用户名: 密码: 验证码:
不同类型的巨噬细胞对肿瘤生长的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤是严重威胁人类健康的一类疾病。它和心血管疾病已在全世界成为死亡原因的前两位。在肿瘤组织中,含有较多的非肿瘤细胞,包括基质细胞(成纤维细胞和内皮细胞)和白细胞。巨噬细胞是浸润到肿瘤的白细胞的主要成分。肿瘤组织中的巨噬细胞,即肿瘤相关巨噬细胞(Tumor-associated macrolohage,TAM)与肿瘤的关系以及在肿瘤中发挥的多种功能正被深入的研究。肿瘤相关巨噬细胞不同的活化状态决定了其在肿瘤中是发挥抗肿瘤作用或促肿瘤作用。一方面,TAM可以通过吞噬、杀伤肿瘤细胞以及递呈肿瘤相关抗原发挥免疫监视和抗肿瘤作用;另一方面,TAM可以通过释放许多趋化因子和细胞因子促进肿瘤生长和血管生成,并且可以降解基质促进肿瘤侵袭和转移。
     巨噬细胞至少可以被分为两种类型:M1型,即经典活化的巨噬细胞
     (Classically activated macrophage)和M2型,即替代性活化的巨噬细胞(Alternatively activated macrophage)。M1型巨噬细胞在细菌或其产物脂多糖(Lipopolysaccharides,LPS)或干扰素-γ(Interferon-γ,IFN-γ)的诱导下产生,表现为:高递呈抗原的能力;高分泌白细胞介素12(Interlukin-12,IL-12)和白细胞介素23(Interlukin-23,IL-23)及其随后诱导的Ⅰ型免疫应答;高产生毒性中间产物[一氧化氮(Nitric oxide,NO),活性氧中间产物(Reactive oxygenintermediates,ROI)]的能力。因此,M1型巨噬细胞被认为具有杀伤细菌和肿瘤细胞并可以分泌多种促炎性细胞因子的能力。而M2型巨噬细胞可由白细胞介素4(Interlukin-4,IL-4)、白细胞介素13(Interlukin-13,IL-13)、糖皮质激素、转化生长因子-β(Transformating growth factor-β,TGF-β)和前列腺素E2(Prostaglandin E2,PGE2)等诱导产生,表现为:低的递呈抗原的能力;产生抑制细胞增殖和活性的细胞因子,如白细胞介素10(Interlukin-10,IL-10);较好的清除碎片的能力;促进血管生成和创伤愈合的能力。
     近几年来越来越多的研究表明TAM并未发挥抗肿瘤作用,而是参与了肿瘤的发生、生长、侵袭和转移的过程,尤其是与肿瘤的血管生成和淋巴管生成密切相关。根据巨噬细胞在肿瘤中发挥的作用及巨噬细胞的活化类型,我们推测在肿瘤中存在着这两种类型的巨噬细胞,并且肿瘤发生发展的早期,肿瘤中的巨噬细胞以M1型为主,发挥免疫监视和抗肿瘤作用,而在肿瘤的晚期,肿瘤中的巨噬细胞以M2型为主,发挥促进肿瘤生长、侵袭和转移的作用;肿瘤中巨噬细胞在肿瘤早期和肿瘤晚期发生了类型的改变,从而影响肿瘤的生长、侵袭和转移。那么,肿瘤中巨噬细胞的类型在肿瘤发生发展中是否如我们所推测得这样发生类型的转换呢?不同类型的巨噬细胞如何影响肿瘤的生长?为了解决上述问题,我们使用4T1荷瘤BALB/c小鼠作为实验动物模型,观察荷瘤小鼠肿瘤早期和晚期TAM的类型变化。在此基础上我们研究不同类型的巨噬细胞对肿瘤生长的影响及其机制,以期为以TAM为靶点的肿瘤治疗提供理论基础和实验依据,对深入研究肿瘤免疫和肿瘤治疗有一定的意义。
     1.巨噬细胞的分型及其鉴定
     我们首先使用来源于Abelson小鼠白血病病毒(Abelson murine leukemiavirus)诱导的肿瘤的巨噬细胞系RAW264.7细胞作为体外来源的巨噬细胞。根据已有的文献,我们选用了LPS作为了M1型巨噬细胞的诱导剂,IL-4作为M2型巨噬细胞的诱导剂,在体外诱导M1型和M2型巨噬细胞。以未处理的RAW264.7细胞作为对照,我们对在体外诱导的M1型和M2型巨噬细胞用FACS检测巨噬细胞膜分子CD16/32和CD206的表达、用RT-PCR检测巨噬细胞分泌的趋化因子CCL3(CC subtype chemokine ligand 3,巨噬细胞炎症蛋白1α)和CCL22(CC subtype chemokine ligand 22,巨噬细胞源趋化因子)以及巨噬细胞特异性检测指标iNOS(Inducible nitric oxide synthase,诱导型一氧化氮合成酶)和Arg-1(Arginase-1,精氨酸酶-1)的表达。结果表明:LPS诱导的RAW264.7细胞与对照组相比表达较高水平的CD16/32膜分子,表达较低水平的CCL22并几乎不表达Arg-1基因;而IL-4诱导的RAW264.7细胞与对照组相比表达较高水平的CD206膜分子,表达非常高水平的Arg-1基因,而表达较低水平的CD16/32膜分子和CCL3基因。上述结果表明,我们在体外成功地用LPS诱导了M1型巨噬细胞,用IL-4诱导了M2型巨噬细胞。
     我们接着观察在疾病模型中巨噬细胞的类型,通过分离乳腺癌细胞株4T1荷瘤4周的BALB/c小鼠的巨噬细胞,以密度-梯度离心及细胞贴壁所得的肿瘤巨噬细胞用FACS检测巨噬细胞膜分子CD16/32和CD206的表达、用RT-PCR检测巨噬细胞分泌的趋化因子CCL3和CCL22以及巨噬细胞特异性检测指标iNOS和Arg-1的表达,并且用酵母菌进行了吞噬功能的检测。结果表明:从第4周的4T1荷瘤小鼠分离到的肿瘤巨噬细胞表达较低水平的CD16/32膜分子和较高水平的CD206膜分子,表达较高水平的CCL22和Arg-1基因,并且对酵母菌的吞噬能力明显下降(P<0.05)。这些数据表明4周的荷瘤小鼠肿瘤组织中含有大量的M2型巨噬细胞。
     以上结果表明:巨噬细胞至少可以分为两种类型,我们在体外成功地用LPS诱导了M1型巨噬细胞,用IL-4诱导了M2型巨噬细胞,并且在肿瘤状态的小鼠体内检测到较多的M2型巨噬细胞。
     2.肿瘤发生发展过程中巨噬细胞的类型变化
     为了研究巨噬细胞的类型在肿瘤发生发展过程中有无改变,我们用乳腺癌细胞株4T1细胞荷瘤小鼠,作为肿瘤动物模型。我们首先通过荷瘤小鼠肿瘤生长的大小、重量、有无向周围淋巴结和远处肺组织转移,确定肿瘤发生发展过程的早期和晚期。荷瘤后第4周,荷瘤小鼠的肺组织经过Bouin's液固定后可见有一个至多个大小不一的白色肿瘤转移灶,并且肺组织病理切片中可见到聚集成团的肿瘤转移灶。同时,在4周荷瘤小鼠的荷瘤同侧腋下淋巴结的病理切片中可见到聚集成团的肿瘤转移灶。因此,结合荷瘤小鼠肿瘤生长的大小和重量,我们确定在BALB/c小鼠荷瘤后的1周内为肿瘤早期,而在荷瘤后的3-4周为肿瘤晚期。
     我们接着对早期和晚期荷瘤BALB/c小鼠肿瘤组织病理切片分别用FITC标记的F4/80单克隆抗体与PE标记的CD16/32或FITC标记的F4/80单克隆抗体与PE标记的CD206单克隆抗体进行免疫荧光染色,观察在肿瘤的早期和晚期肿瘤组织巨噬细胞的类型有无改变。结果表明,在肿瘤的早期,肿瘤组织巨噬细胞以M1型(F4/80~+CD16/32~+)为主,而在肿瘤的晚期,肿瘤组织巨噬细胞以M2型(F4/80~+CD206~+)为主。我们最后对肿瘤发生发展过程的早期和晚期与肿瘤组织巨噬细胞的类型进行相关性研究,结果表明:在肿瘤的早期,肿瘤组织巨噬细胞以M1型为主,而在肿瘤的晚期,肿瘤组织巨噬细胞以M2型为主的现象与肿瘤发生发展的进程相关。
     以上结果显示在肿瘤的发生发展过程中,肿瘤巨噬细胞的类型发生了改变,在肿瘤的早期,肿瘤组织巨噬细胞以M1型为主,而在肿瘤的晚期,肿瘤组织巨噬细胞以M2型为主,并且肿瘤巨噬细胞类型的改变与肿瘤发生发展的进程相关。
     3.不同类型的巨噬细胞在肿瘤生长中的作用
     为了研究不同类型的巨噬细胞对肿瘤生长有无影响,我们在体外对RAW264.7细胞用LPS诱导了M1型巨噬细胞,用IL-4诱导了M2型巨噬细胞,并以未刺激的RAW264.7细胞作为对照,与4T1细胞按1:2的比例混合后,在BALB/c小鼠的腹部皮下进行注射,使小鼠荷瘤。在小鼠荷瘤后,从第二天起每天观察荷瘤小鼠的肿瘤出现的早晚,肿瘤的大小,并且在第7天和第28天,每组荷瘤小鼠取脾细胞,检测其CD4~+T细胞亚群和CD8~+T细胞亚群的变化,并检测脾细胞对4T1肿瘤细胞的杀伤功能。结果表明:IL-4诱导的M2型巨噬细胞组小鼠肿瘤出现的时间略早于其它组,并且肿瘤也比其它组大;在肿瘤早期,IL-4诱导的M2型巨噬细胞组小鼠脾细胞的CD4~+T细胞亚群的比例为37.01%,与LPS诱导的M1型巨噬细胞组(34.50%)、未刺激的RAW264.7细胞组(36.74%)和正常小鼠(35.28%)相似,略高于4T1肿瘤细胞对照组(30.91%),而IL-4诱导的M2型巨噬细胞组小鼠脾细胞的CD8~+T细胞亚群的比例为17.33%,与LPS诱导的M1型巨噬细胞组(17.15%)、未刺激的RAW264.7细胞组(17.00%)和正常小鼠(16.84%)相似,略高于4T1肿瘤细胞对照组(15.14%);在肿瘤晚期,IL-4诱导的M2型巨噬细胞组小鼠脾细胞的CD4~+T细胞亚群的比例为8.16%,低于未刺激的RAW264.7细胞组(11.26%)和4T1肿瘤细胞对照组(18.19%),远低于LPS诱导的M1型巨噬细胞组(31.41%)和正常小鼠(36.16%),而IL-4诱导的M2型巨噬细胞组小鼠脾细胞的CD8~+T细胞亚群的比例为5.07%,低于未刺激的RAW264.7细胞组(5.86%)和4T1肿瘤细胞对照组(7.78%),远低于LPS诱导的M1型巨噬细胞组(16.19%)和正常小鼠(21.30%);在肿瘤早期,IL-4诱导的M2型巨噬细胞组小鼠脾细胞对4T1肿瘤细胞的杀伤能力为45.39%,略低于LPS诱导的M1型巨噬细胞组(50.95%),远低于未刺激的RAW264.7细胞组(75.61%)、4T1肿瘤细胞对照组(82.54%)和正常小鼠(64.29%);而在肿瘤晚期,IL-4诱导的M2型巨噬细胞组小鼠脾细胞对4T1肿瘤细胞的杀伤能力为41.75%,远低于LPS诱导的M1型巨噬细胞组(67.51%)和正常小鼠(67.76%)。
     以上结果显示在肿瘤的发生发展过程中,肿瘤巨噬细胞的类型可以影响肿瘤的生长、荷瘤小鼠T细胞亚群和荷瘤小鼠T细胞的功能。给予荷瘤小鼠M2型巨噬细胞可以促进肿瘤的生长。在肿瘤的早期,荷瘤小鼠T细胞亚群和T细胞的功能改变不明显,而在肿瘤的晚期,给予荷瘤小鼠M1型巨噬细胞可以促使荷瘤小鼠T细胞亚群和T细胞的功能恢复至正常小鼠水平,有利于抗肿瘤应答。
     4.不同类型的巨噬细胞影响抗肿瘤免疫的机制研究——M2对调节性T细胞的诱导作用
     许多的研究表明调节性T细胞(Regulatory T cells,Treg)在肿瘤免疫逃逸中发挥重要作用。为了了解调节性T细胞在荷瘤小鼠的早期和晚期有无改变,我们分离4T1荷瘤小鼠的肿瘤浸润淋巴细胞,用FACS检测CD4~+CD25~+Treg细胞比例和数量的改变。结果表明:CD4~+CD25~+Treg细胞在荷瘤小鼠的肿瘤浸润淋巴细胞的比例在肿瘤晚期比肿瘤早期明显增加(7.36%vs4.47%,P<0.05);CD4~+CD25~+Treg细胞在荷瘤小鼠的肿瘤浸润淋巴细胞的数量在肿瘤晚期比肿瘤早期明显增加(2×10~4vs1×10~3,P<0.05)。
     我们进而研究了不同类型的巨噬细胞对肿瘤生长的影响,在观察荷瘤小鼠CD4~+T细胞亚群和CD8~+T细胞亚群的变化并检测脾细胞对4T1肿瘤细胞的杀伤功能的同时我们观察了荷瘤小鼠的脾细胞中Treg细胞的变化。结果表明:在肿瘤早期,IL-4诱导的M2型巨噬细胞组小鼠脾细胞CD4~+Foxp3~+细胞占CD4~+细胞的比例为9.34%,与LPS诱导的M1型巨噬细胞组(11.04%)、未刺激的RAW264.7细胞组(10.46%)、4T1肿瘤细胞对照组(10.24%)和正常小鼠(10.87%)相似;而在肿瘤晚期,IL-4诱导的M2型巨噬细胞组小鼠脾细胞CD4~+Foxp3~+细胞占CD4~+细胞的比例为22.43%,明显高于LPS诱导的M1型巨噬细胞组(14.31%)和正常小鼠(13.90%),略高于未刺激的RAW264.7细胞组(20.42%)和4T1肿瘤细胞对照组(18.57%)。这些结果说明不同类型的巨噬细胞影响肿瘤生长,可能通过其诱导免疫负调控细胞—Treg抑制免疫应答而介导的。在肿瘤的早期,巨噬细胞的类型对荷瘤小鼠的Treg细胞水平影响不大,而在肿瘤的晚期,M 2型巨噬细胞可以促使荷瘤小鼠的Treg细胞水平显著提高,不利于机体的抗肿瘤免疫应答。
     为了观察不同类型的巨噬细胞对Treg细胞的影响,我们在体外对RAW264.7细胞用LPS诱导了M1型巨噬细胞,用IL-4诱导了M2型巨噬细胞,并以未刺激的RAW264.7细胞作为对照,与从4T1荷瘤小鼠细胞中分离的脾脏或引流淋巴结细胞混合培养48小时后,用FACS检测CD4~+CD25~+Treg细胞比例的改变。结果表明:IL-4诱导的M2型巨噬细胞组CD4~+Foxp3~+ Treg细胞的比例比LPS诱导的M1型巨噬细胞组和T细胞对照组有明显的提高。并且我们检测了不同类型巨噬细胞的TGF-β的基因水平,结果表明IL-4诱导的M2型巨噬细胞组的TGF-β的基因水平明显高于LPS诱导的M1型巨噬细胞组和未刺激的RAW264.7细胞组。由于TGF-β都有助于诱导Treg细胞,因此上述结果表明不同类型的巨噬细胞可以影响Treg细胞,从而影响抗肿瘤免疫应答。
     综上所述,我们首先在体外成功地用LPS诱导了M1型巨噬细胞,用IL-4诱导了M2型巨噬细胞,在此基础上研究不同类型的巨噬细胞与肿瘤发生发展的关系。通过对肿瘤组织中巨噬细胞的观察表明在肿瘤的发生发展过程中,肿瘤巨噬细胞的类型发生了改变,在肿瘤的早期,肿瘤组织巨噬细胞以M1型为主,而在肿瘤的晚期,肿瘤组织巨噬细胞以M2型为主,并且肿瘤巨噬细胞类型的改变与肿瘤发生发展的进程相关。我们进一步研究不同类型的巨噬细胞对肿瘤生长的影响及其机制,结果表明M2型巨噬细胞可以促进肿瘤的生长并且可以诱导调节性T细胞,M1型巨噬细胞可以促使荷瘤小鼠T细胞亚群和荷瘤小鼠T细胞的功能恢复至正常小鼠水平,有利于抗肿瘤应答。因此,改变巨噬细胞类型可以影响机体对肿瘤的免疫应答。本研究为以肿瘤组织巨噬细胞为靶点的肿瘤治疗提供理论基础和实验依据,以期对深入研究肿瘤免疫和肿瘤治疗有一定的意义。
Tumor is a severe disease which affects human health. A prominent component of solid tumors is represented by non-tumoral cells, including stromal cells (fibroblasts and endothelial cells) and leukocytes. Among the latter, macrophages are the major component. Macrophages infiltrated in the tumors, which are also called tumor-associated macrophages (TAMs), have been studied extensively on their relationship with tumor cells and their multi-faceted functions in the tumor microenvironment. TAMs are able to exert pro- and anti-tumor effects in the tumor microenvironment depending on their activation states. TAMs can not only exert immune surveillance and anti-tumor function by phagocytosing, killing tumor cells and presenting tumor antigens, but also promote tumor development and blood vessel angiogenesis by secreting many chemokines and cytokines, and promote tumor invasion and metastasis by degrading matrix.
     As we know, there are two types of Macrophages: Ml macrophages, also termed as classically activated macrophages, and M2 macrophages, also termed as alternatively activated macrophages. Ml macrophages activated in response to microorganisms or microbial products (such as Lipopolysaccharides (LPS)) or interferon-γ(IFN-γ) are characterized by: high capacity to present antigen; high interleukin-12 (IL-12) and IL-23 production and consequent activation of a polarized type I response; high production of toxic intermediates (nitric oxide (NO), reactive oxygen intermediates (ROI)). Based on these, Ml macrophages are generally considered to be potent effector cells that kill microorganisms and tumor cells and produce copious amounts of pro-inflammatory cytokines. In stark contrast, M2 macrophages induced by IL-4, IL-13, glucocorticoid, transforming growth factor-β(TGF-β), and prostaglandin E2 (PGE2) and so on, are characterized by: poor antigen-presenting capability, producing factors that suppress T-cell proliferation and activity (such as IL-10), and generally be better adapted to scavenging debris, promoting angiogenesis, and repairing and remodeling wounded/damaged tissues.
     Increasing evidences have shown that TAMs do not exert anti-tumor effect, while are involved in the process of tumorigenesis, tumor development, invasion and metastasis, especially are closely related to tumor angiogenesis and lymphangiogenesis. According to the functions of the TAMs in the tumors and their activation states, we speculated that TAMs exerted immune surveillance and anti-tumor function at the early stage of the tumors and most of them were M1 macrophages, while TAMs could promote tumor development, invasion and metastasis at the later stage of the tumors, and mostly were M2 macrophages; the types of TAMs at the later stage of the tumors were changed comparing with that at the early stage of the tumors, and the type-shift of the macrophages influences the development, invasion and metastasis of the tumors. Do TAMs change their types as we speculated in the development of tumors? How do the different types of macrophages influence the development of the tumors? To confirm it, we observed the types of macrophages at the early stage and the later stage of the tumor in 4T1 -bearing BALB/c mice model. Then we studied whether different types of the macrophages affected the development of the tumor with above experiment data and the mechanisms that different types of macrophages influenced the development of 4T1 tumor. These studies would provide theoretical basis and experimental proof in the treatment of tumors with TAMs as therapeutic targets, and would be meaningful for the study of tumor immunity and tumor therapeutics.
     1. The classification and identification of the macrophages.
     We used RAW264.7 cell line, which is a macrophage cell line derived from the tumor induced by Abelson murine leukemia virus in BALB/c mice, as the source of macrophages in vitro. We used LPS to induce M1 macrophages and used IL-4 to induce M2 macrophages in vitro. Using unstimulated RAW264.7 cells as control, macrophages stimulated with LPS or IL-4 were detected for the levels of membrane proteins CD16/32 and CD206 by FACS (fluorescence-activated cell sorting), the chemokine production of CCL3 and CCL22 by RT-PCR, and the gene expression of iNOS (inducible nitric oxide synthase) and Arg-1 by RT-PCR. It was shown that RAW264.7 cells stimulated with LPS expressed higher level of CD16/32 than that of control group, and expressed lower level of CCL22 than that of control group, and nearly did not express Arg-1; while RAW264.7 cells stimulated with IL-4 expressed higher level of CD206 than that of control group, expressed much higher level of Arg-1, and expressed lower levels of CD16/32 and CCL3 than that of control group (P<0.05). These results were in accordance with the features of the M1 and M2 macrophages. The above results indicated that there were two types of Macrophages and we succeeded in inducing M1 macrophages with LPS and M2 macrophages with IL-4.
     We next investigated the types of the macrophages in different disease models by isolating macrophages from BALB/c mice bearing 4T1 tumor at 4 weeks. To identify the types of infiltrated macrophages from 4 weeks 4T1-bearing mice by density-gradient centrifugation and adhering to disks, we detected the expression of CD16/32 and CD206 by FACS, the expression of CCL3, CCL22, iNOS and Arg-1 by RT-PCR, and the ability of phagocytosis using yeast cells. It was shown that TAMs isolated from 4T1-bearing mice expressed low level of CD16/32, high levels of CD206, CCL22 and Arg-1, and poor capacity to lick up yeast cells (P<0.05). These results showed us that tumor mass of the BALB/c mice bearing 4T1 tumor at 4 weeks were infiltrated with abundant M2 macrophages.
     The above results suggested that we succeeded in inducing M1 macrophages with LPS and M2 macrophages with IL-4 in vitro, and there were a great deal of M2 macrophages in tumor-bearing mice in vivo.
     2. Type-shift of macrophages in the process of tumor development.
     To investigate the type-shift of macrophages in the process of tumor development, we used 4T1-bearing BALB/c mice as tumor animal model. We firstly defined the early stage and the later stage of the 4T1 tumor by examining the size and the weight of the tumors, and detecting the metastasis of the tumor to lymph nodes and lung. The size and weight of 4T1 tumors were increased with time. In the 4 weeks 4T1 -bearing mice, we observed one or more tumor metastases in the lungs of 4T1-bearing mice after fixation by Bouin's fixative, and found tumor metastases in the oxter lymph node at the same side of the tumor and the lung in pathologic sections, but we did not find tumor metastases in the oxter lymph node at the same side of the tumor and the lung in the 1 week 4T1-bearing mice. Therefore, we confirmed with the size and weight of the tumor that the early stage of the tumor was within 1 week after innoculating tumor cells, and the later stage of the tumor was 3 to 4 weeks after innoculating tumor cells.
     We investigated the type-shift of macrophages in the process of tumor development by Immunofluorescence in the pathologic sections of the early or the later stage tumors from the 4T1-bearing BALB/c mice doublestaining with PE-CD16/32 mAb and FITC-F4/80 mAb or with PE-CD206 mAb and FITC-F4/80 mAb. Labeled cells were counted automatically by Image-Pro Plus 6.0 software. It was shown that most of the TAMs were M1 macrophages (F4/80~+CD16/32~+) at the early stage of the tumor, while most of the TAMs were M2 macrophages (F4/80~+CD206~+) at the later stage of the tumor. We also investigated the relationship between the types of the macrophages and the stages of the tumor. It was shown that the types of the macrophages were correlated with the process of tumor development.
     The above results suggested that the types of the TAMs were changed with the development of the tumors, and most of the TAMs were M1 macrophages at the early stage of the tumors, while most of the TAMs were M2 macrophages at the later stage of the tumors.
     3. The effects of different types of macrophages in tumor development.
     To investigate the effects of different types of macrophages in tumor development, we induced M1 macrophages with LPS and M2 macrophages with IL-4 in vitro, using unstimulated RAW264.7 cells as control, mixed them with 4T1 cells at the ratio of 1:2, and subcutaneously injected the mixture at the abdominal skin of the BALB/c mice to get 4T1-bearing mice. After tumor innoculation, we observed daily the tumors in several groups appearing sooner or later and the size of the tumors since the second day, and got splenocytes from a mice of each group to examine the change of CD4~+ and CD8~+ T cells and detect the cytotoxic capacity of the splenocytes against 4T1 cells at day 7 and day 28. It was shown that tumors of the group of the M2 macrophages induced by IL-4 appeared earlier than other groups and were bigger than that of other groups at the early stage, tumors of the group of the M1 macrophages induced by LPS were smaller than that of other groups, and the size of the tumors from the group of the M2 macrophages induced by IL-4 were similar with that of the group of unstimulated macrophages and the group of 4T1 cells; at the early stage of the tumor, the percentage of the CD4~+ T cells in the splenocytes in the group of M2 macrophages induced by IL-4 was 37.01%, similar with that of the group of M1 macrophages induced by LPS (34.50%) and the group of unstimulated RAW264.7 cells (36.74%) and the group of tumor-free mice (35.78%), slightly higher than that of the group of 4T1-bearing mice (30.91%), and the percentage of the CD8~+ T cells in the splenocytes in the group of M2 macrophages induced by IL-4 was 17.33%, similar with that of the group of M1 macrophages induced by LPS (17.15%) and the group of unstimulated RAW264.7 cells (17.00%) and the group of tumor-free mice (16.84%), slightly higher than that of the group of 4T1 -bearing mice (15.14%); at the later stage of the tumor, the percentage of the CD4~+ T cells in the splenocytes in the group of M2 macrophages induced by IL-4 was 8.16%, lower than that of the group of unstimulated RAW264.7 cells (11.26%) and the group of 4T1-bearing mice (18.19%), much lower than that of the group of M1 macrophages induced by LPS (32.41%) and the group of tumor-free mice (36.16%)(P < 0.05), and the percentage of the CD8~+ T cells in the splenocytes in the group of M2 macrophages induced by IL-4 was 5.07%, lower than that of the group of unstimulated RAW264.7 cells (5.86%) and the group of 4T1-bearing mice (7.78%), much lower than that of the group of M1 macrophages induced by LPS (16.19%) and the group of tumor-free mice (21.30%)(P < 0.05); at the early stage of the tumor, the cytotoxic capacity of the splenocytes against 4T1 cells in the group of M2 macrophages induced by IL-4 was 45.39%, slightly lower than that of the group of M1 macrophages induced by LPS (50.59%), much lower than that of the group of unstimulated RAW264.7 cells (75.61%), the group of 4T1-bearing mice (82.54%) and the group of tumor-free mice (64.29%), while at the later stage of the tumor, the cytotoxic function of the splenocytes against 4T1 cells in the group of M2 macrophages induced by IL-4 was 49.18%, much lower than that of the group of M1 macrophages induced by LPS (78.53%) and the group of tumor-free mice (73.50%)( P < 0.05).
     The above results suggested that different types of macrophages in the course of tumor progression could affect the development of the tumor, the subpopulations and the functions of the T cells in the tumor-bearing mice. M2 macrophages could promote the development of the tumors. At the early stage of the tumor, the different types of macrophages had little effect on the subpopulations and the functions of the T cells in the tumor-bearing mice, while at the later stage of the tumor, M1 macrophages could resume the subpopulations and the functions of the T cells in the tumor-bearing mice to normal levels of the tumor-free mice, which could favor anti-tumor immune response.
     4. The investigation of the mechanisms affecting tumor immunity by different types of macrophages—M2 macrophages induced the regulatory T cells
     It has been shown that regulatory T cells (Tregs) played an important role in the tumor escape and the tumor immunity. To investigate whether Treg cells changed in the early and the later stage of the tumors, we isolated tumor infiltrating lymphocytes (TILs) from 4T1-bearing mice, and detected the change of the percentage and the number of the CD4~+CD25~+ Treg cells in the TILs by FACS. We found that the percentage of the CD4~+CD25~+ Treg cells in the tumors in the later stage of the tumor was obviously increased than that in the early stage of the tumor (7.36% vs 4.47%, P<0.05), and the number of the CD4~+CD25~+ Treg cells in the TILs in the later stage of the tumor was obviously increased than that in the early stage of the tumor (2×10~4 vs 1×10~3,P<0.05).
     When we did the experiment in part 3, we also detected the change of Treg cells in the early and the later stage of the tumor at the same time. It was shown that at the early stage of the tumor the percentage of the CD4~+Foxp3~+ Treg cells in the CD4~+ splenocytes in the group of M2 macrophages induced by IL-4 was 9.37%, similar with that of the group of M1 macrophages induced by LPS (11.04%), the group of unstimulated RAW264.7 cells (10.46%), the group of 4T1-bearing mice (10.24%) and the group of tumor-free mice (10.87%), while at the later stage of the tumor, the percentage of the CD4~+Foxp3~+ Treg cells in the CD4~+ splenocytes in the group of M2 macrophages induced by IL-4 was 22.43%, much higher than that of the group of M1 macrophages induced by LPS (14.31%) and the group of tumor-free mice (13.90%), slightly higher than that of the group of unstimulated RAW264.7 cells (20.42%) and the group of 4T1-bearing mice (18.57%)(P < 0.05). These results suggested that different types of macrophages affected the course of tumor progression by inducing the Treg cells in the tumor. At the early stage of the tumor, the different types of macrophages had little effect on the level of the Treg cells in the tumor-bearing mice, while at the later stage of the tumor, M2 macrophages could increase the level of the Treg cells in the tumor-bearing mice which were harmful to anti-tumor immune response.
     To observe the influence of different types of macrophages on the Treg cells, we induced M1 macrophages with LPS and M2 macrophages with IL-4 in vitro, using unstimulated RAW264.7 cells as control, co-cultured them with splenocytes or lymph node cells isolated from 4T1-bearing mice for 48 hours, then detected the percentage of the CD4~+Foxp3~+ Treg cells in the CD4~+ cells by FACS. It was shown that the percentage of the CD4~+Foxp3~+ Treg cells in the CD4~+ cells in the group of M2 macrophages induced by IL-4 was obviously higher than that of the group of M1 macrophages induced by LPS and the group of unstimulated splenocytes or lymph node cells(P < 0.05). At the same time, we detected the expression of TGF-βat gene level in the macrophages of different types, which could induce Treg cells. Results showed that the gene level of TGF-βin the group of M2 macrophages induced by IL-4 was higher than that of the group of M1 macrophages induced by LPS and the group of unstimulated RAW264.7 cells (P < 0.05). These results indicated that different types of macrophages could influence Treg cells, subsequently affected the anti-tumor immunity.
     In summary, we succeeded in inducing M1 macrophages with LPS and M2 macrophages with IL-4 in vitro, and based on these results we studied the relationship between macrophages and tumors. It was shown that the types of TAMs were changed with the development of the tumors by examining the pathologic sections, most of the TAMs were M1 macrophages in the early stage of the tumor and most of the TAMs were M2 macrophages in the later stage of the tumor, and the types of the macrophages were correlated with the process of tumor development. We further studied the effects of different types of macrophages on tumor development and their mechanisms, and found that M2 macrophages could promote the development of the tumors and expand Treg cells, while M1 macrophages could make the subpopulations and the functions of the T cells in the tumor-bearing mice resuming to normal levels of the normal mice, which could favor anti-tumor immune response. Therefore, changing the types of the macrophages could affect host tumor immunity. These studies would provide the theoretical basis and experimental proof in the treatment of tumors with TAMs as therapeutic targets, and would be meaningful for the study of tumor immunity and tumor therapeutics.
引文
1. Chang A, Aruga A, Cameron M, et al. Adoptive immunotherapy with vaccine-primed lymph node cells secondarily activated with anti-CD3 and IL-2 [J]. J Clin Oncol, 1997,15(3): 796-807.
    2. Ohno S, Suzuki N, Ohno Y, Inagawa H, Soma G, Inoue M. Tumor-associated macrophages: Foe or accomplice of tumors[J]? Anticancer Res, 2003; 23(6a): 4395-409.
    3. van Ravenswaay Claasen HH, Kluin PM, Fleuren GJ. Tumor infiltrating cells in human cancer. On the possible role of cd16+ macrophages in antitumor cytotoxicity[J]. Lab Invest, 1992; 67(2): 166-74.
    4. Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L. The origin and function of tumor-associated macrophages [J]. Immunol Today, 1992; 13(7): 265-70.
    5. Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: Implications for new anticancer therapies[J]. J Pathol, 2002; 196(3): 254-65.
    6. Klimp AH, de Vries EG, Scherphof GL, Daemen T. A potential role of macrophage activation in the treatment of cancer[J]. Crit Rev Oncol Hematol, 2002; 44(2): 143-61.
    7. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments[J]. Cancer Res, 2006; 66(2): 605-12.
    8. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct m2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy[J]. Eur J Cancer, 2006; 42(6): 717-27.
    9. Lin EY, Nguyen AV, Russell RG, Pollard JW. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy[J]. J Exp Med, 2001; 193(6): 727-40.
    10. Robinson SC, Scott KA, Wilson JL, Thompson RG, Proudfoot AE, Balkwill FR. A chemokine receptor antagonist inhibits experimental breast tumor growth[J]. Cancer Res, 2003; 63(23): 8360-5.
    11. Hugues S, Fetler L, Bonifaz L, Helft J, Amblard F, Amigorena S. Distinct t cell dynamics in lymph nodes during the induction of tolerance and immunity[J]. Nat Immunol, 2004; 5(12): 1235-42.
    12. Hugues S, Boissonnas A, Amigorena S, Fetler L. The dynamics of dendritic cell-t cell interactions in priming and tolerance[J]. Curr Opin Immunol, 2006; 18(4): 491-5.
    13. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized m2 mononuclear phagocytes[J]. Trends Immunol, 2002; 23(11): 549-55.
    14. Mosser DM. The many faces of macrophage activation[J]. J Leukoc Biol, 2003; 73(2): 209-212.
    15. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunol, 2004; 25(12): 677-86.
    16. Goerdt S, Orfanos CE. Other functions, other genes: Alternative activation of antigen-presenting cells[J]. Immunity, 1999; 10(2): 137-42.
    17. Gordon S. Alternative activation of macrophages [J]. Nat Rev Immunol, 2003; 3(1): 23-35.
    18. Verreck FAW, de Boer T, Langenberg DML, Hoeve MA, Kramer M, Vaisberg E, Kastelein R, Kolk A, de Waal-Malefyt R, Ottenhoff THM. Human il-23-producing type 1 macrophages promote but il-10-producing type 2 macrophages subvert immunity to (myco)bacteria[J]. PNAS, 2004; 101(13): 4560-4565.
    19. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function[J]. Annu Rev Immunol, 1997; 15: 323-50.
    20. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation[J]. J. Exp. Med., 1992; 176(1): 287-292.
    21. Elgert KD, Alleva DG, Mullins DW. Tumor-induced immune dysfunction: The macrophage connection[J]. J Leukoc Biol, 1998; 64(3): 275-90.
    22. Condeelis J, Pollard JW. Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis[J]. Cell, 2006; 124(2): 263-6.
    23. Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW. Monocyte/macrophage infiltration in tumors: Modulators of angiogenesis[J]. J Leukoc Biol, 2006; 80(6): 1183-96.
    24. Lamagna C, Aurrand-Lions M, Imhof BA. Dual role of macrophages in tumor growth and angiogenesis[J].J Leukoc Biol,2006;80(4):705-13.
    25.Oshima H,Oshima M,Inaba K,Taketo MM.Hyperplastic gastric tumors induced by activated macrophages in cox-2/mpges-1 transgenic mice[J].Embo J,2004;23(7):1669-78.
    26.Goswami S,Sahai E,Wyckoff JB,Cammer M,Cox D,Pixley F J,Stanley ER,Segall JE,Condeelis JS.Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop[J].Cancer Res,2005;65(12):5278-83.
    27.O'Sullivan C,Lewis CE,Harris AL,McGee JO.Secretion of epidermal growth factor by macrophages associated with breast carcinoma[J].Lancet,1993;342(8864):148-9.
    28.Sieweke MH,Thompson NL,Sporn MB,Bissell MJ.Mediation of wound-related rous sarcoma virus tumorigenesis by tgf-beta[J].Science,1990;248(4963):1656-1660.
    29.Lewis C,Murdoch C.Macrophage responses to hypoxia:Implications for tumor progression and anti-cancer therapies[J].Am J Pathol,2005;167(3):627-35.
    30.van Netten JP,George EJ,Ashmead B J,Fletcher C,Thornton IG,Coy P.Macrophage-tumour cell associations in breast cancer[J].Lancet,1993;342(8875):872-3.
    31.Hewlett G,Opitz H-G,Flad HD,Schlumberger HD.Macrophages/monocytes require cell-to-cell contact in order to regulate the growth of a murine lymphoma cell line[J].J Immunol,1979;123(5):2265-2269.
    32.Naylor MS,Stamp GW,Davies BD,Balkwill FR.Expression and activity of mmps and their regulators in ovarian cancer[J].Int J Cancer,1994;58(1):50-6.
    33.Migita T,Sato E,Saito K,Mizoi T,Shiiba K,Matsuno S,Nagura H,Ohtani H.Differing expression of mmps-1 and -9 and urokinase receptor between diffuse- and intestinal-type gastric carcinoma[J].Int J Cancer,1999;84(1):74-9.
    34.Leek RD,Lewis CE,Whitehouse R,Greenall M,Clarke J,Harris AL.Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma[J].Cancer Res,1996;56(20):4625-9.
    35.Hanada T,Nakagawa M,Emoto A,Nomura T,Nasu N,Nomura Y.Prognostic value of tumor-associated macrophage count in human bladder cancer[J].Int J Urol,2000;7(7):263-9.
    36.Wyckoff J,Wang W,Lin EY,Wang Y,Pixley F,Stanley ER,Graf T, Pollard JW, Segall J, Condeelis J. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors[J]. Cancer Res, 2004; 64(19): 7022-7029.
    37. Mitsuhashi M, Liu J, Cao S, Shi X, Ma X. Regulation of interleukin-12 gene expression and its anti-tumor activities by prostaglandin e2 derived from mammary carcinomas [J]. J Leukoc Biol, 2004; 76(2): 322-32.
    38. Lewis CE, Leek R, Harris A, McGee JO. Cytokine regulation of angiogenesis in breast cancer: The role of tumor-associated macrophages[J]. J Leukoc Biol, 1995; 57(5): 747-51.
    39. Klimp AH, Hollema H, Kempinga C, van der Zee AG, de Vries EG, Daemen T. Expression of cyclooxygenase-2 and inducible nitric oxide synthase in human ovarian tumors and tumor-associated macrophages[J]. Cancer Res, 2001; 61(19): 7305-9.
    40. Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D'Amore PA, Stein-Streilein J, Losordo DW, Streilein JW. Inflammation-induced lymphangiogenesis in the cornea arises from cd11b-positive macrophages[J]. J. Clin. Invest., 2005; 115(9): 2363-2372.
    41. Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, Kerjaschki D. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis[J]. Am J Pathol, 2002; 161(3): 947-56.
    42. Pulaski BA., Ostrand-Rosenberg S. Reduction of established spontaneous mammary carcinoma metastases following immunotherapy with major histocompatibility complex class II and B7.1 cell-based tumor vaccines[J]. Cancer Res, 1998, 58(12): 1486-1493.
    43. Zhuang JC, Wogan GN. Growth and viability of macrophages continuously stimulated to produce nitric oxide[J]. Proc Natl Acad Sci U S A, 1997; 94(22): 11875-80.
    44. Liang L, Major T, Bocan T. Characterization of the promoter of human extracellular matrix metalloproteinase inducer (emmprin) [J]. Gene, 2002; 282(1-2): 75-86.
    45. Dinapoli MR, Calderon CL, Lopez DM. The altered tumoricidal capacity of macrophages isolated from tumor- bearing mice is related to reduce expression of the inducible nitric oxide synthase gene[J]. J. Exp. Med., 1996; 183(4): 1323-1329.
    46. Misson P, van den Brule S, Barbarin V, Lison D, Huaux F. Markers of macrophage differentiation in experimental silicosis[J]. J Leukoc Biol, 2004; 76(5): 926-932.
    47. Sinha P, Clements VK, Ostrand-Rosenberg S. Interleukin-13-regulated m2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis[J]. Cancer Res, 2005; 65(24): 11743-51.
    48. Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC. Arginase i production in the tumor microenvironment by mature myeloid cells inhibits t-cell receptor expression and antigen-specific t-cell responses[J]. Cancer Res, 2004; 64(16): 5839-5849.
    49. Cameron DJ, O'Brien P. Cytotoxicity of cancer patient's macrophages for tumor cells[J]. Cancer, 1982; 50(3): 498-502.
    50. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences [J]. J Immunol, 2005; 175(1): 342-9.
    51. Totpal K, Aggarwal BB. Interleukin 4 potentiates the antiproliferative effects of tumor necrosis factor on various tumor cell lines[J]. Cancer Res, 1991; 51(16): 4266-70.
    52. Carthy CM, Granville DJ, Watson KA, Anderson DR, Wilson JE, Yang D, Hunt DW (?), McManus BM. Caspase activation and specific cleavage of substrates after coxsackievirus b3-induced cytopathic effect in hela cells [J]. J. Virol., 1998; 72(9): 7669-7675.
    53. Yu SF, Koerner TJ, Adams DO. Gene regulation in macrophage activation: Differential regulation of genes encoding for tumor necrosis factor, interleukin-1, je, and kc by interferon-gamma and lipopolysaccharide[J]. J Leukoc Biol, 1990; 48(5): 412-419.
    54. Wells CA, Ravasi T, Faulkner GJ, Caminci P, Okazaki Y, Hayashizaki Y, Sweet M, Wainwright BJ, Hume DA. Genetic control of the innate immune response[J]. BMC Immunol, 2003; 4: 5.
    55. Williams L, Jarai G, Smith A, Finan P. Il-10 expression profiling in human monocytes[J]. J Leukoc Biol, 2002; 72(4): 800-809.
    56. Loke P, Nair MG, Parkinson J, Guiliano D, Blaxter M, Allen JE. 11-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype[J]. BMC Immunol, 2002; 3:7.
    57. Goerdt S, Politz O, Schledzewski K, Birk R, Gratchev A, Guillot P, Hakiy N, Klemke CD, Dippel E, Kodelja V, Orfanos CE. Alternative versus classical activation of macrophages[J]. Pathobiology, 1999; 67(5-6): 222-6.
    58. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-l/m-2 macrophages and the thl/th2 paradigm[J]. J Immunol, 2000; 164(12): 6166-6173.
    59. Gerber JS, Mosser DM. Reversing lipopolysaccharide toxicity by ligating the macrophage fc{{gamma}} receptors[J]. J Immunol, 2001; 166(11): 6861-6868.
    60. Anderson CF, Mosser DM. Cutting edge: Biasing immune responses by directing antigen to macrophage fc{gamma} receptors[J]. J Immunol, 2002; 168(8): 3697-3701.
    61. Anderson CF, Mosser DM. A novel phenotype for an activated macrophage: The type 2 activated macrophage[J]. J Leukoc Biol, 2002; 72(1): 101-106.
    62. Sutterwala FS, Noel GJ, Clynes R, Mosser DM. Selective suppression of interleukin-12 induction after macrophage receptor ligation[J]. J. Exp. Med., 1997; 185(11): 1977-1985.
    63. Katakura T, Miyazaki M, Kobayashi M, Herndon DN, Suzuki F. Ccl17 and il-10 as effectors that enable alternatively activated macrophages to inhibit the generation of classically activated macrophages [J]. J. Immunol., 2004; 172(3): 1407-1413.
    64. Rauh MJ, Ho V, Pereira C, Sham A, Sly LM, Lam V, Huxham L, Minchinton AI, Mui A, Krystal G. Ship represses the generation of alternatively activated macrophages [J]. Immunity, 2005; 23(4): 361-74.
    65. Verreck FAW, de Boer T, Langenberg DML, van der Zanden L, Ottenhoff THM. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and ifn-{gamma}- and cd401-mediated costimulation[J]. J Leukoc Biol, 2006; 79(2): 285-293.
    66. Carrasco L, Nunez A, Sanchez-Cordon PJ, Pedrera M, Fernandez de Marco M, Salguero FJ, Gomez-Villamandos JC. Immunohistochemical detection of the expression of pro-inflammatory cytokines by ovine pulmonary macrophages[J]. J Comp Pathol, 2004; 131(4): 285-93.
    67. Underhill DM, Ozinsky A. Phagocytosis of microbes: Complexity in action[J]. Annu Rev Immunol, 2002; 20: 825-52.
    68. Haslett C, Savill JS, Whyte MK, Stern M, Dransfield I, Meagher LC. Granulocyte apoptosis and the control of inflammation[J]. Philos Trans R Soc Lond B Biol Sci, 1994; 345(1313): 327-33.
    69. Rossi AG, McCutcheon JC, Roy N, Chilvers ER, Haslett C, Dransfield I. Regulation of macrophage phagocytosis of apoptotic cells by camp[J]. J Immunol, 1998; 160(7): 3562-3568.
    70. Liu Y, Cousin JM, Hughes J, Van Damme J, Seckl JR, Haslett C, Dransfield I, Savill J, Rossi AG. Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes[J]. J Immunol, 1999; 162(6): 3639-3646.
    71. Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM, Cheever AW, Pearce EJ, Wynn TA. Differential regulation of nitric oxide synthase-2 and arginase-1 by type I/type 2 cytokines in vivo: Granulomatous pathology is shaped by the pattern of 1-arginine metabolism[J]. J Immunol, 2001; 167(11): 6533-6544.
    72. Gratchev A, Guillot P, Hakiy N, Politz O, Orfanos CE, Schledzewski K, Goerdt S. Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaig-h3[J]. Scand J Immunol, 2001; 53(4): 386-92.
    73. Namangala B, De Baetselier P, Noel W, Brys L, Beschin A. Alternative versus classical macrophage activation during experimental african trypanosomosis[J]. J. Leukoc. Biol., 2001; 69(3): 387-396.
    74. Shrivastava P, Singh SM, Singh N. Effect of thymosin-alphal on the production of nitric oxide by tumor-associated macrophages[J]. Neoplasma, 2003; 50(1): 47-53.
    75. Shrivastava P, Singh SM, Singh N. Activation of tumor-associated macrophages by thymosin alpha 1[J]. Int J Immunopathol Pharmacol, 2004; 17(1): 39-47.
    76. Doherty TM, Sher A, Vogel SN. Paclitaxel (taxol)-induced killing of leishmania major in murine macrophages[J]. Infect. Immun., 1998; 66(9): 4553-4556.
    77. Mullins DW, Burger CJ, Elgert KD. Paclitaxel enhances macrophage il-12 production in tumor-bearing hosts through nitric oxide[J]. J Immunol, 1999; 162(11): 6811-6818.
    78. Bingaman AW, Pearson TC, Larsen CP. The role of cd401 in t cell-dependent nitric oxide production by murine macrophages [J]. Transpl Immunol, 2000; 8(3): 195-202.
    79. Imaizumi K, Kawabe T, Ichiyama S, Kikutani H, Yagita H, Shimokata K, Hasegawa Y.Enhancement of tumoricidal activity of alveolar macrophages via cd40-cd40 ligand interaction[J].Am J Physiol Lung Cell Mol Physiol,1999;277(1):L49-57.
    80.Stout RD,Suttles J,Xu J,Grewal IS,Flavell RA.Impaired t cell-mediated macrophage activation in cd40 ligand-deficient mice[J].J Immunol,1996;156(1):8-11.
    81.Klostergaard J,Leroux ME,Hung MC.Cellular models of macrophage tumoricidal effector mechanisms in vitro.Characterization of cytolytic responses to tumor necrosis factor and nitric oxide pathways in vitro[J].J Immunol,1991;147(8):2802-2808.
    82.Hollenbaugh JA,Reome J,Dobrzanski M,Dutton RW.The rate of the cd8-dependent initial reduction in tumor volume is not limited by contact-dependent perforin,fas ligand,or tnf-mediated cytolysis[J].J Immunol,2004;173(3):1738-1743.
    83.Dunn GP,Bruce AT,Ikeda H,Old L J,Schreiber RD.Cancer immunoediting:From immunosurveillance to tumor escape[J].Nat Immunol,2002;3(11):991-8.
    84.Finn OJ.Cancer vaccines:Between the idea and the reality[J].Nat Rev Immunol,2003;3(8):630-41.
    85.Pardoll D.Does the immune system see tumors as foreign or self[J]? Annu Rev Immunol,2003;21:807-39.
    86.Marincola FM,Wang E,Herlyn M,Seliger B,Ferrone S.Tumors as elusive targets of t-cell-based active immunotherapy[J].Trends Immunol,2003;24(6):335-42.
    87.Iwai Y,Ishida M,Tanaka Y,Okazaki T,Honjo T,Minato N.Involvement of pd-11 on tumor cells in the escape from host immune system and tumor immunotherapy by pd-11 blockade[J].PNAS,2002;99(19):12293-12297.
    88.Shevach EM.Cd4+ cd25+ suppressor t cells:More questions than answers[J].Nat Rev Immunol,2002;2(6):389-400.
    89.Serafini P,De Santo C,Marigo I,Cingarlini S,Dolcetti L,Gallina G.,Zanovello P,Bronte V.Derangement of immune responses by myeloid suppressor cells[J].Cancer Immunol Immunother,2004;53(2):64-72.
    90.Viglietta V,Baecher-Allan C,Weiner HL,et al.Loss of functional suppression by CD4~+ CD25~+ regulatory T cells in patients with multiple sclerosis[J].J Exp Med,2004,199(7):971-979.
    91.Shevach EM.Regulatory T cells in autoimmunity[J].Annu Rev Immunol.,2000,18:423-449.
    92.Terabe M,Berzofsky JA.Immunoregulatory T cells in tumor immunity[J].Curr Opin Immunol,2004,16(2):157-162.
    93.刘荣军,葛棣,丁建勇,储以微.肺癌患者CD4~+CD25~(high)FOXp3~+调节性T细胞的格局变化及意义[J].中国免疫学杂志,2006 22(6):101-104.
    94.Curiel TJ,Coukos G,Zou L,et al.Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J].Nat Med,2004,10(9):942-949.
    95.Onizuka S,Tawara I,Shimizu J,et al.Tumor rejection by in vivo administration of anti-CD25(interleukin-2 receptor alpha) monoclonal antibody[J].Cancer Res.,1999,59(13):3128-3133.
    96.Polak L,Turk JL.Reversal of immunological tolerance by cyclophosphamide through inhibition of suppressor cell activity[J].Nature,1974,249(458):654-456.
    97.Mitchell MS,Kan-Mitchell J,Kempf RA,et al.Active specific immunotherapy for melanoma:phase Ⅰ trial of alogeneic lysates and a novel adjuvant[J].Cancer Res,1988,48(20):5883-5893.
    98.North RJ.Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells[J].J Exp Med,1982,155(4):1063-1074.
    99.Sakaguchi S,Sakaguchi N,Asano M,Itoh M,Toda M.Immunologic self-tolerance maintained by activated t cells expressing il-2 receptor alpha-chains (cd25).Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J].J Immunol,1995;155(3):1151-1164.
    100.Itoh M,Takahashi T,Sakaguchi N,Kuniyasu Y,Shimizu J,Otsuka F,Sakaguchi S.Thymus and autoimmunity:Production of cd25+cd4+ naturally anergic and suppressive t cells as a key function of the thymus in maintaining immunologic self-tolerance[J].J Immunol,1999;162(9):5317-5326.
    101.Fontenot JD,Gavin MA,Rudensky AY.Foxp3 programs the development and function of cd4+cd25+ regulatory t cells[J].Nat Immunol,2003;4(4):330-6.
    102.Queller DC,Ponte E,Bozzaro S,Strassmann JE.Single-gene greenbeard effects in the social amoeba dictyostelium discoideum[J].Science,2003;299(5603):105-106.
    103.Gondek DC,Lu L-F,Quezada SA,Sakaguchi S,Noelle RJ.Cutting edge: Contact-mediated suppression by cd4+cd25+ regulatory cells involves a granzyme b-dependent, perforin-independent mechanism[J]. J Immunol, 2005; 174(4): 1783-1786.
    104. Nakamura K, Kitani A, Fuss I, Pedersen A, Harada N, Nawata H, Strober W. Tgf-{beta}l plays an important role in the mechanism of cd4+cd25+ regulatory t cell activity in both humans and mice[J]. J Immunol, 2004; 172(2): 834-842.
    105. Jonuleit H, Schmitt E, Kakirman H, Stassen M, Knop J, Enk AH. Infectious tolerance: Human cd25+ regulatory t cells convey suppressor activity to conventional cd4+1 helper cells[J]. J. Exp. Med., 2002; 196(2): 255-260.
    106. Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. Cd4+cd25+ regulatory t cells control leishmania major persistence and immunity[J]. Nature, 2002; 420(6915): 502-7.
    107. Coffer PJ, Burgering BM. Forkhead-box transcription factors and their role in the immune system[J]. Nat Rev Immunol, 2004; 4(11): 889-99.
    108. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory t cells in the peripheral blood of cancer patients[J]. Clin Cancer Res, 2003; 9(2): 606-612.
    109. Hontsu S, Yoneyama H, Ueha S, Terashima Y, Kitabatake M, Nakano A, Ito T, Kimura H, Matsushima K. Visualization of naturally occurring foxp3+ regulatory t cells in normal and tumor-bearing mice[J]. Int Immunopharmacol, 2004; 4(14): 1785-93.
    110. Somasundaram R, Jacob L, Swoboda R, Caputo L, Song H, Basak S, Monos D, Peritt D, Marincola F, Cai D, Birebent B, Bloome E, Kim J, Berencsi K, Mastrangelo M, Herlyn D. Inhibition of cytolytic t lymphocyte proliferation by autologous cd4+/cd25+ regulatory t cells in a colorectal carcinoma patient is mediated by transforming growth factor-{beta} [J]. Cancer Res, 2002; 62(18): 5267-5272.
    111.Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W. Specific recruitment of regulatory t cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med, 2004; 10(9): 942-9.
    112.Kawaida H,Kono K,Takahashi A,Sugai H,Mimura K,Miyagawa N,Omata H,Ooi A,Fujii H.Distribution of cd4+cd25high regulatory t-cells in tumor-draining lymph nodes in patients with gastric cancer[J].J Surg Res,2005;124(1):151-7.
    113.Yamagiwa S,Gray JD,Hashimoto S,Horwitz DA.A role for tgf-{ {beta} } in the generation and expansion of cd4+cd25+ regulatory t cells from human peripheral blood[J].J Immunol 2001;166(12):7282-7289.
    114.Peng Y,Laouar Y,Li MO,Green EA,Flavell RA.Tgf-{beta} regulates in vivo expansion of foxp3-expressing cd4+cd25+ regulatory t cells responsible for protection against diabetes[J].PNAS,2004;101(13):4572-4577.
    115.Schramm C,Huber S,Protschka M,Czochra P,Burg J,Schmitt E,Lohse AW,Galle PR,Blessing M.Tgf{beta} regulates the cd4+cd25+ t-cell pool and the expression of foxp3 in vivo[J].Int.Immunol.,2004;16(9):1241-1249.
    116.Curotto de Lafaille MA,Lino AC,Kutchukhidze N,Lafaille JJ.Cd25- t cells generate cd25+foxp3+ regulatory t cells by peripheral expansion[J].J Immunol,2004;173(12):7259-7268.
    117.Zheng SG,Wang J,Wang P,Gray JD,Horwitz DA.I1-2 is essential for tgf-beta to convert naive cd4+cd25- cells to cd25+foxp3+ regulatory t cells and for expansion of these cells[J].J Immunol,2007;178(4):2018-2027.
    1.Ohno S,Suzuki N,Ohno Y,Inagawa H,Soma G.Inoue M.Tumor-associated macrophages:Foe or accomplice of tumors[J]? Anticancer Res,2003;23(6a):4395-409.
    2.van Ravenswaay Claasen HH,Kluin PM,Fleuren GJ.Tumor infiltrating cells in human cancer.On the possible role of cd16+ macrophages in antitumor cytotoxicity[J].Lab Invest,1992;67(2):166-74.
    3.Mantovani A,Bottazzi B,Colotta F,Sozzani S,Ruco L.The origin and function of tumor-associated macrophages[J].Immunol Today,1992;13(7):265-70.
    4.Bingle L,Brown N J,Lewis CE.The role of tumour-associated macrophages in tumour progression:Implications for new anticancer therapies[J].J Pathol,2002;196(3):254-65.
    5.Klimp AH,de Vries EG,Scherphof GL,Daemen T.A potential role of macrophage activation in the treatment of cancer[J].Crit Rev Oncol Hematol,2002;44(2):143-61.
    6.Lewis CE,Pollard JW.Distinct role of macrophages in different tumor microenvironments[J].Cancer Res,2006;66(2):605-12.
    7.Doe WF,Henson PM.Macrophage stimulation by bacterial lipopolysaccharides.I.Cytolytic effect on tumor target cells[J].J.Exp.Med.,1978;148(2):544-556.
    8.Cameron D J,Churchill WH.Cytotoxicity of human macrophages for tumor cells:Enhancement by bacterial lipopolysaccharides(1ps)[J].J Immunol,1980;124(2):708-712.
    9.Dileepan KN,Page JC,Li Y,Stechschulte DJ.Direct activation of murine peritoneal macrophages for nitric oxide production and tumor cell killing by interferon-gamma[J].J Interferon Cytokine Res,1995;15(5):387-94.
    10.Inamura N,Sone S,Okubo A,Singh SM,Ogura T.Heterogeneity in responses of human blood monocytes to granulocyte-macrophage colony-stimulating factor[J]. J Leukoc Biol, 1990; 47(6): 528-534.
    11. Grabstein KH, Urdal DL, Tushinski RJ, Mochizuki DY, Price VL, Cantrell MA, Gillis S, Conlon PJ. Induction of macrophage tumoricidal activity by granulocyte-macrophage colony-stimulating factor[J]. Science, 1986; 232(4749): 506-508.
    12. Kiener PA, Marek F, Rodgers G, Lin PF, Warr G, Desiderio J. Induction of tumor necrosis factor, ifn-gamma, and acute lethality in mice by toxic and non-toxic forms of lipid a[J]. J Immunol, 1988; 141(3): 870-874.
    13. Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues[J]. Blood, 2004; 104(8): 2224-34.
    14. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized m2 mononuclear phagocytes[J]. Trends Immunol, 2002; 23(11): 549-55.
    15. Balkwill F. Cancer and the chemokine network[J]. Nat Rev Cancer, 2004; 4(7): 540-50.
    16. Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer[J]. Clin Cancer Res, 2000; 6(8): 3282-9.
    17. Lin EY, Nguyen AV, Russell RG, Pollard JW. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy [J]. J Exp Med, 2001; 193(6): 727-40.
    18. Gordon S. Alternative activation of macrophages[J]. Nat Rev Immunol, 2003; 3(1): 23-35.
    19. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct m2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy[J]. Eur J Cancer, 2006; 42(6): 717-27.
    20. Mosser DM. The many faces of macrophage activation[J]. J Leukoc Biol, 2003; 73(2): 209-212.
    21. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunol, 2004; 25(12): 677-86.
    22. Goerdt S, Orfanos CE. Other functions, other genes: Alternative activation of antigen-presenting cells[J]. Immunity, 1999; 10(2): 137-42.
    23. Verreck FAW, de Boer T, Langenberg DML, Hoeve MA, Kramer M, Vaisberg E, Kastelein R, Kolk A, de Waal-Malefyt R, Ottenhoff THM. Human il-23 -producing type 1 macrophages promote but il-10-producing type 2 macrophages subvert immunity to (myco)bacteria[J]. PNAS, 2004; 101(13): 4560-4565.
    24. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function[J]. Annu Rev Immunol, 1997; 15: 323-50.
    25. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation[J]. J. Exp. Med., 1992; 176(1): 287-292.
    26. Elgert KD, Alleva DG, Mullins DW. Tumor-induced immune dysfunction: The macrophage connection[J]. J Leukoc Biol, 1998; 64(3): 275-90.
    27. Gerber JS, Mosser DM. Reversing lipopolysaccharide toxicity by ligating the macrophage fc[l]} receptors[J]. J Immunol, 2001; 166(11): 6861-6868.
    28. Anderson CF, Mosser DM. Cutting edge: Biasing immune responses by directing antigen to macrophage fc[2] receptors[J]. J Immunol, 2002; 168(8): 3697-3701.
    29. Anderson CF, Mosser DM. A novel phenotype for an activated macrophage: The type 2 activated macrophage[J]. J Leukoc Biol, 2002; 72(1): 101-106.
    30. Johnson WJ, Steplewski Z, Matthews TJ, Hamilton TA, Koprowski H, Adams DO. Cytolytic interactions between murine macrophages, tumor cells, and monoclonal antibodies: Characterization of lytic conditions and requirements for effector activation[J]. J Immunol, 1986; 136(12): 4704-4713.
    31. Pullyblank AM, Guillou PJ, Monson JR. Interleukin 1 and tumour necrosis factor alpha may be responsible for the lytic mechanism during anti-tumour antibody-dependent cell-mediated cytotoxicity[J]. Br J Cancer, 1995; 72(3): 601-6.
    32. Leu RW, Zhou AQ, Kennedy MJ, Shannon BJ. Exogenous c1q reconstitutes a secondary deficiency of c5-deficient akr mouse macrophages for fcr-dependent cellular cytotoxicity and phagocytosis [J]. J Immunol, 1991; 146(4): 1233-1239.
    33. Munn DH, Cheung NK. Antibody-dependent antitumor cytotoxicity by human monocytes cultured with recombinant macrophage colony-stimulating factor. Induction of efficient antibody-mediated antitumor cytotoxicity not detected by isotope release assays[J]. J. Exp. Med., 1989; 170(2): 511-526.
    34. Condeelis J, Pollard JW. Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis[J]. Cell, 2006; 124(2): 263-6.
    35. Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW. Monocyte/macrophage infiltration in tumors: Modulators of angiogenesis [J]. J Leukoc Biol, 2006; 80(6): 1183-96.
    36. Lamagna C, Aurrand-Lions M, Imhof BA. Dual role of macrophages in tumor growth and angiogenesis[J]. J Leukoc Biol, 2006; 80(4): 705-13.
    37. Oshima H, Oshima M, Inaba K, Taketo MM. Hyperplastic gastric tumors induced by activated macrophages in cox-2/mpges-1 transgenic mice[J]. Embo J, 2004; 23(7): 1669-78.
    38. Sieweke MH, Thompson NL, Sporn MB, Bissell MJ. Mediation of wound-related rous sarcoma virus tumorigenesis by tgf-beta[J]. Science, 1990; 248(4963): 1656-1660.
    39. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, Condeelis JS. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop[J]. Cancer Res, 2005; 65(12): 5278-83.
    40. O'Sullivan C, Lewis CE, Harris AL, McGee JO. Secretion of epidermal growth factor by macrophages associated with breast carcinoma[J]. Lancet, 1993; 342(8864): 148-9.
    41. Sieweke MH, Thompson NL, Sporn MB, Bissell MJ. Mediation of wound-related rous sarcoma virus tumorigenesis by tgf-beta[J]. Science, 1990; 248(4963): 1656-1660.
    42. Lewis C, Murdoch C. Macrophage responses to hypoxia: Implications for tumor progression and anti-cancer therapies[J]. Am J Pathol, 2005; 167(3): 627-35.
    43. van Netten JP, George EJ, Ashmead BJ, Fletcher C, Thornton IG, Coy P. Macrophage-tumour cell associations in breast cancer[J]. Lancet, 1993; 342(8875): 872-3.
    44. Hewlett G, Opitz H-G, Flad HD, Schlumberger HD. Macrophages/monocytes require cell-to-cell contact in order to regulate the growth of a murine lymphoma cell line[J]. J Immunol, 1979; 123(5): 2265-2269.
    45. Polverini PJ, Leibovich SJ. Effect of macrophage depletion on growth and neovascularization of hamster buccal pouch carcinomas[J]. J Oral Pathol, 1987; 16(9): 436-41.
    46. Huang S, Van Arsdall M, Tedjarati S, McCarty M, Wu W, Langley R, Fidler IJ. Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice[J]. J Natl Cancer, Inst 2002; 94(15): 1134-42.
    47. Naylor MS, Stamp GW, Davies BD, Balkwill FR. Expression and activity of mmps and their regulators in ovarian cancer[J]. Int J Cancer, 1994; 58(1): 50-6.
    48. Migita T, Sato E, Saito K, Mizoi T, Shiiba K, Matsuno S, Nagura H, Ohtani H. Differing expression of mmps-1 and -9 and urokinase receptor between diffuse- and intestinal-type gastric carcinoma[J]. Int J Cancer, 1999; 84(1): 74-9.
    49. Hagemann T, Robinson SC, Schulz M, Trumper L, Balkwill FR, Binder C. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to tnf-alpha dependent up-regulation of matrix metalloproteases[J]. Carcinogenesis, 2004; 25(8): 1543-9.
    50. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma[J]. Cancer Res, 1996; 56(20): 4625-9.
    51. Hanada T, Nakagawa M, Emoto A, Nomura T, Nasu N, Nomura Y. Prognostic value of tumor-associated macrophage count in human bladder cancer[J]. Int J Urol, 2000; 7(7): 263-9.
    52. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condeelis J. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors[J]. Cancer Res, 2004; 64(19): 7022-7029.
    53. Oosterling SJ, van der Bij GJ, Meijer GA, Tuk CW, van Garderen E, van Rooijen N, Meijer S, van der Sijp JR, Beelen RH, van Egmond M. Macrophages direct tumour histology and clinical outcome in a colon cancer model[J]. J Pathol, 2005; 207(2): 147-55.
    54. Sunderkotter C, Goebeler M, Schulze-Osthoff K, Bhardwaj R, Sorg C. Macrophage-derived angiogenesis factors[J]. Pharmacol Ther, 1991; 51(2): 195-216.
    55. Mitsuhashi M, Liu J, Cao S, Shi X, Ma X. Regulation of interleukin-12 gene expression and its anti-tumor activities by prostaglandin e2 derived from mammary carcinomas[J]. J Leukoc Biol, 2004; 76(2): 322-32.
    56. Lewis CE, Leek R, Harris A, McGee JO. Cytokine regulation of angiogenesis in breast cancer: The role of tumor-associated macrophages[J]. J Leukoc Biol, 1995; 57(5): 747-51.
    57. Klimp AH, Hollema H, Kempinga C, van der Zee AG, de Vries EG, Daemen T. Expression of cyclooxygenase-2 and inducible nitric oxide synthase in human ovarian tumors and tumor-associated macrophages[J]. Cancer Res, 2001; 61(19): 7305-9.
    58. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma[J]. Cancer Res, 1996; 56(20): 4625-9.
    59. Makitie T, Summanen P, Tarkkanen A, Kivela T. Tumor-infiltrating macrophages (cd68+ cells) and prognosis in malignant uveal melanoma[J]. Invest. Ophthalmol. Vis. Sci., 2001; 42(7): 1414-1421.
    60. Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H, Ito Y, Inamura T, Ikezaki K, Fukui M, Iwaki T, Kuwano M. Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas[J]. Clin Cancer Res, 1999; 5(5): 1107-1113.
    61. Hanada T, Nakagawa M, Emoto A, Nomura T, Nasu N, Nomura Y. Prognostic value of tumor-associated macrophage count in human bladder cancer[J]. Int J Urol, 2000; 7(7): 263-9.
    62. Lissbrant IF, Stattin P, Wikstrom P, Damber JE, Egevad L, Bergh A. Tumor associated macrophages in human prostate cancer: Relation to clinicopathological variables and survival[J]. Int J Oncol, 2000; 17(3): 445-51.
    63. Giraudo E, Inoue M, Hanahan D. An amino-bisphosphonate targets mmp-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis[J]. J Clin Invest, 2004; 114(5): 623-33.
    64. Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D'Amore PA, Stein-Streilein J, Losordo DW, Streilein JW. Inflammation-induced lymphangiogenesis in the cornea arises from cd11b-positive macrophages [J]. J. Clin. Invest., 2005; 115(9): 2363-2372.
    65. Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, Kerjaschki D. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis[J]. Am J Pathol, 2002; 161(3): 947-56.
    66. Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, Bernasconi S, Saccani S, Nebuloni M, Vago L, Mantovani A, Melillo G, Sica A. Regulation of the chemokine receptor cxcr4 by hypoxia[J]. J. Exp. Med., 2003; 198(9): 1391-1402.
    67. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC. Progenitor cell trafficking is regulated by hypoxic gradients through hif-1 induction of sdf-l[J]. Nat Med, 2004; 10(8): 858-64.
    68. Carta L, Pastorino S, Melillo G, Bosco MC, Massazza S, Varesio L. Engineering of macrophages to produce ifn-{{gamma}} in response to hypoxia[J]. J Immunol, 2001; 166(9): 5374-5380.
    69. Burke B, Sumner S, Maitland N, Lewis CE. Macrophages in gene therapy: Cellular delivery vehicles and in vivo targets[J]. J Leukoc Biol, 2002; 72(3): 417-428.
    70. Robinson SC, Scott KA, Wilson JL, Thompson RG, Proudfoot AEI, Balkwill FR. A chemokine receptor antagonist inhibits experimental breast tumor growth[J]. Cancer Res, 2003; 63(23): 8360-8365.
    71. Sessa C, De Braud F, Perotti A, Bauer J, Curigliano G, Noberasco C, Zanaboni F, Gianni L, Marsoni S, Jimeno J, D'Incalci M, Dall'o E, Colombo N. Trabectedin for women with ovarian carcinoma after treatment with platinum and taxanes fails[J]. J Clin Oncol, 2005; 23(9): 1867-1874.
    72. Allavena P, Signorelli M, Chieppa M, Erba E, Bianchi G, Marchesi F, Olimpio CO, Bonardi C, Garbi A, Lissoni A, de Braud F, Jimeno J, D'Incalci M. Anti-inflammatory properties of the novel antitumor agent yondelis (trabectedin): Inhibition of macrophage differentiation and cytokine production[J]. Cancer Res, 2005; 65(7): 2964-2971.
    73. Joseph IB, Isaacs JT. Macrophage role in the anti-prostate cancer response to one class of antiangiogenic agents[J]. J Natl Cancer Inst, 1998; 90(21): 1648-53.
    74. Wahl LM, Kleinman HK. Tumor-associated macrophages as targets for cancer therapy[J]. J Natl Cancer Inst, 1998; 90(21): 1583-4.
    75. Sica A, Saccani A, Bottazzi B, Polentarutti N, Vecchi A, Damme JV, Mantovani A. Autocrine production of il-10 mediates defective il-12 production and nf-{kappa}b activation in tumor-associated macrophages[J]. J Immunol, 2000; 164(2): 762-767.
    76. Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection[J]. Cancer Res, 2005; 65(8): 3437-3446.
    77. Shrivastava P, Singh SM, Singh N. Effect of thymosin-alphal on the production of nitric oxide by tumor-associated macrophages[J]. Neoplasma, 2003; 50(1): 47-53.
    78. Shrivastava P, Singh SM, Singh N. Activation of tumor-associated macrophages by thymosin alpha 1[J]. Int J Immunopathol Pharmacol, 2004; 17(1): 39-47.
    79. Doherty TM, Sher A, Vogel SN. Paclitaxel (taxol)-induced killing of leishmania major in murine macrophages[J]. Infect. Immun., 1998; 66(9): 4553-4556.
    80. Mullins DW, Burger CJ, Elgert KD. Paclitaxel enhances macrophage il-12 production in tumor-bearing hosts through nitric oxide[J]. J Immunol, 1999; 162(11): 6811-6818.
    81. Bingaman AW, Pearson TC, Larsen CP. The role of cd401 in t cell-dependent nitric oxide production by murine macrophages[J]. Transpl Immunol, 2000; 8(3): 195-202.
    82. Imaizumi K, Kawabe T, Ichiyama S, Kikutani H, Yagita H, Shimokata K, Hasegawa Y Enhancement of tumoricidal activity of alveolar macrophages via cd40-cd40 ligand interaction[J]. Am J Physiol Lung Cell Mol Physiol, 1999; 277(1): L49-57.
    83. Stout RD, Suttles J, Xu J, Grewal IS, Flavell RA. Impaired t cell-mediated macrophage activation in cd40 ligand-deficient mice[J]. J Immunol, 1996; 156(1): 8-11.
    84. Klostergaard J, Leroux ME, Hung MC. Cellular models of macrophage tumoricidal effector mechanisms in vitro. Characterization of cytolytic responses to tumor necrosis factor and nitric oxide pathways in vitro[J]. J Immunol, 1991; 147(8): 2802-2808.
    85. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis[J]. Nat Rev Cancer, 2004; 4(1): 71-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700