用户名: 密码: 验证码:
人类癌症相关基因HCL-G1的结构、功能及其调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癌症是目前人类健康的头号杀手,而肺癌是癌症中发病率最高的癌症。目前已知的肺癌发病机理多是生长因子和生长因子的表面受体发生异常所致,因此,进一步阐明受体下游的调控基因对于阐明肺癌的发生机理和进一步设计药物靶位点都是十分有意义的。
     本研究针对在肺癌细胞中一个上调非常明显的靶基因——HCL-G1,研究了G1的基因和蛋白质结构,鉴定其属于一个全新的基因家族,在进化中和其他基因平行进化,高度保守。细胞定位结果显示其蛋白特异性表达在核仁,而拆段的结果则显示其N端的信号肽并不具有单独引导其蛋白质正确定位的功能,并且提示我们G1蛋白的完整性对于其定位具有重要意义。我们检测了G1过表达的Hela细胞的增殖速度,发现G1能够显著促进细胞增殖,这说明G1可能和癌症有关系,流式细胞仪的结果证实了G1促进细胞增殖的作用主要体现在加速G1-S和G2-M转位。而western的结果显示G1的促增殖作用并不是通过调节cyclin家族的蛋白来完成的,这就提示G1很可能是通过另外的方式来调节细胞周期,而已知的方式中,p53-p21-CDK2途径是最为普遍的调节方式。我们运用荧光素酶报告系统分析了几条与细胞增殖有关的信号途径,结果显示,G1的过表达能够显著抑制p53、p21的表达。为了阐明上游调控因子和G1表达的关系,我们运用荧光素酶报告系统分析了G1的启动子区域,发现G1一段长约601bp的启动子序列承载了G1 80%以上的表达活性。在该启动子中,有4个真实的MAPK调控的下游转录因子结合位点,E-BOX、CDE、AP1和ETS分别负责G1的正负调控,而在启动子的前100 bp可能还存在一个以上有待鉴定的抑制位点,MEK1和MEKK以一种复杂的方式精确调控G1的转录,EGF、IGF和TGFβ则通过影响这两个MAPK信号途径中主要的激酶来完成对G1的调控。因为己知的研究显示,p53是细胞增殖、分化和凋亡的一个枢纽,接受来自细胞生长个方面的信号,综合决定细胞的命运,而G1的细胞定位强烈暗示了它和rRNA剪切拼接的关系,因此,我们运用Northern检测了G1对于细胞rRNA的剪切拼接的作用,结果显示G1的表达下调以后,rRNA的剪切过程也受到了相应的抑制。我们运用酵母双杂交的方法鉴定了一个G1的相互作用蛋白,PES1,其在酵母中的同源蛋白也是和G1在酵母中的同源蛋白相互作用,并且二者都定位于核仁,PES1也能够通过调控rRNA的剪切拼接来调控细胞周期。
     我们的研究最终阐明了G1的上游调控机制,横向作用蛋白和其功能,并且确定了其通过p53-p21-CDK途径影响细胞周期,这一结果证明在肺癌的发生过程中,G1肯定受到异常的上游生长因子信号的影响而发生表达异常,成为癌症发生的一个中间因素。
Cancer is the most dangerous killer in all the diseases, and lung carcinoma is the most one in all the cancer. So far, the cancerogenic mechanism of lung cancer is not well elucidated. Some growth factors and growth factor receptors have been identified to participate in cancerogenic processes, but the downstream pathways regulated by those growth factor receptors are uncleared. Clarif ing these pathways and genes are essential to understand the cancerogenic process and design medicines.This project is for understanding HCL-G1, which is evidently up-regulated in lung carcinoma cells. G1 belongs to a new gene family, which is highly conserved in most Eukaryotes. We transfected G1-GFP plasmid into Hela cells, and found G1 locating to nucleolus. G1_(N-terminal)-GFP was transfected into Hela cells as the same protocol, but it wasn' t rightly located. The results displayed that G1' s signal peptide in its N-terminal is not enough to get a right location. We examined the growth speed of G1 transfected Hela cells, and found G1 has noticeable plus effect to cell proliferation contrasting to control samples. Flow cytometer results showed that overexpression of G1 promoted G1-S and G2-M transitions. For better understanding the downstream target that G1 regulated, western blot was performed to examine CyclinB\E and CDK2, and CyclinB\E' s expression level weren't distinctly changed. It's likely that G1 regulates in cell-cycle by some other pathways, p53-p21-CDK2 is most understanded so far. We tested some signal pathways related to cell cycle in G1 up-and down-expression Hela cells, and found G1 up-expression down-regulated p53 and p21 level. We identified Gl gene promoter region, and found a 601bp region contributing to G1>80% expression.
引文
[1] Morgan D O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol, 1997,13: 261-291.
    
    [2] Jeffrey P D, Russo A A, Polyak K, et al. Mechanism of CDK activation revealed by the structure of a cyclin A-CDK2 complex. Nature, 1995, 376: 313320
    
    [3] Roberts J M. Evolving ideas about cyclins. Cell, 1999, 98: 129-132.
    [4] Sherr C J, Roberts J M. CDK inhibitors: positive and negative regulators of G,-phase progression. Genes Dev, 1999,13: 1501-1512.
    [5] Jeoung D I, Oehlen L J, Cross F R. CIn3-associated kinase activity in Saccharomyc cerevisiae is regulated by the mating factor pathway. Mol Cell Biol, 1998,18: 433-441
    [6] Correa-Bordes J, Nurse 1? p25 ruml orders S phase and mitosis by acting as an inhibitor of the p34cdc2 mitotic kinase. Cell, 1995, 83:1001-1009
    [7] Schwob E, Bohm T, Mendenhall M D, et al. The B-type cyclin kinase inhibitor p40SIC1 controls the Gl to S transition in S. cerevisiae. Cell, 1994, 79: 233-244
    [8] LaBaer J, Garrett L F, Stevenson J M, et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev, 1997,11: 847- 862
    [9] Cheng M P, Olivier J A, Diehl M, et al. The p21 and p27 CDK inhibitors are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBOJ, 1999,18: 1571-1583
    [10] Pardee A B. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci USA, 1974, 71: 1286-1290
    
    [11] Helin K, Harlow E, Fattaey A. Inhibition of E2F-1 mediated transactivation by direct binding of the retinoblastoma protein. Mol Cell Biol. 1993. 13: 6501-6508
    
    [12] Sellers WR, Rodgers JW, Kaelin WI. A potent transrepression domain in the retinoblastoma protein induces a cell cycle arrest when bound to E2F sites. Proc Natl Acad Sci USA, 1995,92: 11544-11548
    [13] Adnane J, Shao Z, Robbins P D. The retinoblastoma susceptibility gene product represses transcription when directly bound to the promoter. J Biol Chem, 1995, 270: 88378843
    [14] Brehm A, Miska E, McCance D J, et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature, 1998, 591-597.
    [15] Magnaghl-Jaulin L, Groisman R, Naguibneva I, et al. Rednoblastoma protein represses transcription by recruiting a histone deacetylase. Nature, 1998, 391: 601 605
    [16] Nieisen S J, Schneider R, Mauer U, et al. Rb targets histone H3 methylation and HP1 to promoters. Nature, 2001, 412: 561—565
    [17] Cheng L, Rossi F, Fang W, et al. Cdk2-dependent phosphorylation and functional inactivation of the pRB-related p130 protein in pRB, p16 tumor cells. J. Biol Chem, 2000, 275: 30317-30325.
    [18] Herrera R E, Sah V P, Williams B O, et al. Altered cell cycle kinetics, gene expression, and Gi restriction point regulation in Rb-deficient fibroblasts. Mol Cell Biol, 1996,16: 2402-2407
    [19] Hartwell L, Weinert T. Checkpoints: controls that ensure the order of cell cycle events. Science, 1989, 246: 629-634.
    [20] De la Torre-Ruiz M A, Green C M, Lowndes N F. RAD9 and RAD24 define two additives, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation. EMBO J, 1998,17: 2687-2698.
    [21] Green C M, Erdjument-Bromage H, Tempst P, et al. A novel Rad24 checkpoint complex closely related to replication factor C. Curr Biol, 1999, 10: 39.42.
    [22] Navas T A, Zhou Z, Elledge S J. DNA polymerase epsilon links the DNA replication machinery to the S phase chec 冲 oint. Cell, 1995, 80: 2939.
    [23] Wang H, Elledge S J. DRC1, DNA replication and checkpoint protein 1, function with DPB11 to control DNA replication and the S-phase checkpoint in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 1999, 96: 3824-3829.
    [24] Jiang M R, Yang Y, Wu J R. Activation of DNA damage checkpoints in CHO cells requires a certain level of DNA damage. Biochem Biophys Res Commun, 2001,287:775-780.
    [25] Zhou BS, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature, 2000,408: 433-439.
    [26] Liu Q, Guntuku S, Cui X S, et al. Chkl is an essential kinase that is regulated by ATR and required for the G(2)/M DNA damage checkpoint. Genes Dev, 2000,14: 1448-1459.
    [27] Chaturvedi P, Eng WK, Zhu Y, et al. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene, 1999, 18:4047-4054.
    [28] Shieh SY, Ahn J, Tamai K, et al. The human homologs of checkpoint kinase Chkl and Cdsl(Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev, 2000,14: 289-300.
    [29] Furnari B, Blasina A, Boddy M N, et al. Cdc25 inhibited in vivo and in vitro by checkpoint kinases Cdsl and Chkl. Mol Biol Cell, 1999,10: 833-845.
    [30] Vogelstein B, Lane D, Levine A J. Surfing the p53 network. Nature, 2000, 408: 307-310.
    [31] Innocence S A, Abrahamson J A, Cogswell J P, et al.户 3 regulates a GZ checkpoint through cyclin B1. Proc Natl Acad Sci USA, 1999,96: 2147-2152.
    [32] Dua R, Levy DL, Campbell J L. Role of the putative zinc finger domain of Saccharomyces cerevisiae DNA polymerase epsilon in DNA replication and the S/M checkpoint pathway. 1 Biol Chem, 1998,273: 30046-30055.
    [33] Davey S, Han C S, Ramer S A, et al. Fission yeast radl2 regulates cell cycle checkpoint control and is homologous to the Bloom's syndrome disease gene. Mol Cell Biol, 1998,18: 2721-2728.
    [34] Sanchez Y, Desany B A, Jones W J, et al. Regulation of RAD53 by the ATM-like kinases MECI and TELL in yeast cell cycle checkpoint pathways. Science, 1996,271:357-360.
    [35] Pellicioli A, Lucca C, Liberi G, et al. Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J, 1999, 18: 6561-6572.
    [36] Lopes M, Cotta-Ramusino C, Pellicioli A, et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature, 2001, 412: 557-561.
    [37] Hoeijmakers J H. Genome maintenance mechanisms for preventing cancer. Nature, 2001, 411: 366-374.
    [38] Schar P. Spontaneous DNA damage, genome instability, and cancer-when DNA replication escapes control. Cell, 2001, 104:329-332.
    [39] Morgan D O. Principles of CDK regulation. Nature, 1995, 374: 131-134.
    [40] Solomon M J. The functions of CAK, the p34-activating kinase. Trends Biochem Sci, 1994,19: 496-500.
    [41] Gautier J, Solomon M J, Booher R N, et al. Cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell, 1991,67:197-205.
    [42] Michael WM, Newport J. Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Weel. Science, 1998,282: 1886-1889.
    [43] Martinho R G, Lindsay H D, Flaggs G, et al, Analysis of Rad3 and Chkl protein kinases defines different checkpoint responses. EMBO J, 1998, 17: 7239-7249.
    [44] Lopez-Girona A, Furnari B, Mondesert O, et al. Nuclear localization of Cdc25 regulated by DNA damage and 14-3-3 protein. Nature, 1999, 397: 172-175.
    [45] Stepanova L, Leng X, Parker S B, et al. Mammalian p50-Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev, 1996,10: 1491-1502.
    [46] Diehl J A, Cheng M, Roussel M F, et al. Glycogen syntheasekinase-3P regulates cyclin D1 proteolysis and subcellular localization. Genes Dev, 1998,12:3499-3511.
    [47] Diehl J A, Zindy F, Sherr C J. Inhibition of cyclin D I phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev, 1997, 11: 957-972.
    [48] Jackman M, Firth M, Pines J. Human cyclin BI and B2 are localised to strikingly different structure: B1 to microtubules, B2 primarily to the Golgi apparatus. EMBO J, 1995,14: 1646-1654.
    [49] Mudryj M, Devoto S H, Hiebert S W, et al. Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell, 1991, 65: 1243-1253.
    [50] Dynlacht B D, Moberg K, Lees J A, et al. Specific regulation of E2F family members by cyclin-dependent kinases. Mol Cell Biol, 1997, 17: 3867-3875.
    [51] Giaccia A J, Kastan M B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev, 1998, 12: 2973-2983.
    [52] Wang Y, Prives C. Increased and altered DNA binding of p53 by S and G2/M but not G1 in-dependent kinases. Nature, 1995, 376: 88-91.
    [53] Banin S, Moyal L, Shieh S, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science, 1998, 281: 1674-1677.
    [54] Tibbetts R S, Brumbaugh K M, Williams J M, et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev, 1999, 13: 152-157.
    [55] Nigg EA. Cyclin-dependent kinase 7: at the cross-roads of transcription, DNA repair and cell cycle control? Curr Opin Cell Biol, 1996, 8:312-317.
    [56] Laney J, Hochstrasser M. Substrate targeting in the ubiquitin system. Cell, 1999, 97: 427-430.
    [57] Peters J. SCF and APC: the Yin and Yang of cell cycle regulated proteolysis. Curr Opin Cell Biol, 1998, 10: 759-768.
    [58] Krek W. Proteolysis and the GI-S transition: the SCF connection. Curr Opin Genet Dev, 1998, 8: 36-42.
    [59] Feldman R M, Correll C C, Kaplan K B, et al. A complex of Cdc4p, Skplp, and Cdc53p/cullin catalyzes ubiquitination of the phospho-rylated CDK inhibitor Sicp. Cell, 1997, 91: 221-230.
    [60] Morgan DO. Regulation of the APC and the exit from mitosis. Nature Cell Biol, 1999, 1: 47-53.
    [61] Page AM, Hieter P. The anaphase-promoting complex: new subunits and regulation. Annu Rev Biochem, 1999, 68: 583-609.
    [62] Peters J. Subunits and substrates of the anaphase-promoting complex. Exp Cell Res, 1999, 248: 339-349.
    [63] Parry DH, Farrell PH. The schedule of destruction of three mitotic cyclins can dictate the timing of events during exit from mitosis. CurrBiol, 2001, 11; 671-683.
    [64] English J, Pearson G, et al. New Insights into the Control of MAP Kinase Pathways. Experimental Cell Research, 1999, 253:255-270.
    [65] Frodin M, Gammeltoft S. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol. Cell Endocrinol, 1999, 151: 65-77.
    [66] Denhardt DT. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling. Biochem J,, 1996, 318:729-747.
    [67] Pombo CM, Bonventre JV, Avruch J, Woodgett JR, Kyriakis JM, Force T. The stress-activated protein kinases are major c-Jun amino-terminal kinases activated by ischemia and reperfusion, J. Biol. Chem., 1994, 269:26546-26551.
    [68] Hoeflich KP, Woodgett JR. Signal transduction and gene expression in the regulation of natural freezing survival. In Cell and Molecular Responses to Stress, Vol. 2 (ed. K. B. Storey and J. M. Storey). Amsterdam: Elsevier Press, 2001, 175-193.
    [69] Irving EA, Bamford M. Role of mitogenand stress-activated kinases in ischemic injury. J Cereb. Blood Flow Metab, 2002, 22:631-647.
    [70] Hirai S, Izawa M, Osada S, Spyrou G, Ohno S. Activation of the JNK pathway by distantly related protein kinases, MEKK and MUK. Oncogene, 1996, 12: 941-650.
    [71] Atfi A, Buisine M, Mazars A, Gespach C. Induction of apoptosis by DPC4, a transcriptional factor regulated by transforming growth factor-beta through stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling pathway. J. Biol. Chem, 1997, 272:24731-24734.
    [72] Zhang Y, Zhou L, Miller CA. A splicing variant of a death domain protein that is regulated by a mitogen-activated kinase is a substrate for c-Jun N-terminal kinase in the human central nervous system. Proc. Natl. Acad. Sci. USA, 1998, 95:2586-2591.
    [73] Lisovsky M, Itoh K, Sokol SY. Frizzled receptors activate a novel JNK-dependent pathway that may lead to apoptosis. Curr Biol., 2002, 12: 53-58.
    [74] Moreno E, Basler K, Morata G. Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature, 2002, 416: 755-759.
    [75] New L and Han J. The p38 MAP kinase pathway and its biological function. Trends Cardiovasc. Me., 1998, 8: 220-229.
    [76] Stein B, Yang MX, Young DB, Janknecht R, Hunter T, Murray BW, Barbosa MS. p38-2, a novel mitogen-activated protein kinase with distinct properties. J. Biol. Chem., 1997, 272:19509-19517.
    [77] Beyaert R, Cuenda A, Vanden Berghe W, Plaisance S, Lee JC, Haegeman G; Cohen P. and Fiers W. The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J, 1996, 15: 1914-1923.
    [78] Huot J, Houle F, Marceau, F and Landry J. Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ. Res. 1997, 80: 383-392.
    [79] Zhu T, and Lobie P E, Janus. kinase 2-dependent activation of p38 mitogen-activated protein kinase by growth hormone. J. Biol. Chem., 2002, 275:2103-2114.
    [80] Xia Y. MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc. Natl Acad. Sci. USA, 2002, 97: 5243-5248.
    [81] Yujiri T, Sather S, Fanger CR & Johnson GL. Role of MEKK1 in cell survival and activation of JNK and ERK pathways de/Ened by targeted gene disruption. Science, 1998, 282:1911-1914.
    [82] Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature, 2001, 410: 37-40.
    [83] Treisman R. Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol., 1996, 8: 205-215.
    [84] Kallunki T, Deng T, Hibi M & Karin, M. c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions. Cell, 1996, 87: 929-939.
    [85] Shaw PE, Frasch S and Nordheim A. Repression of c-fos transcription is mediated through p67SRF bound to the SRE. The EMBO Journal, 1989, 8: 2567-2574.
    [86] Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ. Activation of the transcription factor MEF2C by the MAP kinase p38 in in(?)ammation. Nature, 1997, 386: 296-299.
    [87] Chen CY. Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev. 2000, 14:1236-1248.
    [88] Winzen R. The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J., 1999,19: 6742-6753.
    [89] Lasa M. Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol. Cell. Biol., 1998, 20: 4265-4274.
    [90] Graves LM. Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature, 2000, 403: 328-332.
    [91] Palmer A, Gavin AC, Nebreda AR. A link between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation: p90(rsk) phosphorylates and inactivates the p34(cdc2) inhibitory kinase Mytl.EMBO J., 1998, 17: 5037-5047.
    [92] Bhatt RR, Ferrell JEJ. The protein kinase p90 rsk as an essential mediator of cytostatic factor activity. Science, 1999, 286: 1362-1365.
    [93] Gross SD, Schwab MS, Lewellyn AL, Maller JL. Induction of metaphase arrest in cleaving Xenopus embryos by the protein kinase p90Rsk. Science, 1999,286:1365-1367.
    [94] Treinies I, Paterson HF, Hooper S, Wilson R, Marshall CJ, Activated MEK stimulates expression of AP-1 components independently of phosphatidylinositol 3-kinase (PI3-kinase) but requires a PI3-kinase signal To stimulate DNA synthesis. Mol. Cell. Biol. 1999,19: 321-329.
    
    [95] Sabapathy K, et al. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr. Biol. 1999, 9:116-125.
    [96] Xia Z, Dickens M, Raingeaud J, Davis RJ & Greenberg ME. Opposing effects of ERK and JNKp38 MAP kinases on apoptosis. Science, 1995, 270:1326-1331.
    [97] Yang D. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature, 1997, 389: 865-870.
    [98] Le-Niculescu H, et al. Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol. Cell. Biol, 1999, 19:751-763.
    [99] Behrens A, Sibilia M, Wagner EF. Amino-terminal phosphorylation of c-Jun regulates stressinduced apoptosis and cellular proliferation. Nature Genet., 1999,21:326-329.
    [100] Bonni A. Cell survival promoted by the Ras-MAPK signaling pathway by transcriptiondependent and -independent mechanisms. Science, 1999, 286:1358-1362.
    
    [101] Sheng Z, Knowlton K, Chen J, Hoshijima M, Brown JH, Chien KR. Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J Biol Chem., 1997,272: 5783-5791.
    
    [102] Parrizas M, Saltiel AR, LeRoith D. Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways. JBiol Chem., 1997, 272: 154-161.
    
    [103] De Windt LJ, Lim HW, Taigen T, Wencker D, Condorelli G, Dorn GW II, Kitsis RN, Molkentin JD. Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: An apoptosis-independent model of dilated heart failure. Circ Res., 2000, 86: 255-263.
    
    [104] Zhu W, Zou Y, Aikawa R, Harada K, Kudoh S, Uozumi H, Hayashi D, Gu Y, Yamazaki T, Nagai R, Yazaki Y, Komuro I. MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulation., 1999, 100: 2100-2107.
    
    [105] Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH. Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res., 2000, 86: 692-699.
    
    [106] Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng CF, Kitsis RN, Molkentin JD. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J., 2000, 19: 6341-6350.
    
    [107] Moghal N,Sternberg PW. Multiple positive and negative regulators of sig naling by the EGR2 receptor. Current Opinionin Cell Biology, 1999,11: 190.
    
    [108] Slieker LJ, Martensen TM, Lane MD. Synthesis of epidermal growth factor receptor in humnan A431 cells. Glycosylatior depenent acquisition of ligandbinding activity occurs post-translationally in the endoplasmic reticulum, J. Biol. Chem., 1986,261: 15233.
    
    [109] Jorissen RN., Walker F, Pouliot N, et al. Epidenmal growth factor receptor: mexchanisms of activation and signaling. Exp Cell Res, 2003, 284: 31.
    
    [110] Ward CW, Garrett TP. The relationship between the L I and L2 domains of the insulin and epidenmal growth factor receptors and leucine-rich repeat modules. BMC Bio Inf, 2001, 2 (1): 4.
    
    [111] Sako Y, Minoghchi S, Yanagida T. Single-molexvlc imaging of EGFR signaling on the surface of living cells. Nat. cell Biol, 2000, 2: 168.
    
    [112] Mineo C, Gill GN, Anderson RG. Regulated migration of epidermal growth factor receptor from caveolae.J. Biol. Chem., 1999,274: 30636.
    
    [113] Yn X, Shanna IUD, Takahashi T, et al. Ligand independent dimer formation of epidermal growth factor receptor (EGFR) is a step separable from ligand induced EGFR signaling. Mal Bin Cell, 2002, 13: 2547.
    [114] Moriki T, Marnyama H, Marnyama IN. Activation of prefonnexl EGF receptor dimer by ligand induced rotation of the transmembrane domain. Mal. Bial,2001, 311:1011.
    [115] Olayioyc MA, Neve RM, Lane HA, et al. The EerbB signaling network: receptor heterdimerization in development and cancer. The EMBO .J., 2001, 19 (13): 3159.
    [116] Yamauchi T, Ueki k, Tobe K, et al. Tyrosine phosphorylation of the EGF rceptor by the kinase, Tak2 is induced by growth hormone Nature, 1997, 390 (6655):91.
    [117] DUNDR M, MISTELI T, OLSON M J. The dynamics of postmitotic reassembly of the nucleolus. J Cell Biol, 2000, 150: 433-436.
    [118] SCHEER U, HOCK R. Structure and function of the nucleolus. Curr Opin Cell Biol, 1999, 11:385-390.
    [119] HUANG S. Building an efficient factory: where is pre-rRNA synthesized in the nucleolus?. J Cell Biol, 2002,157: 739-741.
    [120] MURAMATSU M. Quantitative aspects of isolation of nucleoli of Walker carcinoma and liver of the rat. Cancer Res, 1963, 23: 510-518.
    [121] GUSTAFSON W C, TAYLOR C W, VALDEZ B C, et al Nucleolar protein p 120 contains an arginine-rich domain that binds to ribosomal RNA. Biochem J, 1998,331:387-393.
    [122] YANG Y, ISAAC C, WANG C, et al. Conserved composition of mammalian box H1 ACA and box CD small nucleolar ribonucleolprotein articles and their interaction with the common factor Nopp 140. Mol Biol Cell, 2000, 11: 567-577.
    [123] TOLLERVEY DH, LEHTONEN R, JANSEN R, et al. Temperature- sensitive utations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA ethylation, and ribosome assembly. Cell, 1993, 72: 443-457.
    [124] ZELLAR K I, HAGGERTY T J, BARRETT J F, et al. Characterization of nucleophosmin (B23) as a myc target by scanning chromatin immunoprecipitation. J Biol Chem, 2001, 276: 48285-48291.
    [125] GINISTY H, AMALRIC F, BOUVET P. Two different combinations of RNA-binding domains determine the RNA binding specificity of nucleolin. J Biol Chem, 2001, 276 (17): 14338-14343.
    [126] SUTHERLAND H G, MUMFORD G K, NEWTON K, et al. Large-scale identification of mammalian proteins localized to nuclear sub-compartments. Hum Mol Genet, 2001,10: 1995-201.
    [127] ANDERSEN J S, LYON C E, FOX A H, et al. Directed proteomic analysis of the human nucleolus. Curr Biol, 2002,12: 1-11.
    [128] SCHERL A, COUTE Y, DEON C, et al. Functional proteomic analysis of human nucleolus. Mol Biol Cell, 2002, 13: 4100-4109.
    [129] PIKAARD C S. Transcription and tyranny in the nucleolus: the organization, activation, dominance and repression of ribosomal RNA genes. [M] Somerville CR and Meyerowitz EM eds. The Arabidopsis Book. Rockville: American Society of Plant Biologists, 2002: 1-23.
    [130] GERBI SA, BOROVJAGIN AV, LANGE TS. The nucleolus: a site of ribonucleoprotein maturation. Curr in Cell Biol, 2003,15 : 318-325.
    [131] FATICA A, TOLLERVEY D. Making ribosomes. Curr Opin Cell Biol, 2002, 14(3): 313-318.
    [132] AITCHISON J D, ROUT M P. The road to ribosomes: Filling potholes in the export pathway. J Cell Biol, 2000,151: 23-26.
    [133] TAO W, LEVINE AJ. P19 (ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA, 1999, 96: 6937-6941.
    [134] H. Sandhu, W. Dehnen. M. Roller, J. Abel, K. Unfried. mRNA expression patterns in different stages of asbestos-induced carcinogenesis in rats. Carcinogenesis, 2000, 21: 1023-1029.
    [135] Sandhu H, Dehnen W, Roller M, Abel J, Unfried K. mRNA expression patterns in different stages of asbestos-induced carcinogenesis in rats. Carcinogenesis. 2000, 21:1023-1029.
    [136] Holzel M, Rohrmoser M, Schlee M, Grimm T, Harasim T, Malamoussi A, Gruber-Eber A, Kremmer E, Hiddemann W, Bornkamm GW, Eick D. Mammalian WDR12 is a novel member of the Pes1-Bop1 complex and is required for ribosome biogenesis and cell proliferation. J Cell Biol., 2005, 170: 367-378.
    [137] Wu X, Ivanova G, Merup M, Jansson M, Stellan B, Grander D, Zabarovsky E, Gahrton G, Einhorn S. Molecular analysis of the human chromosome 5q13.3 region in patients with hairy cell leukemia and identification of tumor suppressor gene candidates. Genomics. 1999, 60:161-171.
    [138] Kinoshita Y, Jarell AD, Flaman JM, Foltz G, Schuster J, Sopher BL, Irvin DK, Kanning K, Kornblum HI, Nelson PS, Hieter P, Morrison RS. Pescadillo, a novel cell cycle regulatory protein abnormally expressed in malignant cells. J Biol Chem. 2001, 276:6656-6665.
    [139] Lange-zu Dohna C, Brandeis M, Berr F, Mossner J, Engeland K. A CDE/CHR tandem element regulates cell cycle-dependent repression of cyclin B2 transcription. FEBS Lett., 484: 77-81.
    [140] Kimura M, Uchida C, Takano Y, Kitagawa M, Okano Y. Cell cycle-dependent regulation of the human aurora B promoter. Biochem Biophys Res Commun. 2004, 316:930-936.
    [141] Haugwitz U, Wasner M, Wiedmann M, Spiesbach K, Rother K, Mossner J, Engeland K. A single cell cycle genes homology region (CHR) controls cell cycle-dependent transcription of the cdc25C phosphatase gene and is able to cooperate with E2F or Sp1/3 sites. Nucleic Acids Res. 2002, 30 :1967-1976.
    [142] Fajas L, Le Cam L, Polanowska J, Fabbrizio E, Servant N, Philips A, Carnac G, Sardet C. A CDE/CHR-like element mediates repression of transcription of the mouse RB2 (p130) gene. FEBS Lett. 2000, 471: 29-33.
    [143] Kishore R, Spyridopoulos I, Luedemann C, Losordo DW. Functionally novel tumor necrosis factor-alpha-modulated CHR-binding protein mediates cyclin A transcriptional repression in vascular endothelial cells. Circ Res. 2002, 91: 307-314.
    [144] Wasner M, Haugwitz U, Reinhard W, Tschop K, Spiesbach K, Lorenz J, Mossner J, Engeland K. Three CCAAT-boxes and a single cell cycle genes homology region (CHR) are the major regulating sites for transcription from the human cyclin B2 promoter. Gene. 2003, 312: 225-237.
    [145] Singhal S, Vachani A, Antin-Ozerkis D, Kaiser LR, Albelda SM. Prognostic implications of cell cycle, apoptosis, and angiogenesis biomarkers in non-small cell lung cancer: a review. Clin Cancer Res. 2005, 11: 3974-3986.
    [146] Meert AP, Martin B, Delmotte P, Berghmans T, Lafitte JJ, Mascaux C, Paesmans M, Steels E, Verdebout JM, Sculier JP. The role of EGF-R expression on patient survival in lung cancer: a systematic review with meta-analysis. Eur Respir J. 2002, 20: 975-981.
    [147] De Caestecker MP, Piek E, Roberts AB. Role of transforming growth factor-beta signaling in cancer. J Natl Cancer Inst. 2000, 92: 1388-1402.
    [148] Fombonne J, Padron L, Enjalbert A, Krantic S, Torriglia A. A novel paraptosis pathway involving LEI/L-DNaseII for EGF-induced cell death in somato-lactotrope pituitary cells. Apoptosis. 2006.
    [149] Wechselberger C, Bianco C, Strizzi L, Ebert AD, Kenney N, Sun Y, Salomon DS. Modulation of TGF-beta signaling by EGF-CFC proteins. Exp Cell Res. 2005,310:249-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700