用户名: 密码: 验证码:
正电子发射断层(PET)基础与临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、选题的目的与设计思路:
     脑肿瘤按来源通常分为源自颅内各组织的原发性肿瘤和由身体它处转移至脑内的转移性肿瘤两大类。原发性脑肿瘤发病率居全身恶性肿瘤第11位,原发性脑肿瘤以胶质瘤为主,尽管目前各种综合治疗方法不断进展,胶质瘤患者的中位生存期仍十分有限,尤其是病理分级高的肿瘤;而转移性脑肿瘤的发病率更高,在常见肿瘤中有20-40%患者会出现脑转移。目前脑部计算机断层扫描(CT)和核磁共振成像(MRI)及其相应的增强显像是用于诊断脑部肿瘤的主要常规方法,近年来发展的影像诊断技术正电子发射断层显像(PET)被用于脑肿瘤的良恶性鉴别、术前病理分级、病程分期、鉴别肿瘤复发或坏死、探测残留肿瘤、立体定向穿刺、放疗计划的制定、判断肿瘤对治疗的敏感性、患者预后的判断等方面。PET以各种放射性示踪剂作为显像的基础,最常用的放射性示踪剂为经典的2-[~(18)F]fluoro-2-deoxy-D-glucose(FDG),为临床提供了CT、MRI尚难以给予的各种关于肿瘤能量代谢的生物学信息,尤其在肿瘤复发与残留肿瘤的鉴别等方面显得尤其重要。近年来肿瘤生物靶区体积(BTV)概念的出现,预示着PET的应用将会更为广泛,它通过在肿瘤组织的血流灌注、代谢、增殖活性、乏氧、肿瘤相关受体、血管生成及凋亡等方面的显示为放射治疗的进一步优化提供了重要技术平台。但从技术上看,仅仅FDG显然是不够的,由于大脑皮质对于葡萄糖的相对高摄取,使得FDG对于脑肿瘤的显像特异性及对低度恶性脑肿瘤显像的敏感性受到较大限制,因此PET尚需要其他的显像剂如氨基酸类显像剂、胆碱类、乙酸类及神经受体显像剂、乏氧显像剂、嘧啶类等显像技术的从多种不同代谢途径反映了肿瘤的异质性,提供更好的诊断特异性及对肿瘤形态精确描绘,为PET在脑肿瘤方面的应用提供了更好的技术平台。
     本研究拟通过探讨~(11)C标记药物PET成像的技术因素评价、PET在脑肿瘤临床诊断的可靠性、对放射治疗方案制定的实验基础技术探索,~(11)C标记药物对脑肿瘤诊断价值评价,对脑肿瘤坏死与复发的鉴别及在肿瘤放疗实施过程的研究等方面对PET在脑肿瘤方面的应用进行研究。
     二、研究结果:
     第一部分~(11)C-PET显像的模型实验研究
     本实验研究分四个实验部分进行。
     1、实验通过应用PET/CT仪器系统模型与Hoffman 3D脑模型进行不同正电子核素成像测试,以热区、冷区分辨率和线性及均匀度等指标和HOFFMAN 3D脑模型的测试显示图进行比较,结果显示~(11)C和~(18)F两种正电子核素在图像分辨能力方面无显著性差异,其中~(11)C的图像与~(18)F图像相比在小的热区分辨能力显示方面还是有一定的畸变,而~(18)F与~(11)C的测试结果显示无论热区和冷区大小测量时均会出现少许高估和低估的显像,需要在临床应用中测量病灶大小时加以注意。
     2、实验自行建立了在Hoffman 3D脑模型中,制作模拟脑肿瘤病灶的方法,模拟肿瘤的大小为5mm和15mm,该方法可用于PET/CT及MRI显像。实验显示MRI对病灶大小估计准确,而在PET显像中,模拟肿瘤的球体内外预置的放射性浓度比(1∶5和1∶10)对热区大小测量有影响,高摄取的病灶大小可能会有一定的被高估可能,提示在临床显像中应加以注意。
     3、实验把上述脑肿瘤模型应用于两类不同的放射治疗系统(Varian clinical600-C放射治疗系统和Accuray的Cyber knife)中,模型图像可以通过光盘传输进入放疗计划系统(TPS),按要求的方式进行调整处理,采用图像融合的方法勾画靶区,执行放疗计划,说明PET图像在放疗计划系统进行靶区设定是可行的,可以进一步用于临床患者的生物靶区的勾画,实现生物靶区放射治疗。
     4、实验通过8例胶质瘤患者的脑PET显像结合MRI及病理结果进行研究,可见~(11)C-Choline PET显像显示病灶范围最大,涵盖了肿瘤亚临床的浸润部分,与实际临床制定肿瘤治疗范围时所需目标体积最为相符;MRI显像的结果与肿瘤实体部分的体积最为接近;~(18)F-FDG PET显像的结果总体小于肿瘤实体部分的体积但与MRI显像结果在统计学上无显著差异,说明~(11)C-Choline较为适于放射治疗靶区勾画,值得进一步积累更多病例深入研究。
     第二部分~(11)C-Choline与~(18)F-FDG联合显像对脑瘤诊断价值
     本部分研究通过178例脑肿瘤的~(11)C-Choline PET、~(18)F-FDG及MRI的显像研究,结果表明与MRI比较,MRI诊断脑肿瘤的灵敏度及特异性高于~(18)F-FDG PET;~(11)C-Choline PET显像灵敏度与特异性与MRI相似,其差异无统计学意义,MRI在解剖结构的显示方面好于PET/CT,但在肿瘤生物学行为和肿瘤的活力显示方面PET优于MRI,~(11)C-Choline PET对病灶定性最为准确,在肿瘤的分级方面有一定的帮助,且可以鉴别放射性坏死与复发。
     第三部分PET/CT在脑肿瘤坏死与复发鉴别中的研究
     本部分研究通过55例脑肿瘤放疗后怀疑复发或放射性坏死患者进行~(11)C-CholinePET、~(18)F-FDG及MRI的显像研究,结果显示~(11)C-Choline PET显像可提高脑肿瘤坏死及复发的诊断准确率,研究表明~(11)C-Choline PET/CT显像诊断准确率为90.9%,显著高于MRI(85.5%)及~(18)F-FDG PET/CT(72.7%)显像。然而~(11)C-Choline PET/CT显像在鉴别脑肿瘤坏死及复发中也存在一定的假阳性及假阴性,需要在临床诊断中结合病史和系列增强MRI的显像表现,才能得到正确的结果。
     第四部分PET/CT在脑肿瘤放射治疗定位中的应用价值研究
     本研究应用SIEMENS公司出品的BIOGRAPH SENSATION 16型PET/CT及BIOGRAPH 64 HD型PET/CT、Varian公司的clinical 600c和Nomos公司的PEACOCK TPS系统进行调强适形放疗技术设计研究。通过对44例脑肿瘤患者进行定位~(11)C-Choline PET/CT显像,应用激光线进行定位,将采集的PET/CT图像通过光盘存储,送至TPS进行治疗计划,由放疗物理师和医师根据PET和CT两组资料应用计划系统的图像融合软件,使图像达到融合标准后制定放疗计划靶区。治疗期间详细记录患者症状及早期放射反应,放射治疗结束后3个月再进行近期疗效评价。结果建立了非~(18)F-FDG PET/CT和PEACOCK适形调强放疗系统实用融合图像方法学;44例受试患者中共有28(63.64%)例患者的治疗计划通过PET/CT显像发生了改变,主要是治疗的范围(PTV)增加(14/44,31.82%),部分患者(14/44,31.82%)经过PET/CT融合后,所制定的PTV范围减小;44例患者经过PET/CT技术定位放射治疗后均取得良好疗效。建立在适形调强放疗系统的PET/CT融合图像方法学是我们完成治疗的首要问题,这种方法的应用将提高对生物靶区体积制定的精确性,使临床放疗后患者缓解的可能增加。
     三、本研究论文可以得出以下结论:
     1.~(11)C和~(18)F两种正电子核素在图像分辨能力方面无显著性差异,其中~(11)C PET图像与~(18)F图像相比在小的热区分辨能力显示方面还是有一定的畸变,而~(18)F与~(11)C的测试结果显示无论热区和冷区大小测量时均会出现少许高估和低估的显像;在PET显像中,不同的放射性浓度会对肿块大小测量产生影响,高摄取的病灶,大小可能会被高估;PET图像在放疗计划系统进行靶区设定是可行的;~(11)C-Choline PET显像显示病灶范围实际临床制定肿瘤治疗范围时所需目标体积最为相符,可以作为放射治疗生物靶区勾画。
     2.MRI及其增强扫描是目前脑肿瘤的常规应用手段,PET/CT是其有益的补充。MRI在解剖结构的显示方面好于PET/CT,~(11)C-Choline PET显像在灵敏度与特异性方面与MRI相似,但在肿瘤生物学行为和肿瘤的活力显示方面PET优于MRI,~(11)C-Choline PET肿瘤的分级方面有一定的帮助,且可以鉴别放射性坏死与复发。
     3.PET/CT在鉴别脑肿瘤放射性损伤和复发方面具有重要意义,其中~(11)C-CholinePET/CT诊断准确率为90.9%,显著高于MRI及~(18)F-FDG PET/CT显像。但同时也存在一定的假阳性及假阴性,需要在临床诊断中结合病史和系列增强MRI的显像表现,才能得到正确的结果。
     4.在脑胶质瘤放疗中,CT、MRI以及PET等图像提供了可以互补的有利于放疗计划制定的信息,PET/CT可以作为生物靶区制定的重要指标,有助于提高肿瘤靶区的精确确定和治疗疗效监测。在脑胶质瘤放疗计划制定中,由于受PET显像空间分辨率的限制,脑本底的影响等,制定放疗计划的过程需要多种图像共同参与。基于~(11)C-胆碱、~(18)F-FLT、~(11)C-乙酸、~(18)F-FDG等多种PET示踪剂的联合应用,结合常规CT、MRI显像以及临床资料的综合信息的诊断和治疗可能是将来PET在脑肿瘤放疗发展的最终方向,尚宜今后继续探索。
Purpose and Project design:
     Brain tumors can be classified by origin into primary or metastatic. Primary brain tumor has a high occurrence ranking the 11~(th) in all malignant tumors.The most common type of primary brain tumor is glioma.Despite improvements in various treatment strategies,median survival of patients is limited,especially the high grade tumor;the metastatic brain tumor has a even higher occurrence with a possibility of 20-40%in all tumor patients.Computed tomography(CT) and magnetic resonance imaging(MRI) with their enhanced imaging are now the routine methods of brain tumor diagnosis.With the development of positron emission tomography(PET), it has been applied in various ways of brain tumor imaging including malignancy differentiation,pre-operation grading,staging, post-treatment monitoring,stereotaxis needle biopsy,radiation treatment planning,prognosis prediction,etc.With the foundation of various radiopharmaceuticals,especially the classic 2-[~(18)F]fluoro-2-deoxy-D-glucose(FDG),PET can provide the biological information of tumor metabolism that neither CT nor MRI can.The biological tumor volume (BTV) is a newly developed concept including the blood infusion, metabolism,proliferation activity,tumor specific receptor,vascular generation,etc.of the tumor.To define such BTV,FDG only is far from enough.Due to the high uptake of FDG in cerebral cortex,brain tumor imaging with FDG is limited in specificity and sensitivity of low grade tumor.Other radiopharmaceuticals like amino-acid,choline,acetate,etc. are needed to provide more accurate diagnosis and delineation of the tumor.
     This study intended to evaluate the imaging quality of 11C labeled tracers,their liability in brain tumor diagnosis and the application in radiation treatment planning of brain tumor.
     Results:
     PartⅠStudy of ~(11)C-PET imaging
     This part of study includes 4 experiments.
     Experiment 1:PET/CT imaging of Hoffman 3D brain model using multiple positron radiopharmaceuticals.Comparing the results in hot region,cold region,linearity and homogeneity,our study showed no significant difference in image resolution between ~(11)C- and ~(18)F- labeled tracers. However,in small hot regions there is certain aberration in resolution test with ~(11)C-labeled images compared to ~(18)F-labeled images and all results showed mild deviation in both hot and cold region,which should be taken into consideration in clinical use.
     Experiment 2:I established brain tumor imaging model in Hoffman 3D brain model.The sizes of the tumor models were 5mm and 15mm in diameter.MRI showed the actual size of the tumor while in PET imaging,different background concentration of the radiopharmaceuticals(1:5 and 1:10) has certain impact in accessing of tumor size.Tumors with high uptake were likely to be over-accessed,which should be taken into consideration in clinical use.
     Experiment 3:I applied the tumor model in two different radiation treatment systems(clinical 600-C of Varian and Cyber knife of Accuray). Images of the model were transferred through compact disc into the treatment planning system(TPS) and adjusted to meet the requirement. Target delineation was performed with fused images.My study showed that radiation treatment planning using PET imaging is feasible and can be applied into clinical use.
     Experiment 4:8 patients with glioma were studied using PET imaging and MRI with contrast.Our study indicated that ~(11)C-Choline PET showed the largest area of the tumor including the sub-clinical infiltrating area which consist mostly with the actual treatment planning area;the result of MRI was closest to the solid part of the tumor;result of ~(18)F-FDG PET was smaller than the solid part of the tumor but there is no statistical significance compared to the result of MRI.In conclusion,our study showed that ~(11)C-Choline PET was the most suitable imaging technology among the three methods in radiation treatment planning of brain tumors.
     PartⅡThe diagnostic value of ~(11)C-Choline combined with ~(18)F-FDG PET imaging
     I studied 178 cases of brain tumor with MRI,~(11)C-Choline PET,~(18)F-FDG PET imaging.Out study showed that the diagnostic sensitivity and specificity of MRI was higher than ~(18)F-FDG PET but similar as ~(11)C-Choline PET.MRI is superior in showing the anatomical structure but inferior in revealing the biological activities.~(11)C-Choline PET is the most accurate method among all three in locating the tumor;it also showed value in tumor grading and differentiating necrosis from recurrence.
     PartⅢPET/CT in differentiating necrosis from recurrence of brain tumors
     I studied 55 cases of post-radiation brain tumor with MRI,~(11)C-Choline PET, ~(18)F-FDG PET imaging.My study showed that ~(11)C-Choline PET could improve the diagnostic accuracy in differentiating necrosis from recurrence.The accuracy of ~(11)C-Choline PET was 90.9%,which was significantly higher than ~(18)F-FDG PET and MRI.However,there was still certain rate of false positive and false negative and clinical information and MRI with contrast have great importance in diagnosis.
     PartⅣThe application of PET/CT in radiation treatment planning of brain tumors
     Using Biograph Sensation 16 and Biograph 64 HD PET/CT scanner of Siemens, clinical 600c of Varian and PEACOCK TPS of Nomos,44 patients with brains tumors were studied with 11C-Choline PET.Metal radio-active points(18F) and laser beams were used for alignment.The acquired data was transferred to TPS through compact disc.The target delineation was performed by radiation therapists and nuclear medicine physicians based on fused images.Patients were closely monitored for symptoms and early reaction of radiation and were accessed 3 months later.I established the methodology of incorporating non-FDG PET/CT imaging in PEACOCK radiation treatment planning.Among all 44 patients,28(63.64%) patients significantly changed their treatment plan due to PET/CT,14 (31.82%)patients increased the target volume and 14(31.82%) decreased. All patients were treated successfully.The application of PET/CT will increase the accuracy of biological target volume planning and increase the possible of clinical remission.
     Conclusion:
     1.There is no significant difference in resolution between ~(11)C-labeled and ~(18)F-labeled tracers.In small hot regions there is certain aberration in resolution test with ~(11)C-labeled images compared to ~(18)F-labeled images and all results showed mild deviation in both hot and cold region. Different background concentration of the radiopharmaceuticals has certain impact in accessing of tumor size.Tumors with high uptake were likely to be over-accessed.Radiation treatment planning using PET imaging is feasible.~(11)C-Choline PET showed most consistent result with the target volume which could be used in delineating biological target volume.
     2.MRI with contrast is the conventional method currently in brain tumor imaging,PET/CT plays a compensate role.MRI is superior in showing the anatomical structure but inferior in revealing the biological activities. ~(11)C-Choline PET is the most accurate method among all three in locating the tumor;it also showed value in tumor grading and differentiating necrosis from recurrence.
     3.PET/CT has important value in differentiating post-radiation necrosis from recurrence of brain tumors.The diagnostic accuracy of ~(11)C-Choline PET/CT was 90.9%,which was significantly higher than MRI and ~(18)F-FDG PET/CT.There was still certain rate of false positive and false negative and clinical information and MRI with contrast have great importance in diagnosis.
     4.In radiation treatment of gliomas,CT,MRI and PET imaging provided compensative information in treatment planning.PET/CT can be applied to delineating biological target volume that improves the planning accuracy and therapeutic effect.Limited by the spatial resolution,background uptake,etc.,treatment planning requires multiple methods of imaging. The combined use of multiple radiopharmaceuticals including ~(11)C-Choline, ~(11)C-acetate,~(18)F-FDG,with conventional CT,MRI and clinical information leads to the future of diagnosis and treatment with PET in brain tumors.
引文
1. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumors of the central nervous system. Lyon, France: IARC Press, 2007.
    
    2. Wen PY, Kesari, S. Malignant gliomas in adults. N Engl J Med 2008;359:492-507.
    
    3. Fisher JL, Schwartzbaum JA, Wrensch M, Wiemels JL. Epidemiology of brain tumors. Neurol Clin 2007;25:867-90.
    
    4. Giammarile F, Cinotti LE, Jouvet A, et al. High and low grade oligodendrogliomas (ODG) : correlation of amino-acid and glucose uptakes using PET and histological classifications. J Neurooncol, 2004, 68(3):263-274.
    
    5. Pirotte B, Goldman S, Massager N, et al. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med, 2004, 45(8): 1293-1298.
    
    6. Grosu AL, Weber WA, Franz M, et al. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys, 2005, 63(2): 511-519.
    
    7. Ribom D, Engler H, Blomquist E, et al. Potential significance of (11)C-methionine PET as a marker for the radiosensitivity of low-grade gliomas. Eur J Nucl Med Mol Imaging, 2002, 29(5): 632-640.
    
    8. Kim S, Chung JK, [m SH, et al. 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging, 2005, 32(1): 52-59.
    
    9. Van Laere K, Ceyssens S, Van Calenbergh F, et al. Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma:sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging, 2005, 32(1): 39-51.
    
    10. Rachinger W, Goetz C, Popperl G, et al. Positron emission tomography with O-(2-[18F]fluoroethyl)-L-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery, 2005, 57(3):505-511.
    
    11. Ling CC, Humn J, Larson S et al: Towards multidimensional radiotherapy (MI)-CRT) : biological imaging and biological conformal i ty. Int. J. Radiation Oncology Biol. Phys., 2000 47 551-60.
    
    12. Chung JK, Kim YK, Kim SK, et al. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging, 2002, 29(2): 176-182.
    
    13. Langen KJ, Muhlensiepen H, Holschbach M, et al. Transport mechanisms of 3-[123]iodo- a -methyl-L-tyrosine in a human glioma cell line:comparison with [3H]methyl]-L-methionine. J Nucl Med, 2000, 41(7):1250-1255.
    
    14. Kracht LW, Friese M, Herholz K, et al. Methyl-[11C]-L-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging,2003, 30(6): 868-873.
    
    15. Rau FC, Weber WA, Wester HJ, et al. O-(2-[18F]Fluoroethyl)-L-tyrosine (FET) : a tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur J Nucl Med Mol Imaging, 2002, 29(8):1039-1046.
    
    16. Kaim AH, Weber B, Kurrer M0, et al. 18F-FDG and 18F-FET uptake in experimental soft tissue infection. Eur J Nucl Med Mol Imaging, 2002,29(15):648-654.
    
    17. Weber WA, Wester HJ, Grosu AL, et al.O-(2-[18F]Fluoroethyl)-l-tyrosine and 1-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med Mol Imaging, 2002, 27(5): 542-549.
    
    18. Floeth FW, Pauleit D, WittsackHJ, et al. Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy. J Neurosurg, 2005, 102(2): 318-327.
    
    19. Pauleit D, Stoffels G, Schaden W, et al. PET with O-(2-18F-Fluoroethy])-L-Tyrosine in peripheral tumors: first clinical results. J Nucl Med, 2005, 46(3): 411-416.
    
    20. Ohtani T, Kurihara H, Ishiuchi S, et al. Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med Mol Imaging, 2001 28(11): 1664-1670.
    
    21. Kwee SA, Coel MN, Lim J, et al. Combined use of F-18 fluorocholine positron emission tomography and magnetic resonance spectroscopy for brain tumor evaluation. J Neuroimaging, 2004, 14(3): 285-289.
    
    22. Tian M, Zhang H, Oriuchi N, et al. Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur J Nucl Med Mol Imaging, 2004, 31 (8): 1064 - 1072.
    
    23. Zhang H, Tian M, Oriuchi N, et al. 11C-choline PET for the detection of bone and soft tissue tumours in comparison with FDG PET. Nucl Med Commun,2003, 24(3): 273-279.
    
    24. Toyohara J, Waki A, Takamatsu S, et al: Basis of FLT as a cell proliferation marker: comparative uptake studies with [3H]thymidine and [3H]arabinothymidine, and cell-analysis in 22 asynchronously growing tumor cell line. Nucl Med Biol, 2002, 29(3): 281-287.
    
    25. Rasey JS, Grierson JR, Wiens LW, et al. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med, 2002, 43(9): 1210-1217.
    
    26. Chen W, Cloughesy T, Kamdar N, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med, 2005, 46(6):945-952.
    
    27. Jacobs AH, Thomas A, Kracht LW, et al. 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med, 2005, 46(12): 1948-1958.
    1.Simon R.Cherry.The 2006 Henry N.Wagner Lecture:Of Mice and Men(and Positrons)—Advances in PET Imaging Technology.J Nucl Med.2006;47(11):1136-1745
    2.Bernd J.Pichler,Hans F.Wehrl,and Martin S.Judenhofer.Latest Advances in Molecular Imaging Instrumentation J Nucl Med.2008;49(6):5s-23s
    3.Nutt R.The history of Positron Emission Tomography.Molecular Imaging and Biology;2002,4(1):11-26
    4.Pat Zanzonico.Position Emission Tomography:A Review of Basic Principles,Scanner Design and Performance,and Current Systems.Seminars in Nuclear Medicine.2004,34:87-111.
    5.王世真主编,分子核医学(第一版)。2001年,北京:中国协和医科大学出版社。102-107
    6.Balcerzyk M,Moszy(y|¨)ski M.YSO,LSO,GSO and LGSO.A study of energy resolution and nonproportionality.
    7.Nutt R.Is LSO the future of PET? Eur J Nucl Med Mol Imaging;2002,29(11):1523-1525
    8.Nutt R,Mecher CL.Current and redevelopments with LSO,A scintillator with excellent characteristics for PET.Revue de I'ACOMEN,1999,5,(2):152-155MelcherCL.ScintillationCrysta]s for PET.J Nucl Med 2000;41(6):1051-1055
    9.陈盛祖.关于PET/CT与分子影像学.中华核医学杂志,2003,23(Supp):7-8.
    10.Schoder H,Erdi YE,Larson SM,et al.PET/CT:a new imaging technology in nuclear medicine.Eur J Nucl Med Mol Imaging,2003,30:1419-1437.
    11.Beyer T,Townsend DW,Brun T,et al.A combined PET/CT scanner for clinical ontology.J Nucl Med,2000,41:1369-1379.
    12.National Electrical Manufacturers Association.NEMA Standards Publication NU-2-1994:Performance Measurements of Positron Emission Tomographs.Washington,DC:National Electrical Manufacturers Association;1994.
    13.National Electrical Manufacturers Association.NEMA Standards Publication NU-2-2001:Performance Measurements of Positron Emission Tomographs.Rosslyn,VA:National Electrical Manufacturers Association;2001.
    14.管一晖 林祥通 赵军等ECAT HR+PET仪性能初步测试 中华核医学杂志,2001年,21(5):308-310
    15.Kar JS,Margaret E,Witherspoon D,et al.Performance standards in positron emission tomography.J Nucl Med,1991,32:234222350.
    16.Wienhard K,DahlbomM,Eriksson L,et al.The ECATEXACT HR:performance of a new high resolution positron scanner.J Comput Assist Tomor,1994,18:1102118.
    17.Daube-Witherspoon ME,Karp JS,Casey ME,et al.PET performance measurements using the NEMA NU2-2001 Standard.J Nucl Med,2002;43:1398-1409.
    18.陈盛祖,党亚萍,陶军,等.Discovery LS PET/CT的验收及性能评估.中华核医学杂志,2004,24:117-119.
    19.Huk WJ,Gademann G.Magnetic resonance imaging(MRI):method and early clinical experiences in diseases of the central nervous system.Neurosurg Rev.1984,7(4):259-280.
    20.Takahashi M.Magnetic resonance imaging of brain tumors.Gan To Kagaku Ryoho.1987,14(12):3209-3218.
    21.Ulmer S,Reeh M,Krause J,et al.Dynamic contrast-enhanced susceptibility-weighted perfusion MRI(DSC-MRI) in aglioma model of the rat brain using a conventional receive-only surface coil with a inner diameter of 47mm at a clinical 1.5 T scanner.J Neurosci Methods.2008,172(2):168-172.
    22.Frank WF,Dirk P,Hans-J(o|¨)rg W,et al:Multimodal metabolic imaging of cerebral gliomas:positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy.J Neurosurg 2005,102:318-327.
    23.Padma MV,Said S,Jacobs M,et al.Prediction of pathology and survival by FDG PET in gliomas.J Neurooncol,2003,64:227-37.
    24.Coon D,Ghkhale AS,Burton SA,et al.Fractionated stereotactic body radiation therapy in the treatment of primary,recurrent,and metastatic lung tumors:the role of positron emission tomography/computed tomography-based treatment planning.Clin Lung Cancer.2008,9(4): 217-221.
    
    25. Gwak HS, Youn SM, Chang U, et al. Usefulness of (18)F-fluorodeoxyglucose PET for radiosurgery planning and response monitoring in patients with recurrent spinal metastasis. Minim Invasive Neuros
    1. Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP.Metabolic trapping as aprinciple of radiopharmaceutical design: some factors responsible for the biodistribution of[18F]2-deoxy-2-fluoro-D-glucose. J Nucl Med 1978; 19:1154-1161.
    
    2. Hara T, Kosaka N, Shinoura N, Kondo T. PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med 1997; 38:842-847.
    
    3. Hara T. 11C-choline and 2-deoxy-2-[18F]fluoro-D-glucose in tumor imaging with positron emission tomography. Mol Imaging Biol, 2002, 4:267-273.
    
    4. Utriainen M, Komu M, Vuorinen V, Lehikoinen P, Sonninen P, Kurki T,et al. Evaluation of brain tumor metabolism with [11C]choline PET and 1H-MRS. J Neurooncol. 2003 May;62(3):329-38.
    
    5. Spence AM, Mankoff DA, Muzi M. Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am. 2003 Nov;13(4):717-39.
    
    6. Hara T, Kondo T, Kosaka N. Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg. 2003 Sep;99(3) : 474-9.
    
    7. Grosu AL, Piert M, Weber WA, Jeremic B, Picchio M, Schratzenstaller U, et al. Positron emission tomography for radiation treatment planning. Strahlenther Onkol. 2005 Aug;181 (8):483-99.
    
    8. Tyler JL, Diksic M, Villemure JG, Evans AC, Meyer E, Yamamoto YL,Feindel W. Metabolic and hemodynamic evaluation of gliomas using positron emission tomography. J Nucl Med, 1987,28:1123-1133.
    
    9. Kubota K, Furumoto S, Iwata R, Fukuda H, Kawamura K, Ishiwata K.Comparison of 18Ffluoromethylcholine and 2-deoxy-D-glucose in the distribution of tumor and inflammation. Ann Nucl Med, 2006, 20: 527-533.
    
    10. Wyss MT, Weber B, Honer M, Spath N, Ametamey SM, Westera G, et al.18F-choline in experimental soft tissue infection assessed with autoradiography and high-resolution PET. Eur J Nucl Med Mol Imaging, 2004,31: 312-316.
    
    11. Zhang H, Tian M, Oriuchi N, Higuchi T, Watanabe H, Aoki J, Tanada S,Endo K. 11C-choline PET for the detection of bone and soft tissue tumours in comparison with FDG PET. Nucl Med Commun, 2003, 24:273-279.
    
    12. De Stefano N, Filippi M. MR spectroscopy in multiple sclerosis. J Neuroimaging. 2007, 17 (Suppl 1): 31S-35S.
    
    13. Kwee SA, Coel MN, Lim J, Ko JP. Combined use of F-18 fluorocholine positron emission tomography and magnetic resonance spectroscopy for brain tumor evaluation. J Neuroimaging, 2004,14(3): 285-289.
    
    14. Tian M, Zhang H, Oriuchi N, Higuchi T, Endo K. Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur J Nucl Med Mol Imaging, 2004, 31:1064-1072.
    
    15. Elstrom R, Guan L, Baker G, Nakhoda K, Vergilio JA, Zhuang H, et al.Utility of FDG- PET scanning in lymphoma by WHO classification. Blood.2003;101:3875-3876.97.
    
    16. Alinari L, Castellucci P, Elstrom R, Ambrosini V, Stefoni V, Nanni C, et al. 18F-FDG PET in mucosa-associated lymphoid tissue (MALT) lymphoma. Leuk Lymphoma, 2006, 47: 2096-2101.
    
    17. Ohtani T, Kurihara H, Ishiuchi S, Saito N, Oriuchi N, Inoue T, Sasaki T. Brain tumourimaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. EurJ Nucl Med, 2001, 28:1664 - 1670.
    1.Rachel T B,Susan P M,Epidemiology of brain tumors in childhood-a review Toxicology and Applied Pharmacology 2004,(199) 118-131
    2.崔世民,张蕾莉,刘梅丽等.颅内肿瘤3740例分析.现代神经疾病杂志,2002,2(2):27-29
    3.刘伟国.脑胶质瘤综合治疗进展.实用肿瘤杂志,2004,19(6):462-464
    4.Carre Anne Grapham,Timoffy F C.Tumour Treatment:chemotherapy And other New developments Seminars in Oncology Nursing,2004,20(4):260-272
    5.赵秋枫,耿道颖.脑肿瘤复发与放射性坏死的影像学鉴别,中国神经肿瘤杂志2005,3(3):183-191
    6.蔡莉,高硕.PET在脑肿瘤复发与放射性坏死鉴别诊断中的价值中国肿瘤临床2004年第31卷第19期:1134-1137
    7.王艳艳,兰胜民.S100B对于脑肿瘤及其放射性损伤的评价及临床意义 中国神经肿瘤杂志2008,6(1):30-34
    8.Tatsuro Tsuchidaa,Hiroaki Takeuchib,Hidehiko Okazawac Grading of brain glioma with 1-11 C-acetate PET:comparison with 18F-FDG PET Nuclear Medicine and Biology 2008(35) 171-176
    9.Moon DH,Macldahi J,Danicl HS,et al.Accuracy of whole body ~(18)F-FDG for the detection of recurrent or metastatic breast carcinoma.J Nucl Med,1998,39:431-435.
    10.Wei Chen,Clinical Applications of PET in Brain Tumors THE JOURNAL OF NUCLEAR MEDICINE,2007,48(9):1468-1481
    11.B.J.Schaller,M.Modo,M.Buchfelder Molecular Imaging of Brain Tumors:A Bridge Between Clinical and Molecular Medicine? Mol Imaging Biol 2007(9):60-71.
    12.B.Schaller Usefulness of positron emission tomography in diagnosis and treatment follow-up of brain tumors Neurobiology of Disease 2004(15) 437-448
    13.高培毅.进一步提高颅内肿瘤影像学诊断水平.中华放射杂志,1999,33:221-222.。
    14.Alavi JB,Alavi A,Chawluk J,et al.Positron emission tomography in patients with glima:apredictor of prognosis.Cancer,1998,62:1074-1078.
    15.Buchpiguel CA,Alavi JB,Alavi A,et al.PET versus SPECT in distinguishing radiation necrosis from tumor recurrence in the brain.J Nucl Med,1995,36:159-164.
    16.Meyer PT,Schreckenberger M,Spetzger U,et al.Comparison of visual and ROI-based brain tumor grading using~(18)F-FDG PET:ROC analyses.Eur J Nucl Med,2000,28,165-174.
    
    17. Borbely K, Fulham MJ, Brooks RA, et al. PET-FDG of cranial and spinal neuromas. J Nucl Med, 1992,33:1931 -1919
    
    18.Masahiro N, Tetsuo H.Brain tumor:Detection with C-11 Choline PET. RSAN Radiology, 1997,202:497-503.
    
    19. Hara T, Kondo T, Kosaka N. Use of ~(18)F-Choline and ~(11)C-Choline as contrast agents in Positron Emission Tomography imaging guided stereotactic biopsy sampling of gliomas. J Neurosurg,2003,99:474-479.
    
    20. Masahiro N, Tetsuo H.Brain tumor:Detection with C-11 Choline PET. RSAN Radiology, 1997,202:497-503.
    1. Ling CC, Humn J, Larson S et al: Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000 47 551-60.
    
    2. Dhermain F, Ducreux D, et al. Use of the functional imaging modalities in radiation therapy treatment planning in patients with glioblastoma.Cancer. 2005 Apr;92(4):333-42
    
    3. Schad LR, Boesecke R, Schlegel W, et al. Three dimensional image correlation of CT, MR, and PET studies in radiotherapy treatment planning of brain tumors. J Comput Assist Tomogr, 1987, 11(6): 984-954.
    
    4. Thornton AF, Sandier HM, Ten Haken RK, et al: The clinical utility of magnetic resonance imaging in 3-dimensional treatment planning of brain neoplasms. Int J Radiat Oncol Biol Phys 1992 24:767-775
    
    5. Huk WJ, Gademann G. Magnetic resonance imaging (MRI) : method and early clinical experiences in diseases of the central nervous system. Neurosurg Rev. 1984, 7(4): 259-280.
    
    6. Takahashi M. Magnetic resonance imaging of brain tumors. Gan To Kagaku Ryoho. 1987, 14(12): 3209-3218.
    
    7. Ulmer S, Reeh M, Krause J, et al. Dynamic contrast-enhanced susceptibility-weighted perfusion MRI (DSC-MRI) in a glioma model of the rat brain using a conventional receive-only surface coil with a inner diameter of 47 mm at a clinical 1. 5 T scanner. J Neurosci Methods. 2008,172(2):168-172.
    
    8. Frank WF, Dirk P, Hans-J(?)rg W, et al: Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy. J Neurosurg 2005, 102: 318-327.
    
    9. 潘中允.PET诊断学.北京:人民卫生出版社, 2005.
    
    10. Bar-Shalom R, Valdivia AY, Alaufox MD. PET imaging in oncology. Semin Nucl Med, 2000, 30: 150-185.
    
    11. Nutt R. The history of Positron Emission Tomography. Molecular Imaging and Biology; 2002, 4(1):11-26.
    
    12. Erdi YE, Rosenzweig K, Erdi AK. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiotherapy and Oncology, 2002, 62:51-60.
    
    13. Mah K, Caldwell CB, Ung YC, et al. The impact of (18) FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small cell lung carcinoma: a prospective study. Int. J. Radiation Oncology Biol. Phys., 2002, 52(2): 339-350.
    
    14. Schechter NR, Gillenwater AM, Byers RM, et al. Can positron emission tomography improve the quality of care for head-and-neck cancer patients? Int. J. Radiation Oncology Biol. Phys., 2001, 51(1): 4-9.
    
    15. NishiokaT, ShigaT, ShiratoH, et al. Image fusion between 18F-FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas. Int. J. Radiation Oncology Biol. Phys., 2002, 53(4):1051-1057.
    
    16. Mutic S, Grigsby PW, Low DA, et al. PET-guided three-dimensional treatment planning of intracavitary gynecologic implants. Int. J.Radiation Oncology Biol. Phys., 2002, 52(4): 1104-1110.
    
    17. Gross MW, Weber WA, Feldmann HJ, et al. The value of F-18-fluorodeoxyglucose PET for the 3-D radiation treatment planning of malignant gliomas. Int. J. Radiation Oncology Biol. Phys., 1998, 41(5):989-995.
    
    18. Padma MV, Said S, Jacobs M, et al. Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol, 2003, 64: 227-37.
    
    19. Kracht LW Friese M, Herholz K et al: Methyl-[11C]-1-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging. 2003 30(6) : 868-73.
    
    20. Nuutinen J, Sonninen P, Lehikoinen P, et al. Radiotherapy treatment planning and long-term follow-up with [(11)C]methionine PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys. 2000 Aug 1;48(1) :43-52.
    
    21. Grosu AL, Weber WA, Astner ST, et al. 11C-Methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int. J. Radiation Oncology Biol. Phys., 2006,66(2): 339-344.
    
    22. Pirotte B et al: Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med. 2004 45(8) : 1293-8.
    
    23. Kracht LW et al: Delineation of brain tumor extent with [HC]L-methionine positron emission tomography: local comparison with stereotactic histopathology Clin Cancer Res. 2004 10(21):7163-70.
    
    24. Giammarile F, et al: High and low grade oligodendrogliomas (ODG):correlation of amino-acid and glucose uptakes using PET and histological classifications. J Neurooncol. 2004 68(3):263-74.
    
    25. Calvar JA, Meli FJ, Romero C, et al. Characterization of brain tumors by MRS, DWI and Ki-67 labeling index. J Neurooncol. 2005, 72(3) :273-80.
    
    26. Sinooura N, Nishijima M, Hara T, et al. Brain tumor: Detection with C-11 Choline PET. Radiology, 1997, 2002: 497-503.
    
    27. Tian M, Zhang H, Oriuchi N, et al. Comparison of HC-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur J Nucl Med Mol Imaging, 2004, 31(8):1064-1072.
    
    28. Toshiyuki O, Hideyuki K, Shogo I, et al. Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med, 2001, 28:1664-1670.
    
    29. Kwee SA, Coel MN, Lim J, et al. Combined use of F-18 fluorocholine positron emission tomography and magnetic resonance spectroscopy for brain tumor evaluation. J Neuroimaging, 2004, 14(3): 285-289.
    
    30. Ohtani T, Kurihara H, Ishiuchi S, et al. Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med Mol Imaging, 2001 28(11): 1664-1670.
    
    31. Levivier M, Massager N, WiklerD, et al: Use of Stereotactic PET Images in Dosimetry Planning of Radiosurgery for Brain Tumors: Clinical Experience and Proposed Classification J Nucl Med. 2004 45(7):1146-54
    1.Gallagher 13M,Fowler JS,Gutterson NI,MacGregor RR,Wan CN,Wolf AP.Metabolic trapping as a principle of radiopharmaceutical design:some factors responsible for the biodistribution of [18F]2-deoxy-2-fluoro-D-glucose. J Nucl Med 1978; 19:1154-1161.
    
    2. Hara T, Kosaka N, Shinoura N, Kondo T. PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med 1997; 38:842-847.
    
    3. Hara T. 11C-choline and 2-deoxy-2-[18F]fluoro-D-glucose in tumor imaging with positron emission tomography. Mol Imaging Biol, 2002, 4: 267-273.
    
    4. Utriainen M, Komu M, Vuorinen V, et al. Evaluation of brain tumor metabolism with [1 lC]choline PET and 1H-MRS. J Neurooncol. 2003 May;62(3):329-38.
    
    5. Spence AM, Mankoff DA, Muzi M. Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am. 2003 Nov;13(4):717-39.
    
    6. Hara T, Kondo T, Kosaka N. Use of 18F-choline and 1 lC-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg. 2003 Sep;99(3):474-9.
    
    7. Grosu AL, Piert M, Weber WA, et al. Positron emission tomography for radiation treatment planning. Strahlenther Onkol. 2005 Aug;181(8):483-99.
    
    8. Tyler JL, Diksic M, Villemure JG, et al. Metabolic and hemodynamic evaluation of gliomas using positron emission tomography. J Nucl Med, 1987, 28:1123-1133.
    
    9. Padma MV, Said S, Jacobs M, et al. Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol. 2003 Sep;64(3):227-37.
    
    10. Borbely K, Nyary I, Toth M, et al. Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11 C-methionine in the determination of malignancy of gliomas. J Neurol Sci. 2006 Jul 15;246(1-2):85-94.
    
    11. Ohtani T, Kurihara H, Ishiuchi S, et al. Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med, 2001, 28:1664-1670.
    
    12. Tian M, Zhang H, Oriuchi N, et al. Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur J Nucl Med Mol Imaging,2004,31:1064-1072.
    
    13. Kubota K, Furumoto S, Iwata R, et al. Comparison of 18F-fluoromethylcholine and 2-deoxy-D-glucose in the distribution of tumor and inflammation. Ann Nucl Med,2006, 20: 527-533.
    
    14. Wyss MT, Weber B, Honer M, et al. 18F-choline in experimental soft tissue infection assessed with autoradiography and high-resolution PET. Eur J Nucl Med Mol Imaging. 2004, 31:312-316.
    
    15. Zhang H. Tian M, Oriuchi N, et al. 11C-choline PET for the detection of bone and soft tissue tumours in comparison with FDG PET. Nucl Med Commun, 2003,24:273-279.
    16. Kwee SA, Coel MN, Lim J, et al. Combined use of F-18 fluorocholine positron emission tomography and magnetic resonance spectroscopy for brain tumor evaluation. J Neuroimaging, 2004, 14(3): 285-289.
    
    17. Alinari L, Castellucci P, Elstrom R, et al. 18F-FDG PET in mucosa-associated lymphoid tissue (MALT) lymphoma. Leuk Lymphoma, 2006, 47: 2096-2101.
    1 Chung J K, Kim Y K. Kim S K. et al. Eur J Nucl Med Mol Imaging, 2002, 29(2): 176-82.
    
    2 Herholz K, Holzer T. Bauer B, et al. Neurology, 1998,50: 131-1322.
    
    3 3 Ishiwata K, Enomoto K, Sasaki T, et al. J Nucl Med, 1996, 37: 279-285.
    
    4 Langen K J, Muhlensiepen H, Holschbach M, et al. J Nucl Med, 2000, 41: 1250-1255.
    
    5 Kracht L W, Friese M, Herholz K, et al. Eur J Nucl Med Mol Imaging, 2003, 30: 868-873.
    
    6 Sato N. Suzuki M. Kuwata N, et al. Neurosurg Rev, 1999, 22: 210-214.
    
    7 luchi T. et al. Neurol Res. 1999. 21(7): 640-644.
    
    8 Giammarile F. Cinotti LE, Jouvet A, et al. J Neurooncol, 2004, 68(3): 263-74.
    
    9 Sunada 1. Tsuyuguchi N. Hara M, et al. Radiation Medicine, 2002. 20(2): 97-100.
    
    10 Jacobs A. Stroke. 1995.26: 1859-1866.
    
    11 Rau F C. Weber W A. Wester H-J, et al. Eur J Nucl Med, 2002, 29: 1039-1046.
    
    12 Kaim A H. Weber B. Kurrer M O, et al. Eur J Nucl Med, 2002, 29: 648-654.
    
    13 Weber W A. Wester H-J. Grosu A L. et al. Eur J Nucl Med Mol Imaging. 2000. 27(5): 542-549.
    
    14 Frank W F. Dirk P. Hans-Jorg W. et al. J Neurosurg. 2005. 102: 318-327.
    
    15 Pauleit D. Stoflels G Schaden W. el al. J Nucl Med. 2005, 46(3): 411-416.
    
    16 Ohtani T. Kurihara 11. Ishiuchi S. et al. Eur J Nucl Med. 2001. 28: 1664-1670.
    
    17 Sandi A K. Marc N C. John L. el al. J Neuroimaging. 2004. 14: 285-289.
    
    18 Tian Mei. Zhang Hong. Oriuchi N. et al. Eur J Nucl Med Mol Imaging. 2004. 31: 1064-1072.
    19 Zhang H. Tian M. Oriuchi N, et al. Nucl Med Commun, 2003, 24: 273-279.
    
    20 Kong X B, Zhu Q Y, Vidal P M, et al. Antimicrob Agents Chemother, 1992, 36: 808-818.
    
    21 Sherley J L. Kelly T J. J Biol Chem, 1988, 263: 8350-8358.
    
    22 Hengstschlager M, Knofler M, Mullner E W, et al. J Biol Chem, 1994, 269: 13836-13842.
    
    23 Toyohara J, Waki A, Takamatsu S, et al. Nucl Med Biol, 2002, 29: 281-287.
    
    24 Rasey J S, Grierson J R, Wiens L W, et al. J Nucl Med, 2002, 43: 1210-1217.
    
    25 Chen W, Cloughesy T, Kamdar N, et al. J Nucl Med, 2005, 46(6): 945-952.
    
    26 Jacobs A H, Thomas A, Kracht L W, et al. J Nucl Med, 2005, 46(12): 1948-1958.
    
    27 Pirotte B, Goldman S, Massager N, et al. J Neurosurg, 2004,101(3): 476-483.
    
    28 Pirotte B, Goldman S, Massager N, et al. J Nucl Med, 2004, 45(8): 1293-1298.
    
    29 Grosu A L, Weber W A, Franz M, et al. Int J Radiat Oncol Biol Phys, 2005, 63(2): 511-519.
    
    30 Ribom D, Engler H, Blomquist E, et al. Eur J Nucl Med Mol Imaging, 2002, 29(5): 632-640.
    
    31 Kim S, Chung J K, Im S H, et al. Eur J Nucl Med Mol Imaging, 2005, 32(1): 52-59.
    
    32 Van Laere K, Ceyssens S, Van Calenbergh F, et al. Eur J Nucl Med Mol Imaging, 2005, 32(1): 39-51.
    
    33 Walter R, Claudia G, Gabriele P, et al. Neurosurgery, 2005, 57: 505-511.
    1.Armstrong J,Raben A,Zelefsky M,et al.Promising survival with three-dimensional conformal radiation therapy for non-small cell lung carcinoma.Radiother Oncol 1997;44:17-22.
    2.Giraud P,Grahek D,Montraver FC etal.CT and 18 F-Deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancer Int.J.Radiation Oncology Biol.Phys.2001;49(5):1249-1257
    3.Miller T R,Grigsby P W.Measurement of tumour volume by PET to evaluate prognosis inpatients with advanced cervical cancer treated by radiation therapy Int J Radiation Oncology Biol Phys 2002;53(2):353-359
    4.管一晖 何胜利 董竞成等~(18)F-氟代脱氧葡萄糖正电子发射计算机断层摄影术在非小细胞肺癌分期中的应用价值 中华医学杂志2001年81(19):1180-1183
    5.Tinteren H V,Hoekstra O S,Smit E Fetal Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer:the PLUS multicentre randomized trial THE LANCET 2002;359(4) 1388-1392
    6.Gupta N,Graeber G M,Bishop H A etal.Comparative Efficacy of Positron Emission romography With Fluorodeoxyglucose in Evaluation of Small(<1 cm),Intermediate(1 to 3 cm),and Large(>3 cm) Lymph Node Lesions CHEST 2000;117:773-778
    7.Erdi Y E,Rosenzweig K,Erdi A K.Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography(PET) Radiotherapy and Oncology 2002;62:51-60
    8.于金明 邢力刚 杨国仁~(18)F-脱氧葡萄糖PET用于制定肿瘤放射治疗计划研究进展 中华放射肿瘤学杂志2004,13(6)133-166
    9.Frank C,Elena D,Brigitta G.B et al:Radiation treatment planning with an integrated positron emission and computer tomography(PET/CT):A Feasibility study.Int.J.Radiation Oncology Biol.Phys.,Vol.57,No.3,pp.853-863,2003.
    10.Antoinet V D W,Sebastiaan N,Monique H,et al.:Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3-M0non-small-cell lung cancer:A modeling study.Int.J.Radiation Ontology Biol.Phys.,Vol.61,No.3,pp.649-655,2005
    11.Jana L.F,Ramesh R,William O,et al.:Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int.J.Radiation Oncology Biol.Phys.,Vol.62,No.1,pp.70-75,2005
    12.Nestle U,Hellwig D,Schmidt S etal.2-Deoxy-2-[18 F]Fluoro-D-Glucose Positron Emission Tomography in Target Volume Definition for Radiotherapy of Patients with Non-Small-Cell Lung Cancer Molecular Imaging and Biology 2002;4(3):257-263
    13.Katherine M,Currish B C,Yee C U etal.The impact of 18 FDG-PET on target and critical organs in CT-Based treatment planning of patients with poorly defined Non-small cell lung carcinoma:A Prospective study Int.J.Radiation Oncology Biol.Phys.2002,52(2)339-350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700