用户名: 密码: 验证码:
三羟基苯甲酸抗肝癌作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝癌是发生于肝细胞或胆管细胞的恶性肿瘤,为全世界范围内常见、高发恶性肿瘤之一,具有难发现、难诊断、难治疗、发展快和预后差等特点,近年的研究发现肝癌发病率和死亡率有向小年龄组推移的趋势,而且肝癌和其他恶性肿瘤相比,具有更强的耐药性,因此寻找靶点明确、低毒、高效的抗肝癌药物具有重要意义。3,4,5-三羟基苯甲酸(Trihydroxybenzoic acid, TBA)是广泛存在于植物中的多酚类化合物,具有抗炎、抗氧化、抗过敏、抗诱变及抗肿瘤等多种生物学活性,但其体内、体外抗肝癌作用及作用机制尚未见报道。
     本研究采用药理学、细胞学和分子生物学技术,体内和体外实验相结合,从整体、细胞与分子水平三个层次,证实TBA的抗肝癌作用并探讨其作用机制。体内实验以H22肝癌细胞荷瘤小鼠为研究对象,TBA不同剂量灌胃给药,观察其对肿瘤生长的抑制作用及对荷瘤小鼠生存时间的影响。体外实验以3种人肝癌细胞株SMMC-7721细胞、HepG2细胞和Bel-7402细胞为研究对象,观察TBA对肝癌细胞生长的抑制作用和诱导凋亡作用并探讨其作用机制。
     研究结果显示TBA 0.50 g/kg、0.25 g/kg和0.13 g/kg灌胃给药可以不同程度抑制H22肿瘤的生长及延长荷瘤小鼠生存时间。体外实验结果显示TBA对实验中3种肝癌细胞增殖具有明显的抑制作用,并呈剂量依赖性,其中SMMC-7721细胞对TBA的作用最敏感。TBA可以通过增加细胞ROS水平,上调Bax mRNA表达,下调Bcl-2 mRNA表达,降低细胞线粒体膜电位,促进线粒体中细胞色素c释放入胞浆,激活caspase-9、caspase-3蛋白诱导SMMC-7721细胞凋亡实现其抑制肝癌细胞增殖作用。
     本研究首次证实了TBA的体内和体外抗肝癌作用,为寻找高效低毒的抗肝癌药物的先导化合物和开发新药提供了实验基础和理论依据。
Liver cancer is the world's sixth most common cancer, it has the character of difficult to find, diagnose and treat, it has the features of poor prognosis. In recent years, the study has found that morbidity and mortality of liver cancer has the trend to the small age group. Compared with other malignant tumors it has more resistant to anti-cancer drug. Drug therapy in liver cancer treatment plays an important role, so it is very important to find clear target, low toxicity and highly effective drugs. TBA is polyphenols which widely present in plants, study shows that it has anti-inflammatry, anti-oxidation, anti-allergic, anti-mutagenic and anti-tumor effect. But its anti-hepatoma effect and mechanism in vivo and in vitro has not been reported.
     The study was designed to study the anti-hepatoma role of TBA and its mechanism, provided theoretical basis and experiment evidence for researching and developing effective drug for the treatment of liver cancer.
     In vivo experimemt, H_(22) tumor bearing mice were used as model to observe the inhibition effect of TBA on tumor and the extension effect of TBA on survival time of tumor bearing mice. In vitro experiment, SMMC-7721 cells, HepG2 cells and Bel -7402 cell lines were used as a model, the anti-proliferation effect of TBA were detected by MTT assay ; Switzerland - Giemsa and AO staining were observed the apoptosis of SMMC-7721 cells; DNA agarose electrophoresis was used to detected SMMC-7721 cell apoptosis; Apoptosis rate were detected by flow cytometry with AnnexinV-FITC/PI staining; Activity of caspase-3,caspase-9 and caspase-8 were detected by spectrophotometric ; Mitochondria membrane potential were detected by flow cytometry with Rh123 probe staining; The expression of Cyt-c in cytosol and mitochondrial were detected by Western blot; The expression of Bcl-2 and Bax mRNA were detected by RT-PCR; The level of ROS were detected by flow cytometry with DCFH-DA probe staining.
     1. Tumor inhibition and survival time extension effect of TBA on H_(22) tumor bearing mice
     The average tumor weight reduced in TBA group, in which TBA middle dose group compared with the control group , the differences were significant (P <0.05), the inhibitory rate of TBA group were 24.83%, 45.52% and 15.86% respectively; TBA group mean survival time were longer than the control group ,in which TBA middle dose group compared with the control, the differences were significant (P <0.05).The life extension of TBA group were 9.65%, 25.48% and 5.79% respectively. The results showed that TBA could inhibit H_(22) tumor growth and prolong survival time of tumor bearing mice by oral administration with 0.50 g/kg, 0.25 g/kg and 0.13 g/kg dose.
     2. The anti-proliferation effect of TBA on SMMC-7721 cells、HepG2 cells、Bel-7402cells and PBMC
     SMMC-7721、HepG2 and Bel-7402 cells treated with TBA were inhibited significantly in a dose-dependent manner . In contrast, TBA had little effect on human PBMC at the same concentration. At the same concentration, the inhibitory effect of TBA on SMMC-7721 cells were considerably stronger compared to that of the TBA on HepG2 and Bel-7402 cells.
     In control group, SMMC-7721 cells were in a good condition: grew to polygon with excellent refraction ability; while cells in TBA group showed shrink, bad refraction, and more dead cells in culture medium.
     3. The apoptosis-inducing effect of TBA on SMMC-7721 cells SMMC-7721 cells were treated with 12.5、25.0、50.0 and 100.0μg/mL TBA for 48 h, morphological features of apoptosis were stained by Switzerland-Giemsa, and apoptotic changes were observed by light microscopy, cell shrinkage, bubbling with membrane , chromatin condensation and nuclear pieces can be seen.
     AO fluorescent staining results showed that control cells had a regular nuclear with green fluorimetric stain, while 12.5μg/mL TBA group and control group no significant differences for the green fluorescent nuclei; 25.0μg/mL TBA group, part of cell cytoplasm condensed, the volume of narrow , nuclear shrinkage, chromatin increased, more brightly fluorescent, condensed to form dense green fluorescent apoptotic features such as; 50.0 and 100.0μg/mL TBA group, some cells in the nucleus can be seen as crescent-shaped shrinkage, rosary-like performance for late apoptosis and characteristics of the shape of the nucleus.
     DNA agarose gel electrophoresis results found that DNA of 50.0 and 100.0μg/mL TBA cells showed typical DNA Ladder.
     The early apoptosis rate was measured by flow cytometry with AnnexinⅤ-FITC/PI double staining. The results showed that the percentage of early apoptotic cells was increased significantly with increasing dose (P<0.05), and there were significantly diffrences among the exposure groups (P<0.05). The terminal apoptosis showed the same results .The results showed that TBA can induce apoptosis in SMMC-7721 cells.
     4. The activity changes of caspase-3, caspase-9 and caspase-8 in SMMC-7721 cells
     There were significantly differences between TBA group and negative control in caspase-3 A405 (P<0.05). The caspase-9 A405 showed the same results .While there was no significant difference between TBA group and control group in caspase-8 A405 (P>0.05).The result showed that caspase-3 and caspase-9 in SMMC-7721 cells was activated by TBA, while TBA had no effect on caspase-8.
     5. The effect of TBA on the mitochondrial membrane potential of SMMC-7721 cells
     The SMMC-7721 cells treated with TBA for 24h, the results showed that the mitochondrial membrane potential was decreased with the increasing dose .There were significantly difference between TBA group and control group (P<0.05) ,and there were significantly diffrences among the TBA groups (P<0.05).
     6. The effects of TBA on the expression of cytochrome c in cytosol and mitochondrial
     The SMMC-7721 cells treated with TBA for 48 h, Western blot results showed that the cytochrome c in cytosol was increased and the cytochrome c in mitochondrial was decreased. The mitochondrial membrane potential of SMMC-7721 treated with TBA decreased significantly and cytochrome c in mitochondrial released to cytosol.
     7. The effect of TBA on the expression of Bcl-2 and Bax mRNA
     The SMMC-7721 cells treated with TBA for 48 h, RT-PCR results showed that Bax mRNA expression was increased while Bcl-2 expression was decreased with the increasing dose.The results showed that TBA could induce Bcl-2 mRNA down-regulated and Bax mRNA up-regulated in SMMC-7721 cells.
     8. The effect of TBA on the level of ROS in SMMC-7721 cells
     The SMMC-7721 cells treated with TBA for 6 h, the ROS level was increased with increasing dose. There were significantly difference between TBA group and control group (P<0.05). The SMMC-7721 cells treated with TBA for 12 h,the same results was showed.The results showed that TBA induced the production of ROS in SMMC-7721 cells in dose-dependent manner.
     In a word, TBA was observed the inhibitory effect on hepatoma both in vivo and vitro experimemts, and TBA inhibited the proliferation of SMMC-7721 cells by induction of SMMC-7721 cells apoptosis. Caspase-3, caspase-9, cytochrome c, ROS, Bcl-2 and Bax are involved in the inhibition effect of TBA on SMMC - 7721 cells proliferation. TBA may be increase ROS level of SMMC-7721 cells, down-regulate Bcl-2 mRNA expression and up-regulate Bax mRNA expression , decrease mitochondrial membrane potential and induced cytochrome c in mitochondrial of SMMC-7721 cells release to cytosol , activate caspase reaction and then induce SMMC-7721 cell apoptosis, and ultimately inhibited SMMC-7721 cell proliferation.
引文
[1] Bosch FX, Ribes J, Diaz M, et al. Primary liver cancer: worldwide incidence and trends[J]. Gastroenterology, 2004, 127(5): S5-S16.
    [2] Parkin DM. The global health burden of infection-associated cancers in the year 2002[J]. Int J Cancer, 2006, 118(12): 3030-3044.
    [3] Ahmedin J, Rebecca S, Elizabeth W, et al. Cancer statistics[J]. CA Cancer J Clin, 2008, 13(58): 71-96.
    [4]张思维,李连弟,鲁凤珠,等.中国1990-1992年原发性肝癌死亡调查分析[J].中华肿瘤杂志, 1999, 21(4): 245-247.
    [5] He J, Gu D, Wu X, et al. Major causes of death among men and women in China[J]. N Engl J Med, 2005, 353(11): 1124-1134.
    [6] De Beer D, Joubert E, Gelderblom WC, et al. Antioxidant activity of South African red and white cultivar wines: free radical scavenging[J]. J Agric Food Chem, 2003, 51(4): 902–909.
    [7] Wolfe K, Wu X, Liu RH, et al. Antioxidant activity of apple peels[J]. J Agric Food Chem, 2003, 51(3): 609–614.
    [8]范培红,娄红祥.葡萄籽多酚的分离鉴定及其对细胞DNA氧化损伤的防护作用[J].药学学报, 2004, 39(11): 869-875.
    [9] Sun J, Chu YF, Wu X, et al. Antioxidant and antiproliferative activities of common fruits[J]. Agric Food Chem, 2002, 50(25): 7449-7454.
    [10] Locatelli C, Rosso R, Maria C, et al. Ester derivatives of gallic acid with potential toxicitytoward L1210 leukemia cells[J]. Bioorganic & Medicinal Chemistry, 2008, 16(1): 3791–3799.
    [11] Yang DJ, Hwang LS, Lin JT, et al. Effects of different steeping methods and storage on caffeine, catechins and gallic acid in bag tea infusions[J]. J Chromatoga, 2007, 1156(1-2): 312-320.
    [12] Inoue M, Suzuki R, Sakaguchi N, et al. Selective induction of cell death in cancer cells by gallic acid[J]. Biol Pharm Bull, 1995, 18(11): 1526-1530.
    [13] Inoue M, Sakaguchi N, Isuzugawa K, et al. Role of reactive oxygen species in gallic acid-induced apoptosis[J]. Biol Pharm Bull, 2000, 23(10): 1153-1157.
    [14] Yang HL, Chang WH, Chia YC, et al. Toona sinensis extracts induces apoptosis via reactive oxygen species in human premyelocytic leukemia cells[J]. Food Chem Toxicol, 2006, 44(12): 1978-1988.
    [15] Aoki K, Ishiwata S, Sakagami H, et al. Modification of apoptosis-inducing activity of gallic acid by saliva[J]. Anticancer-Res, 2001, 21(3B): 1879-1883.
    [16] Agarwal C, Tyagi A, Agarwal R. Gallic acid causes inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells[J]. Mol Cancer Ther, 2006, 5(12): 3294-3302.
    [17] Madlener S, Illmer C, Horvath Z, et al. Gallic acid inhibits ribonucleotide reductase and cyclooxygenases in human HL-60 promyslocytic leukemia cells[J]. Cancer Lett, 2007, 245(1-2): 156-162.
    [18]吕喆,龚守良,牛凤兰等.三羟基苯甲酸对淋巴瘤细胞凋亡及周期影响[J].中国公共卫生, 2008, 24(10): 1210-1211.
    [19] Yoshioka K, Kataoka T, Hayashi T, et al. Induction of apoptosis by gallic acid in human stomach cancer KATOIII and colon adenocarcinoma COLO205 cell lines[J]. Oncol Rep, 2000, 7(6): 1221-1223.
    [20] Ohao Y, Fukuda K, Takemura. G, et al. Induction of apoptosis by gallic acid in lung cancer cells[J]. Anticancer Drugs, 1999, 10(9): 845-851.
    [21] Kawada M, Ohno Y, Ri Y, et al. Anti-tumor effect of gallic acid on IL-2 lung cancer cells transplanted in mice[J]. Anticancer Drugs, 2001,12(10): 847-852.
    [22] Siranoush S, Kazumasa A, Antje W, et al. Pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans[J]. Journal of Nutrition, 2001, 131(4): 1207-1210.
    [23]邵留.斑地锦有效成分的药动药效学研究[D].重庆:西南农业大学, 2005.
    [24]王晓莉,栗辉,高晓霞,等.没食子酸在大鼠体内的药物动力学及生物利用度[J].沈阳药科大学学报, 2008, 25(12): 944-947.
    [25] Nakamura ES, Kurosaki F, Arisawa M, et al. Cancer chemopreventive effectsof a Brazilian folk medicine, Juca, on in vivo two-stage skin carcinogenesis[J]. Journal of Ethnopharmacology, 2002, 81(1): 135-137.
    [26] Kawada M, Ohno Y, Ri Y, et al. Anti-tumor effect of gallic acid on IL-2 lung cancer cells transplanted in mice[J]. Anticancer Drug, 2001, 12(10): 847-852.
    [27] Cai Y, Luo Q, Sun M, et al. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer[J]. Life Sci, 2004, 74(17): 2157-2184.
    [28] Isuzugawa K, Ogihar Y, Inoue M, et al. Different generation of inhibitors against gallic acid-induced apoptosis produces different sensitivity to gallic acid[J]. Biol Pharm Bull, 2001, 24(3): 249-253.
    [29] Isuzugawa K, Inoue M, Ogihar Y. Catalase contentsin cells determine sensitivity the apoptosis inducer gallic acid[J]. Biol Pharm Bull, 2001, 24(9): 1022-1026.
    [30] Rajalakshmi K, Devaraj H, Niranjali Devaraj S. Assessment of the no-ob-served-adverse-effect level (NOAEL) of gallic acid in mice[J]. Food Chem Toxi-col, 2001, 39(9): 919-922.
    [31] Niho N, Shibutani M, Tamura T, et al. Subchronic toxicity study of gallic acid by oral administration in F344 rats[J]. Food Chem Toxi-col, 2001, 39(11): 1063-1070.
    [32]金伟,马力.染料木黄酮对顺铂诱导肝癌SMMC-7721细胞凋亡的增敏作用[J].第四军医大学学报, 2005, 26(8): 761-763.
    [33]付玉荣,邱宗荫,颜玉蓉.羟基喜树碱通过线粒体途径诱导肝癌SMMC-7721细胞凋亡的观察[J].第四军医大学学, 2006, 27(15): 1403-1406.
    [34]赵克森,金丽娟.休克的细胞和分子基础[M].北京:科学出版社, 2002: 255-256.
    [35] Wyllie AH, Kerr JF, Currie AR, et al. Cell death: the significance of apoptosis[J]. Int Rey Cytol, 1980, 68: 251-306.
    [36]姜泊,谭晓华,许岸高.细胞凋亡基础与临床[M].北京:人民军医出版社, 1999: 9-15.
    [37] Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy[J]. Oncogene, 2006, 25(34): 4798-4811.
    [38] Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis[J]. Trends Cell Biol, 2000, 10(9): 369-377.
    [39] Brenner C, Kroemer G. Apoptosis, Mitochondria: the death signal integrators[J]. Science, 2000, 2896(5482): 1150-1151.
    [40] Finkel E. The mitochondrion is it central to apoptosis[J]. Science, 2001, 292 (5571): 624-626.
    [41] Marx J. Nobel Prize in Physiology or Medicine. Tiny worm takes a star turn [J]. Science, 2002, 298(5593): 562.
    [42] Kabore AF, Johnston JB, Gibson SB. Changes in the apoptotic and survivalsignaling in cancer cells and their potential therapeutic implications[J]. Curr Cancer Drug Targets, 2004, 4(2): 147-163.
    [43] Liu X, Kim CN, Yang J, et al. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c[J]. Cell, 1996, 86(1): 147-157.
    [44] Li K, Li Y, Shelton JM, et al. Cytochrome C deficiency causes embryonic lethality and attenuates stress-induced apoptosis[J]. Cell, 2000, 101(4): 389-399.
    [45] Martinou I, Missotten M, Fernandez PA, et al. Bax and Bak proteins require caspass activity to trigger apoptosis in sympathetic neurons[J]. Neuroreport, 1998, 9(1): 15-19.
    [46] Desagher S, Osen-sand A, Nichols A, et al. Bid-induced conformational changes of Bax is responsible for mitochondrial cytochrome C release during apoptosis[J]. J Cell Biol, 1999, 144(5): 891-901.
    [47] Shimizu S, Shinohara Y, Isujimoto Y, et al. Bax-xl independently regulate apoptotic changes of yeast mitochondria that require VDAV but not adenine nucleotide translocator [J]. Oncogene, 2000, 19(38): 4309-4318.
    [48] Nie C, Tian C, Zhao L, et al. Cysteine 62 of Bax is critical for its conformational and its proapoptotic activity in response to H2O2-inducedapoptosis[J]. J Biol Chem, 2008, 28(22): 15359-15369.
    [49] Halestrap AP, McStay GP, Clarke SJ. The permeability transition pore complex: another viem[J]. Biochimie, 2002, 84(2-3): 153-166.
    [50] Korshunov SS, Krasnikov BF, Pereverzev MO, et al. The antioxidant functions of cytochrome C[J]. FEBS Lett, 1999, 462(12): 192-198.
    [51] Barros M H, Netto E S, Kowuhowski A. H2O2 generation in saccharomyces cevevisiae respirtory pet mutants:effect of cytochrome C[J]. Biol Med, 2003, 35(2): 179-188.
    [52] Shih C M, Ko W C, Wu J S, et al. Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts[J]. Cell Biochem, 2004, 91(2): 384-397.
    [53] Hsu SY, Hsueh AJ. Tissue-specific Bcl-2 protein partners in apoptosis: An ovarian paradigm[J]. Psysiol Rev, 2000, 80(2): 593-614.
    [54] Schindler CK, Shinoda S, Simon RP, et al. Subcellular distribution of Bcl-2 family proteins and 14-3-3 within the hippocampus during seizure-induced neuronal death in the rat[J]. Neurosci Lett, 2004, 356(3): 163-166.
    [55] Tsujimoto Y. Cell death regulation by the Bcl-2 protein family in the mitochondria[J]. J Cell Physiol, 2003, 195(2): 158-167.
    [56] Orrenius S. Mitochondrial regulation of apoptotic cell death[J]. Toxicol Lett, 2004, 149(1-3): 19-23.
    [57] Kuwana T, Mackey MR, Perkins G, et al. Bid, Bax and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane[J]. Cell, 2003, 111(3): 331-342.
    [58] Saito M, Korsmeyer SJ, Schlesinger PH. Bax-dependent transport of cytochrome C reconstituted in pure liposomes[J]. Nat Cell Biol, 2000, 2(8): 553-555.
    [59] Alnemrl ES, Livinqston DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature[J]. Cell, 1996, 87(2): 171.
    [60] Jin Z, El-Deiry WS. Overview of Cell Death Signaling Pathways[J]. Cancer Bio Ther, 2005, 4(2): 139-163.
    [61]袁长青,丁振华. caspase的结构与功能[J].国外医学分子生物学分册, 2002, 24(3): 147-151.
    [62] Wang ZB, Ma HL. Study on anti-cancer components of Fig residuces with supper critical fluid CO2 extracting technique[J]. Zhongguo Zhong Yao Za Zhi, 2005, 30(18): 1443-1447.
    [63] Shi Y, Zou M. Matrix metalloproteinases in thyroid cancer[J]. Cancer Treat Res, 2004, 122: 179-190.
    [64] Timmer JC, Salvesen GS. Caspase substrates[J]. Cell Death Differ, 2007, 14(1): 66-72.
    [65] Okuda T, Suqahara R, Takemoto T, et al. Inhibition of caspase alleviates gentamicin-induced cochlear damage in guinea pigs[J]. Auris Nasus Larynx, 2005, 32(1): 33-37.
    [66] Susin SA, Zamzami N, Castedo M, et al. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease[J]. J ExpMed, 1996, 184(4):1331-1341.
    [67] Otera H, Ohsakaya S, Naqaura Z, et al. Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space[J]. EMBO J, 2005, 24(7): 1375-1386.
    [68] Miramar MD, Costantini P, Ravagana L, et al. NADH oxidase activity of mitochondrial apoptosis-inducing factor[J]. J Biol Chem, 2001, 276(19): 16391-16398.
    [69] Mate MJ, Ortiz-Lombardia M, Boitel B, et a1. The crystal structure of the mouse apoptosis-inducing factor AIF[J]. Nat Biol, 2002, 9(6): 442-446.
    [70] Cain K, BrattonSB, Cohen GM. The Apaf-1apoptosome: A large caspase-activating complex[J]. Biochimie, 2002, 84(2-3): 203-214.
    [71] Chauhan D, Hideshima T, Rosen S, et al. Apaf-1/cytochrome c-independent and Smac–dependent induction of apoptosis in multiple myeeloma (MM) cells [J]. J Biol Chem, 2001, 276(27): 24453-24456.
    [72] Verhagen AM, Ekert PG, Pakusch M, et a1. Identification of DIABLO. A mammalian protein that promotes apoptosis by binding to and antaonizing IAP protein[J]. Cell, 2000, 102(1): 43-53.
    [73] Burri L, Strahm Y, Hawkins CJ, et al. Mature DIABLO/SMAC is produced by the IMP protease complex on the mitochondrial inner membrane[J]. Mol Biol Cell, 2005, 16(6): 2926-2933.
    [74] Bratton SB, Walker G, Roberts DL, et al. Caspase-3 cleaves Apaf-1 into an approximately 30kDa fragment that associates with an inappropriately oligomerized and biologically inactive approximately 1.4MDa apoptosome complex[J]. Cell Death Differ, 2001, 8(4): 425-433.
    [75] WANG, ZENG FQ, ZHENG LD, et al. Smac / D1ABLO Promotes Mitomyein C2 induced Apoptosis of Bladder Cancer T24Cells[J].华中科技大学学报(医学英德文版), 2006, 26(3): 317-331.
    [76]郧丽端,童强松,陈凯雄,等.稳定过表达smac基因胃癌细胞株的建立及其化疗敏感性研究[J].肿瘤防治研究, 2005, 32(1): 18-21.
    [77] Schon O, Friedler A, Bycroft M, et al. Molecular mechanism of the interaction between MDM2 and p53[J]. Mol Biol, 2002, 323(3): 491-501.
    [78] Meek DW, The p53 response to DNA damage[J]. DNA repair(Amst), 2004, 3(8-9): 1049-1056.
    [79]施益民,鲁常青,陈同钰,等.脑转移瘤肿中mtp53、二磷酸核苷激酶/ nm232H1的表达和临床意义[J].中华试验外科杂志, 2007, 17(4): 322-323.
    [80] Fowler NO, McCall D, Chou TC, et al. Electrocardiographic changes and cardiac arrhythmias in patients receiving psychotropic drugs[J]. Am J Cardiol, 1976, 37(2): 223-230.
    [81] Mihara M, Moll UM. Detection of mitochondrial localization of P53[J]. Methods Mol Biol, 2003, 234: 203-209.
    [82] Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis[J]. Science, 2004, 303(5660): 1010-1014.
    [83] Jiang P, Du W, Heese K, et al. The Bad guy cooperates with good cop P53: Bad is transcriptionally up-regulated by P53 and forms a Bad / p53 complex at the mitochondrial to induced apoptosis[J]. Mol Cell Biol, 2006, 26(23): 9071-9082.
    [84] Leu JI, Dumont P, Hafev M,et al. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex[J]. Nat Cell Biol, 2004, 6(5): 443-450.
    [85] Jin Z, EI-Deirv WS. Overview of cell death signaling pathways[J]. Cancer Biol Ther, 2005, 4(2): 139-163.
    [86] Walczak H, Krammer PH. The CD95(APO-1/Fas) and the TRAIL(APO-2L) apoptosis system[J]. Exo Cell Res, 2000, 256(1): 58-66.
    [87] Liu ZG, Gao DS, Yuan F, et al. Dual chamber pacing for vasovagal syncope[J]. Guan Bing Za Zhi, 2005, 33(1): 30-33.
    [88] Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy [J]. Exp Cell Res, 2000, 256(1): 42-49.
    [89] Timmer T, Vries EGE, Jong S. Fas receptor mediator apoptosis: a clinical application[J]. Patho, 2002, 196(2): 125-134.
    [90] MacEwan DJ. TNF receptor subtype signaling: differences and cellular consequences[J]. Cell Signal, 2002, 14(6): 477-492.
    [91] Degterev A, Bovce M, Yuan J, et al. A decade of caspase[J]. Oncogene, 2003, 22(53): 8543-8567.
    [92] Bhattacharjee M, Acharya S, Ghosh A, et al. Bax and Bid act in synergy to bring about T11TS-medisted glioma apoptosis via the release of mitochondrial cytochrome C and subsequent caspase acrivation[J]. Int Immunol, 2008, 20(12): 1489-1505.
    [93] Bladon J, Taylor PC. Extracorporeal photopheresis: A focus on apoptosis and cytokines[J]. J Dermatol Sci, 2006, 43(2): 85-94.
    [94] Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis[J]. Immunity, 1995, 3(6): 673-682.
    [95]萨奇拉,罗玉英,刘孟珉. TRAIL及其受体在细胞凋亡中的作用[J].生物工程进展, 2000, 20(1): 489-491.
    [96] Jo M, Kim TH, Seol DW, et al. Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-induced ligand[J]. Nat Med, 2000, 6: 564-567.
    [97] Song K, Benhaga N, Anderson RL, et al. Transduction of tumor necrosis factor-related apoptosis-inducing ligand into hematopoietic cells leads to inhibition of syngeneic tumor growth in vivo[J]. Cancer Res, 2006, 66(12): 6304-6311.
    [98] Kischkel FC, Lawrence DA, Chuntharapai A, et al. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5[J]. Immunity, 2000, 12(6): 611-620.
    [99] Bouralexis S, Findlay DM, Evdokiou A, et al. Death to the bad guys: targeting cancer via Apo2L/TRAIL[J]. Apoptosis, 2005, 10(1): 35-51.
    [100] Herr I, Schemmer P, Buchler MW, et al. On the TRAIL to therapeutic intervention in liver disease[J]. Hepatology, 2007, 46(1): 266-274.
    [101] Ferreira SL, Dos Santos WN, Quintella CM, et al. Doehlert matrix: a chemometric tool for analytical chemistry-review[J]. Talanta, 2004, 63(4): 1061-1067.
    [102]吴刚,薛荣亮.死亡受体介导的信号转导与脑缺血再灌注损伤[J].国外医学麻醉学与复苏分册, 2004, 25(1): 11-14.
    [103] Niklinski J, Hirsch FR. Molecular approaches to lung cancer evaluation[J]. Lung Cancer, 2002, 38(suppl3): S9-17.
    [104]张勤,倪灿荣.非小细胞肺癌Survivin表达及其预后关系的研究[J].中国综合临床, 2002, 18(10): 925-926.
    [105] Mrozek A, Petrowsky H, Sturm I, et al. Combine p52/Bax mutation results in extremely poor prognosis in gastric carcinoma with low microsatellite instability[J]. Cell Death Differ, 2003, 10(4): 461-467.
    [106]袁强,陈芝芸,严茂祥.金针菇多糖对环磷酰胺的增效减毒作用[J].中国中药杂志, 2005, 30(12): 933-935.
    [107]王冬艳,张洪泉,李心,等.白首乌C12甾体苷诱导肝癌细胞凋亡的作用及机制[J].药学学报, 2007, 42(4): 366-370.
    [108]中华人民共和国卫生部药政局.新药(西药)临床前研究指导原则汇编(药学药理学毒理学. 1993: 137-141.
    [109]汪少华,沈宜,李静,等.顺铂联合exosomes抗小鼠肝癌效应的实验研究[J].细胞与分子免疫学杂志, 2009, 25(1): 49-52.
    [110]韩锐,孙燕.抗肿瘤药体内研究的常用方法:新世纪癌的化学预防与药物治疗[M].北京:人民军医出版社. 2005: 44-46.
    [111]郭健,高福云,胡萍,等.硒化合物与抗癌中药配伍的抗肿瘤作用[J].实验动物科学, 2008, 25(2): 10-12.
    [112]李海燕,方肇勤,梁尚华,等.小鼠移植性肝癌(H22)模型的研究及在中医药抗肿瘤中的应用[J].中国中医基础医学杂志, 2000, 6(1): 27-29.
    [113]陈润涛,陈秉,夏源,等.性别对荷H22肝癌小鼠肿瘤生长的影响[J].中国职业医学, 2008, 35(4): 283-285.
    [114]李雯雯,李强.乙型肝炎肝硬化患者生存质量研究[J].中华肝脏病杂志, 2007, 15(4): 312-313.
    [115]黄河宁,李安章,翁露娜,等.茶多酚锰合成、表征及络合和诱导肿瘤细胞凋亡的研究[J].高等学校化学学报, 2007, 28(6): 1072-1076.
    [116]田新,符仁义,邓力,等.脐血间充质干细胞的分离扩增及向成骨及脂肪细胞的分化[J].中国修复重建外科杂志, 2007, 21(1): 81-86.
    [117] Zhang KZ, Xu JH, Huang XW, et al. Curcumin synergistically augments bcr/abl phosphorothioate antisense oligonucleotides to inhibit growth of chronic myelngenous leukemia cells[J]. Acta Pharmacol Sin, 2007, 28(3): 105-110.
    [118] Tang XD, Zhou KY, Hou G, et al. Mitochondrial mechanism of apoptosis induced by resveratrol in nasoparyngeal carcinoma cells CNE-2Z[J]. Chin J Pharmacol Toxicol, 2004, 18: 171-177.
    [119] Mrozek A, Petrowsky H, Sturm I, el a1. Conbined p53/Bax mutation results in extremely poor prognosis in gastric carcinoma with low microsatellite instability[J]. Cell Death Differ, 2003, 10(4): 461-467.
    [120]金伟,马力.染料木黄酮对顺铂诱导肝癌SMMC-7721细胞凋亡的增敏作用[J].第四军医大学学报, 2005, 26(8): 761-763.
    [121] Abrahamsen JF, Bakken AM, Bruserud O, et al. Flow cytometri measurement of apoptosis and necrosis in cryopreserved PBPC concentrates frompatientswith malignant diseases[J]. Bone Marrow Transplant, 2002, 29(2): 165-171.
    [122] Zwick E, Bange J, ULLrich A , et al. Receptor tyrosine kinase as targets for anticancerdrugs[J]. Trends Mol Med, 2002, 8(1): 17-22.
    [123]刘伍梅,汪铭书,程安春.细胞凋亡检测技术的研究进展[J].中国兽医科技, 2004, 34(11): 45-49.
    [124]张琨,蒋春晓,洪伟,等.氯化甲基汞对NB4和K562白血病细胞凋亡及增殖的影响[J].吉林大学学报(医学版), 2007, 33(2): 253-256.
    [125] Deng WY, Luo SX, Zhou MQ, et al. The study of anti-tumor effect of Tetrandrine combined with Nedaplatin on human liver cancer cell line 7402[J]. Zhong Yao Cai, 2008, 31(10): 1522-1525.
    [126] Jiao Y, Ge CM, Meng QH, et al. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth[J]. Acta Pharmacol Sin, 2007, 28(7): 1045-1056.
    [127] Shu WX, Chen Y, He J, et al. Effects of gambogic acid on the regulation of nucleoporin Nup88 in HL-60 cells[J]. Zhonghua Zhong Liu Za Zhi, 2008, 30(7): 484-489.
    [128] Sinha I, Sinha-Hikin AP, Hannawa KK, et al. Mitochondrial dependent apoptosis in experiment rodent abdominal aortic aneurysms[J]. Surgery, 2005, 138(4): 806-811.
    [129] Hang N, Fujita N, TsuruoT, et al. Involvement of mitochondrial aggregation in arsenic trioxide(As203)-induced apoptosis in human glioblastoma cells[J]. Cancer Sci, 2005, 96(11): 825-833.
    [130] Le Bras M, Clement MV, Pervaiz S, et a1. Reactive oxygen species and the mitochondrial signaling pathway of cel death[J]. Histol Histopathol, 2005, 20(1): 205-219.
    [131]张申,江兴林,卫涛涛,等.银杏叶提取物对H2O2诱导的巨噬细胞凋亡的抑制作用[J].中国药学杂志, 2006, 41(10): 750-754.
    [132] Ji YB, Chi WJ, Zou X, et al. Study on apoptosis effect induced by isothiocyanates in broccoli on HepG-2 cells and its mechanism[J]. Chin J Chin Materia Med, 2007, 32(7): 612-615.
    [133] Cain K, Bratton SB, Langlais C, et al. Apaf-1 Oligomerizes into Biologically Active~700-kDa and inactive~1.4-MDa Apoptosome complexes[J]. J Biol Chem, 2000, 275(9): 6067-6070.
    [134] Liu XS, Zou H, Slaugter C, et al. A heterodimeric protein that functions downstream of caspases-3 to trigger DNA fragmentation during apoptosis[J]. Cell, 1997, 89(11): 175-184.
    [135] Bouchier-Hayes I, Lartigue I,Newmeyer DD. Mitochondrial pharmacological manipulation of cell death[J]. J Clin Invest, 2005, 115(10): 2640-2647.
    [136] Disa N, Bailly C. Drugs targeting mitochondrial functions to control tumor cell growth[J]. Bilchem Pharmacol, 2005, 70(1): 1-12.
    [137] Lucken-Ardjomande S, Montessuit S, Martinou JC. Changes in the outer mitochondrial membranes during apoptosis[J]. J Soc Biol, 2005, 199(3): 207-210.
    [138] Amstrong JS. Mitochondrial membrane permeabilization the sinequanon for cell death[J]. Bioessays, 2006, 28(3): 253-260.
    [139] Mohamad N, Gutierrez A, Nunez M, et al. Mitochondrial apoptotic pathways [J]. Biocell, 2005, 29(2): 149-161.
    [140] Seth R, Yang C, Kaushal V, et al. P53-dependent caspase-2 activation in mitochondrial release of apoptosis inducing factor and its role in renal tubular epithelial cell injury[J]. J Biol Chem, 2005, 280(35): 31230-31239.
    [141]邱强,王真,蒋建明,等.力达霉素经线粒体依赖通路介导细胞凋亡[J].药学学报, 2007, 42(2): 132-138.
    [142] Zhang M, Ling Y, Yang CY, et al. A novel Bcl-2 small molecule inhibitor 4-(3-methoxy-phenoylsulfannyl)-7-nitro-benzofurazan-3-oxide(MNB)-induced apoptosis in leukemia cells[J]. Ann Hematol, 2007, 86(7): 471-481.
    [143] Egger L, Madden DT, Rheme C, et al. Endoplasmic reticulum stress-induced cell death mediated by the proteasome[J]. Cell Death Differ, 2007, 14(6): 1172-1180.
    [144] Bouchier-HayesL, Lartigue L, NewmeyerDD. Mitochondria: pharma ological manipulation of cell death[J]. J Clin Invest, 2005, 115(10): 2640-2647.
    [145] Dias N, Bailly C. Drugs targeting mitochondrial functions to control tumor cell growth[J]. Biochem Pharmacol, 2005, 70(1): 1-12.
    [146] Gorzyca W, Gong JP, Ardeh B, et al. The cycle related difference in susceptibility of HL-60 cell to apoptosis induced by various anti-tumor agents[J]. Cancer Res, 2003, 53(16): 3181-3196.
    [147] Racz B, Reglodi D, Fodor B, et al. Hyperosmotic stress-induced apoptosis signaling pathways in chondrocyte[J]. Bone, 2007, 40(6): 1536-1543.
    [148] Osbijd S, Brault L, Batyaglia E, et al. Resistance to cisplatin and adriamycin is associated with the inhibition of glutathione efflux in MCF-7-derived cells[J]. Anticancer Res, 2006, 26(5): 3595-3600.
    [149] Senturker S, Karahalil B, Inal M, et al. Oxidative DNA base damage and antioxidangt enzyme levels in childhood acute lymphoblastic leukemia[J]. FEBS Lett, 1997, 416(3): 286-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700