gene. 2001; 273: 89-96.
    28. Margari L, Presicci A, Ventura P, et al. Channelopathy: hypothesis of a common pathophysiologic mechanism in different forms of paroxysmal dyskinesia. Pediatr Neurol. 2005; 32: 229-235.
    29. Jennifer AL, James RL. Genomic Rearrangements and Gene Review Copy-Number Alterations as a Cause of Nervous System Disorders. Neuron. 2006;52,103-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700