用户名: 密码: 验证码:
膜下滴灌条件下盐碱地根—水—盐耦合机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验于2005~2006年在甘肃农业大学农业生态工程试验站进行,玉米和番茄作为供试作物,通过管栽和大田试验,研究了在膜下滴灌条件下不同灌溉定额[玉米:高灌溉(4875 m3.hm-2)、中等灌溉(4275 m3.hm-2)、低灌溉(3750 m3.hm-2);番茄:高灌溉(5426 m3.hm-2)、中等灌溉(4419 m3.hm-2)、低灌溉(3700 m3.hm-2)]和不同施盐水平[玉米:高盐(0.998%)、中盐(0.978%)、低盐(0.958%);番茄土壤含盐量为0.958%]对地上和地下部分生长发育的影响,水盐运移的基本规律以及水盐运移对作物冠层发育和根系分布等影响,主要结论如下:
     1.覆膜滴灌可以减少蒸发,抑制盐分上移,同时对根系形成了一个良好的水盐环境。滴灌水对表层土壤具有洗盐作用,在根系主要分布区(0-40cm)形成淡化脱盐区。
     2.土壤水分分布主要受滴灌量、蒸散、根系吸水等作用的影响。覆膜抑制了地表土壤水分蒸发,同时作物根系生长发育状况和分布规律主要受土壤水分和肥力状况的影响,特别是深层根系。
     3.当施盐量相同,不同灌溉处理下,在玉米苗期,土壤水分峰值(19.76%)出现在60-100cm土层;在玉米拔节期,土壤水分峰值(11.42%)出现在40-60 cm土层。当灌溉量相同,不同施盐处理下,在玉米各生育期,土壤水分峰值(19.36%)出现在40-60cm土层。结合玉米产量结果,在土壤含盐量0.998%以下的盐碱地均可进行玉米生产,在该试验条件下,灌溉量(4275 m3.hm-2)为玉米生产的适宜灌溉量。
     4.当施盐量相同,不同灌溉处理下,在番茄各生育期,高灌溉土壤水分峰值(20.47%)、中灌溉土壤水分峰值(21.29%)与低灌溉土壤水分峰值(21.07%)分别出现在60-100cm、40-60cm与60-100cm土层;在番茄苗期,土壤水分峰值(21.06%)出现在60-100cm土层;在开花坐果期,土壤水分峰值(24.04%)出现在20-40cm土层;在水平方向,土壤含水量随距滴头距离的增大而减小,在距滴头55 cm处达到最小值(9.58%)。结合番茄产量结果,在土壤含盐量0.958%以下的盐碱地均可进行番茄生产,在该试验条件下,灌溉量(4419 m3.hm-2)为番茄生产的适宜灌溉量。
     5.在同一盐基水平、不同灌溉量下,Cl-、SO42-、Na+随灌溉量的增大向土壤深层淋溶越深。在玉米苗期,Cl-峰值(0.386 g/kg)主要出现在60-100cm土层,SO42-峰值(1.332g/kg)主要出现在40-60cm土层;在玉米拔节期,Cl-和SO42-峰值主要出现在40-60cm土层;在玉米各生育时期,Na+峰值(4.21 g/kg)主要出现在20-40cm土层。
     当灌溉量相同,施盐量不同时,在玉米苗期,Cl-峰值(0.389 g/kg)、SO42-峰值(0.517 g/kg)和Na+峰值(1.766 g/kg)均主要出现在60-100cm土层;在玉米拔节期,Cl-峰值(0.863 g/kg)、SO42-峰值(0.833 g/kg)和Na+峰值(1.766 g/kg)均主要出现在40-60cm土层。中等灌溉处理盐淋溶深度大于高灌溉处理和低灌溉处理,且获得较高的产量,由于玉米根系主要分布在0-40cm土层,中等灌溉处理盐离子主要分布在40cm以下土层,减轻了盐分对玉米根系的毒害作用,导致玉米产量提高。
     6.在同一盐基水平、不同灌溉量下, Cl-峰值(0.199 g/kg)主要出现在40-60cm土层,SO42-峰值(1.22g/kg)和Ca2+(0.96g/kg)峰值主要出现在60-100cm土层。在番茄苗期,Cl-、SO42-、Ca2+在60cm左右土层的含量最高;在番茄开花坐果期,Cl-、SO42-峰值主要出现在40-60cm土层。中等灌溉处理减轻了盐分对番茄根系的毒害作用,导致番茄的产量提高。
     7.研究发现,玉米和番茄的根系随土壤深度的增加而减少,高灌溉处理的作物根系分布土层较低灌溉浅。约有85%玉米根干重分布在0-60cm土层,根长和根干重在玉米抽雄期达到最大值;约有75%番茄根干重分布在0-20cm土层,番茄根长和根干重在结果初期达到最大值。玉米和番茄根系消弱系数也说明了这种分布特征。
     8.玉米与番茄地上生物量呈“S”曲线生长,它们地上生物量与生长时期呈三次曲线变化。番茄果实产量呈“单峰型”曲线生长,番茄果实产量与生长时期呈三次曲线变化。
     9.在西北半干旱地区膜下滴灌是首选的灌溉方式。膜下滴灌作物的水分效率大于常规沟灌,高灌溉处理、中等灌溉处理与低灌溉处理的水分效率比常规沟灌分别提高了69.34%、141.27%与144.81%。通过膜下滴灌与常规沟灌的经济评价,结果表明,膜下滴灌的各项评价指标均高于常规沟灌。中等灌溉处理(4419 m3.hm-2)的各项评价指标均高于高灌溉处理和低灌溉处理。因此,在番茄生产中,当盐碱地土壤含盐量为0.958%以下,选用膜下滴灌中等灌溉量可以获得较高产量。
The study was conducted to determine the development of above-ground and under-ground biomass, soil water and salt transport regularity, effect of soil water and salt transport regularity on development of above-ground biomass and root distribution in drip irrigation under mulch on saline-alkaline land at Agriculture Ecology Engineering Station of Gansu Agricultural University during crops grow season of 2005 and 2006, different irrigation treatments (maize: high irrigation (4875 m3/hm2)、medium irrigation (4275 m3/hm2)、low irrigation (3750 m3/hm2);cherry tomato: high irrigation (5426 m3/hm2)、medium irrigation (4419 m3/hm2)、low irrigation(3700 m3/hm2) and different salt supply levels (maize: high salt supply (0.998%)、medium salt supply (0.978%)、low salt supply(0.958%);the same salt level (0.958% ) was supplied for cherry tomato) were employed in column and field experiments, maize and cherry tomato as an indicator crops. The results are followed:
     1. Evaporation and salt upper movement were reduced, formed 20– 40 cm light salinity root area, which is good for crop growth, indicated that drip irrigation under mulch had a effective of washing desalinization, especial on saline-alkaline land.
     2. Soil water moisture was affected by amount of drip irrigation, evaporation and water absorption of root. Mulch reduced evaporation of surface soil layer, the growth state and distribution of root was influenced by soil water content and soil fertilization, the affect of soil water content on deep root growth was evidence.
     3.Salt supply level was same, in different irrigation treatments, the highest soil moisture level (19.76%) was reached 60-100 cm soil layer at maize emerging stage; at maize jointing stage, the highest soil moisture level (11.42%) was reached 40-600 cm soil layer. Irrigation was same, in different salt supply levels treatments, the highest soil moisture level (19.36%) was reached 40-60 cm soil layer at maize different growth stages.The maize experiment indicated that maize production can be obtained on saline-alkaline land with soil salt level under 0.998%, amount of irrigation (4275 m3/hm2) was optimum management for maize production in similar experimental conditions.
     4. Salt supply level was same, in different irrigation treatments, the highest soil moisture level was reached 60-100 cm、40-60cm and 60-100cm soil layer under high irrigation, medium irrigation and low irrigation treatments respectively, there values were at 20.47%, 21.29% and 20.07% related to corresponding irrigation treatments, at different cherry tomato growth stages. The highest soil moisture level (21.06%) was reached 60-100 cm soil layer at cherry tomato emerging stage; at flowering and fruit-bearing stage, the highest soil moisture level (24.04%) was reached 20-40 cm soil layer. In horizontal direction, the soil water content was decreased with distance from drip sprinkler, soil moisture (9.58%) in 55 cm was reached the highest level. The cherry tomato experiment indicated that cherry tomato production can be obtained on saline-alkaline land with soil salt level under 0.958%, amount of irrigation (4419 m3/hm2) was optimum management for cherry tomato in similar experimental conditions.
     5. Salt supply level was same and irrigation was different, the leaching depth of Cl-, SO42-, and Na+ were increased with irrigation. At maize emerging stage, the highest Cl- content (0.386 g./kg ) was reached 60-100 cm soil layer, the highest SO42- content (1.332 g./kg ) was reached 40-60cm cm soil layer; at maize jointing stage, the highest level of Cl- content and SO42- content was reached 40-60cm cm soil layer. At different maize growth stages, the highest Na+ content (4.21 g./kg ) was reached 20-40cm soil layer. Irrigation was same and salt supply level was different, at maize emerging stage, the highest levels of Cl- content (0.389 g./kg ), SO42-content (0.517 g./kg ), Na+ content (1.766 g./kg ) was reached 60-100 cm soil layer; at maize jointing stage, the highest levels of Cl- content (0.863 g/kg)、SO42- content (0.833 g/kg) and Na+ content (1.766 g/kg) were reached at 40-60cm soil layer. Medium irrigation treatment has higher effect of salt leaching than high irrigation treatment and low irrigation treatment. It indicated that main roof grow within 40 cm soil layer, salt leaching below 40 cm soil layer after medium irrigation, medium irrigation treatment can reduce salt toxicity to plant root, leading higher maize production.
     6. Salt supply level was same and irrigation was different, the highest Cl- content (0.199 g./kg ) was reached 40-60 cm soil layer, the highest SO42- content (1.22 g./kg ) and the highest Ca2+ content (0.96 g./kg ) was reached 60-100cm cm soil layer. At cherry tomato emerging stage, the highest levels of Cl- content, SO42- content and Ca2+ was reached about 60cm soil layer; at flowering and fruit-bearing stage, the highest levels of Cl- content and SO42- content was reached 40-60cm soil layer. Medium irrigation treatment can reduce salt toxicity to plant root, leading higher cherry tomato production.
     7. The experiment was showed the root of maize and cherry tomato was decreased with amount of irrigation, the depth of root distribution in high irrigation was shallower than in low irrigation. About 85 % of dry maize root weight was distributed within 0-60cm soil layer, the root length and dry root weight was highest at maize heeding stage; about 75 % of dry cherry tomato root weight was distributed within 0-20cm soil layer, the root length and dry root weight was highest at cherry tomato flowering and fruit-bearing stage. The root extinction coefficient was also showed similar results.
     8. The grow tendency of canopy biomass of maize and cherry tomato with growth date is“S”curve, the equation is cubic curve. The grow tendency of fruit yield of cherry tomato biomass with growth date is“Unimodal type”curve, the equation is cubic curve.
     9. Drip irrigation under mulch was best management in semiarid area of Northwest of China. Drip irrigation under mulch had higher water use efficiency (WUE) than traditional furrow irrigation, the more WUE increase was 69.34%, 141.27% and 144.81 in high irrigation treatment, medium irrigation treatment and low irrigation treatment than in traditional furrow irrigation, respectively. After economical evaluation, the medium irrigation treatment (4419 m3/hm2) had higher evaluated parameters than high irrigation treatment and low irrigation treatment. Drip irrigation under mulch was best choice on saline-alkaline land with salt under 0.958%, medium irrigation treatment obtained the highest fruit yield for cherry tomato in semiarid area of Northwest of China.
引文
[1] W·伯姆著,薛德榕,谭协蘑译.根系研究法[M].科学出版社,1985.22~30.
    [2]鲍士旦.土壤农化分析[M].中国农业出版社,1999:178~199.
    [3]蔡文.物元模型及其应用[M].北京:科学技术文献出版社,1994.2~6.
    [4]陈新明,蔡焕杰.作物根区局部控水无压地下灌溉技术大田试验研究[J].沈阳农业大学学报,2004,5,(35):393~395.
    [5]蔡焕杰,邵光成等.棉花膜下滴灌毛管布置方式的试验研究[J].农业工程学报,2002,1,(18):45~49.
    [6]柴付军,程鸿,周建伟,等.棉花膜下滴灌效果及经济效益分析[J].新疆农垦经济,2002,4:72~74.
    [7]陈多方,许鸿,等.北疆棉区棉花膜下滴灌蒸散规律研究[J].新疆气象,2001,2,(24):16~17.
    [8]陈亚新,唐绍忠.非充分灌溉原理[M].北京,水利电力出版社,1995.15~17.
    [9]陈世磺,中国北方草地植物根系[M].吉林大学出版社,2001.22~25.
    [10]程冬玲,吴恩忍,等.棉花膜下滴灌两种布设方式的试验研究[J].干旱地区农业研究,2001,4,(19):87~91.
    [11]程建峰,潘晓云,刘宜柏.土壤条件对陆稻根系生长的影响[J].土壤学报,2002,39,(4):590~598.
    [12]程先军.有作物生长影响和无作物时潜水蒸发关系的研究[J].水利学报,1993,6:37~42.
    [13]杜太生,康绍忠,胡笑涛,等.根系分区交替滴灌对棉花产量和水分利用效率的影响[J].中国农业科学,2005,38,(10):2061~2068.
    [14]邓旭阳,周淑秋,郭新宇,等.玉米根系几何造型研究[J].工程图学学报,2004,4:4~6.
    [15]范学涛.关于玉米农田耗水量的研究[J].灌溉排水,1982,1,(2):34~39.
    [16]费良军,谭齐林,王文焰,张建丰.充分供水条件下点源入渗特性及其影响因素[J].土壤侵蚀与水土保持学报,1999,2,(5):70~74.
    [17]冯广志.关于微灌技术研究与推广的几个问题[J].节水灌溉,2000,4:6~8.
    [18]冯江,罗金耀.滴灌条件下土壤溶质运移转化的研究[J].中国农村水利水电.2004,2:22~24.
    [19]龚江,白治新,陈强,等.供磷水平对不同磷效率玉米根系的生长及磷营养的影响[J].新疆农业科学,2004,41,(2):118~120.
    [20]龚元石,李子忠.土壤水分管理原理与农田水分利用率[C]. 1999:52~53.
    [21]石元春,刘昌明,龚元石.节水农业应用基础研究进展[J].中国农业出版社,1995:41~47.
    [22]顾烈烽,荣航仪,钟杰敏.兵团大田棉花膜下滴灌技术的形成与发展[J].新疆农垦经济,2002,4:68~71.
    [23]付琳.滴灌时的土壤浸润状况[J].灌溉排水,1983,2,(3):36~45.
    [24]关军锋,刘海龙,李广敏,等.分根灌水对玉米根系活力及叶片含水量的影响[J].中国生态农业学报,2004,12,(1):133~135.
    [25]高世斌,冯质雷,李晚忱,等.干旱胁迫下玉米根系性状和产量的QTLS分析[J].作物学报,2005,31,(6):718~722.
    [26]郭相平,孙景生.玉米节水灌溉技术及其研究进展[J].玉米科学,2000,8,(1):60~62.
    [27]郭相平,康绍忠.玉米调亏灌溉的后效性[J].农业工程学报,2000,16,(4):58~60.
    [28]韩艳丽,康绍忠.根系分区交替灌水对玉米吸收养分影响的初步研究[J].农业工程学报,2002,1,(18):11~12.
    [29]胡永宏,贺思辉.综合评价方法[M].北京:科学出版社,2000.26~28.
    [30]黄勇,黄文林,成玛丽,等.不同耕作栽培方式对地膜玉米及其前作产量的影响[J].玉米科学,2001,3:62~63.
    [31]虎胆·吐马尔拜.作物根系吸水的研究[J].新疆农业大学学报,1996,19,(4):30~34.
    [32]虎胆·吐马尔拜.作物根系吸水率模型的实验研究[J].灌溉排水,1999,18,(4):15~19.
    [33]何林望,屈英,陈林,等.新疆大田膜下滴灌技术研究与推广[J].新疆农垦经济,2002,2:54.
    [34]胡田田,康绍忠,高明霞等.玉米根系分区交替供应水、氮的效应与高效利用机理[J].作物学报,2004,9,(30):866~871.
    [35]胡顺军,康绍忠,宋郁东,等.渭干河灌区土壤水盐空间变异性研究[J].水土保持学报,2004,2,(18):10~11.
    [36]韩淑敏,田魁祥,刘小京,雷玉平.点源入渗与蒸发条件下土壤水盐运移试验研究[J].河北农业大学学报,2002,1,(25):25~30.
    [37]韩希英,宋凤斌.干旱胁迫对玉米根系生长及根际养分的影响[J].水土保持学报,2006,20,(3):170~172.
    [38]胡笑涛,梁宗锁,康绍忠,等.模拟调亏灌溉对玉米根系生长及水分利用效率的影响[J].灌溉排水,1998,17,(2):11~12.
    [39]贾大林,司徒淞,王和洲.节水农业持续发展研究[J].生态农业研究,1994,2,(2):30~36.
    [40]贾宏俊,吴守荣.工程项目评标模型设计研究[J].系统工程理论与实践,1999,12:73~79.
    [41]靳万贯,马富裕,等.膜下滴灌对盐碱荒地耕层土壤理化性状的影响[J].石河子大学学报, 2001,3,(5):188~190.
    [42]蒋先明,王如英,葛晓光,等.蔬菜栽培学各论(北方本)[M].中国农业出版社,1999,154~164.
    [43]贾志红,苗果园,杨珍平,等.春播玉米不同根群生长的解析研究(Ι)[J].山西农业大学学报,2004,4,(24):366~368.
    [43]缴锡云,王文焰,王全九.点源入渗研究进展[J].土壤侵蚀与水土保持学报,1999,5,(5):54~61.
    [44]罗家雄.新疆垦区盐碱地改良[M].水利电力出版社,1987:4~6.
    [45]罗金耀.节水灌溉理论与技术[M].武汉大学出版社,2003,233~243.
    [46]金明现,王天铎.玉米根系生长及向水性的模拟[J].植物学报,1996,5,(38):384~390.
    [47]杨涛,梁宗锁,薛吉全,等.干旱胁迫下不同玉米品种的耗水特性及其水分利用效率的差异[J].干旱地区农业研究,2005,5,(23):23~24.
    [48]康绍忠,蔡焕杰.农业水管理学[M].北京,中国农业出版社,1996.12~18.
    [49]康绍忠,张建华,梁宗锁,等.控制性交替灌溉一种新的农田节水灌溉思路[J].干旱地区农业研究,1997,15,(1):1~6.
    [50]李潮海,李胜利,王群,等.不同质地土壤对玉米根系生长动态的影响[J].中国农业科学, 2004,37,(9):1334~1340.
    [51]李光永,曾德超,郑耀泉.地表点源滴灌土壤水分运动的动力学模型与数值模拟[J].水利学报,1998,11:21~24.
    [52]李富先,孔祥耀等.棉花膜下滴灌田间小气候规律的试验研究[J].石河子科技,2001,2:9~11.
    [53]李鹏,赵忠,李占斌.淳化县不同里地上刺槐根系的分布参数[J].南京林业大学学报,2002,5,(26):32~36.
    [54]李鹏,赵忠,李占斌,等.植被根系与生态环境相互作用机制研究进展[J].西北林学院学报,2002,17,(2):26~32.
    [55]李晓玲,成自勇,刘普海.不同灌溉技术下玉米的节水性试验研究[J].甘肃水利水电技术,2006,42,(1):39~40.
    [56]李韵珠,王凤仙,刘来华.土壤水氮资源的利用与管理[J].植物营养与肥料学报,1995,5,(3):206~213.
    [57]李毅.王文焰等.论膜下滴灌技术在干旱--半干旱地区节水抑盐灌溉中的应用[J].灌溉排水,2000,6:48~50.
    [58]李英能.我国节水农业发展模式研究[J].节水灌溉,1998,2:7~12.
    [59]李毅,王文焰,王全九.论膜下滴灌技术在干旱半干旱地区节水抑盐灌溉中的应用[J].灌溉排水,2001,20,(2):42~46.
    [60]李玉山.黄土区土壤水分循环特征及其对陆地生态水分循环的影响[J].生态学报,1983,3,(2):91~101.
    [61]李豫新,汤莉.棉花膜下滴灌生产的技术经济效益评价[J].农业技术经济.2001,5:36~37.
    [62]梁宗锁,康绍忠,魏永胜,邵明安.隔沟交替灌溉对大田玉米光合速率与蒸腾效率的影响[C].陕西科学技术出版社,2000:273~279.
    [63]梁宗锁,康绍忠,石培泽,等.隔沟交替灌溉对玉米根系分布和产量的影响及其节水效益[J].中国农业科学,2000,33,(6):26~32.
    [64]梁宗锁,康绍忠,等.控制性分根交替灌溉的节水效应[J].农业工程学报,1997,13,(4):58~63.
    [65]康绍忠,邵明安,等.土壤干湿交替对玉米生长速度及其耗水量的影响[J].农业工程学报,2000,16,(5):38~39.
    [66]林性粹,赵乐诗.旱作物地面灌溉节水技术[M].北京:中国水利电力出版社,1999,56~60.
    [67]刘红英,蔡焕杰,王健,等.灌溉条件下夏玉米田根系层水分动态和田间灌溉水有效利用率的研究[J].西北农林科技大学学报(自然科学版) ,2005,33,(6):108~109.
    [68]刘巽浩.中国多熟种植[M].北京:北京农业大学出版社,1983.12~16.
    [69]刘晓英.滴灌条件下土壤水分运动规律的研究[J].水利学报,1990,1:11~21.
    [70]陆帼一.蔬菜栽培生态生理[M].西北农业大学,1986,30~46.
    [71]刘晚苟,山仑,邓西平,等.不同土壤水分条件下土壤容重对玉米根系生长的影响[J].西北植物学报,2002,22,(4):831~838.
    [72]刘贤赵,刘德林.模拟控制性分根交替滴灌对玉米的节水效应[J].生态环境,2005,14,(2): 257~259.
    [73]刘云发.我国大田作物滴灌现状及发展前景[J].节水灌溉,1998,4:26~31.
    [74]吕殿青,王全九,王文焰,邵明安.膜下滴灌土壤盐分特性及影响因素的初步研究[J].灌溉排水,2001,1,(20):28~30.
    [75]吕谋超.地下和地表滴灌土壤水分运动的室内试验研究[J].灌溉排水,1996,1,(15):42~44.
    [76]吕谋超,冯俊杰,翟国亮.地下滴灌夏玉米的初步试验研究[J].农业工程学报,2003,19,(1):67~68.
    [77]孟宝民,马富裕,杨全胜.盐碱生荒地膜下滴灌甜菜生育规律初探[J].石河子大学学报,2001,5,(3):179~181.
    [78]马富裕,李蒙春.北疆棉花高产水分生理基础的初步研究[J].新疆农垦科技,1998,5:55~56.
    [79]马富裕,李俊华.棉花膜下滴灌增产机理及主要配套技术研究[J].新疆农业大学学报,1992,22,(1):63~68.
    [80]苗果园等.黄土高原旱地冬小麦根系生长规律的研究[J].作物学报,1989,2,(15):104~115.
    [81]聂新山,韩俊.膜孔渗吸速度初探[J].水土保持研究,1996,3,(3):18~22.
    [82]慕自新,张岁岐,郝文芳,等.玉米根系形态性状和空间分布对水分利用效率的调控[J].生态学报,2005,11,(25):2896~2898.
    [83]潘英华,康绍忠,杜太生,等.交替隔沟灌溉土壤水分时空分布与灌水均匀性研究[J].中国农业科学,2002,35,(5):531~535.
    [84]任三学,赵花荣,霍治国,等.有限供水对夏玉米根系生长及底墒利用影响的研究[J].水土保持学报,2004,2,(18):162~163.
    [85]宋凤斌,戴俊英.玉米茎叶和根系的生长对干旱胁迫的反应和适应性[J].干旱区研究,2005,2,(22):256~258.
    [86]孙彩霞,沈秀瑛.玉米根系生态型及生理活性与抗旱性关系的研究[J].华北农学报,2002,17,(3):20~24.
    [87]宋海星,王学立.玉米根系活力及吸收面积的空间分布变化[J].西北农业学报, 2005,14,(1):137~141.
    [88]史文娟,康绍忠.分根区垂向交替供水对玉米生长影响的研究[J].中国生态农业学报,2001,2,(9):23~25.
    [89]盛钰,赵成义,贾宏涛,等.水肥耦合对玉米田间土壤水分运移的影响[J].干旱区地理,2005,28,(6):811~813.
    [90]单立山.塔里木沙漠公路防护林植物幼苗根系分布特征对灌溉量的响应[C].硕士论文,2007,5~8.
    [91]宋凤斌,戴俊英.干旱胁迫下秸秆覆盖增强玉米耐旱性的研究[J].中国沙漠,2001,21,(增刊):58~60.
    [92]宋日,吴春胜,赵立华,等.施肥方式对玉米根系分布及产量的影响[J].玉米科学,2001,9,(4):75~76.
    [93]孙祥,于卓.白刺根系的研究[J].中国沙漠,1992,12,(4):50~54.
    [94]苏德荣,田媛.微灌理论与实践[M].兰州:甘肃教育出版社,1999,75~78.
    [95]苏德荣,田媛,高前兆.日光温室中自流式低压滴灌技术的研究[J].农业工程学报,2000,16,(3):73~76.
    [96]孙海燕,李明思,王振华,徐永麟.滴灌点源入渗湿润锋影响因子的研究[J].灌溉排水学报,2004,3,(23):14~17.
    [97]孙景生,康绍忠,蔡焕杰,等.交替隔沟灌溉提高农田水分利用效率的节水机理[J].水利学报,2002,3:64~65.
    [98]孙天佑.棉花膜下滴灌配套技术探索与应用[J].节水灌溉,2002,2:12~14.
    [99]邵光成,张展羽,刘娜,等.膜下滴灌棉花根系发育参数的BP模型预测[J].水资源保护,2006,4,(22):47~49.
    [100]单建平,陶大立.国外对树木细根的研究动态[J].生态学杂志,1992,11,(4):46~49.
    [101]石元春等.盐碱地的水盐运动[M].北京:北京农业大学出版社,1986,26~30.
    [102]山仑,陈国量.黄土高原旱地农业的理论与实践[M].北京:科学出版社,1993,45~48.
    [103]谭奇林.充分供水条件下的点源入渗试验研究[C],硕士学位论文.西安:西安理工大学,1996:37.
    [104]汪懋华.精确农业发展与工程技术创新[J].农业工程学报,1999,15,(1):1~8.
    [105]汪林,甘泓,汪珊,等.宁夏引黄灌区水盐循环演化与调控[M].中国水利水电出版社,2003,92~93.
    [106]汪志荣,王文焰,王全九,张建丰.点源入渗土壤水分运动规律实验研究[J].水利学报,2000,6:39~44.
    [107]汪希成,陈玲,杨帆.膜下滴灌番茄的技术经济效果分析[J].节水灌溉,2006,5:18~21.
    [108]汪希成,汤莉,严以绥.膜下滴灌棉花生产的经济效益分析与评价[J].干旱地区农业研究,2004,22,(2):113~117.
    [109]王立河,张翼,刘松涛,等.不同生长物质对玉米根系生长发育的影响[J].河南农业科学, 2001,9,(3):18~19.
    [110]王立洪,叶含春,陈江山,陈军.棉花膜下滴灌节水、增产的机理与效益分析[J].中国农村水利水电,2002,10:9~12.
    [111]王法宏.夏大豆根系生长规律的初步研究[J].莱阳农学院学报,1990,7,(1):24~27.
    [112]王进鑫,王迪海,刘广全.刺槐和侧柏人工林有效根系密度分布规律研究[J].西北植物学报,2004,24,(12):2208~2214.
    [113]王克林,李文祥.精确农业发展与农业生态工程创新[J].农业工程学报,2000,16,(1):5~8.
    [114]王生毅,邓西平,薛崧,等.干旱胁迫对西红柿根系水导的影响研究[J].西北农林科技大学学报(自然科学版),2003,31,(4):105~107.
    [115]王密侠,康绍忠,蔡焕杰,等.玉米调亏灌溉节水调控机理研究[J].西北农林科技大学学报(自然科学版),2004,12,(32):122~123.
    [116]王全九,王文焰,吕殿青,等.膜下滴灌盐碱地水盐运移特征研究.农业工程学报,2000, 16,(3):54~57.
    [117]王玉贞,李维岳,尹枝瑞,等.玉米根系与产量关系的研究进展[J].吉林农业科学,1999, 24,(4):6~8.
    [118]王云涛,施丽贞.涌流灌溉技术[J].节水灌溉,1998,1:17~20.
    [119]王遵亲等.中国盐碱地[M].北京:科学出版社,1993,10~13.
    [120]吴景社,李英能.我国21世纪农业用水危机与节水农业[J].农业工程学报,1998,3,(14):95~101.
    [121]吴磊.新疆旱区大开发与膜下滴灌[J].新疆农垦经济,2001,2:35~37.
    [122]吴恩忍,郭新萍,等.北疆大田膜下滴灌高产优质栽培技术[J].新疆农垦科技,2001,2:12~14.
    [123]许皓,李彦.三种荒漠植灌木的用水策略及相关的叶片生理表现[J].西北植物学报,2005,25,(7):1309~1316.
    [124]肖国举,任万海等.窖蓄雨水与农作物补灌技术研究[J].干旱地区农业研究,1999,3,(17):81~86.
    [125]肖芳淳.优选油气田开发方案的模糊物元分析[J].石油勘探与开发, 1997,24,(2): 84~87
    [126]薛天疆,范建征.棉田滴灌技术试验与探讨[J].石河子科技,2001,2:12~14.
    [127]邢维芹,王林权,骆永明,等.半干旱地区玉米的水肥空间耦合效应研究[J].农业工程学报,2002,18,(6):46~48.
    [128]严乐军.模糊综合评判法在节水灌溉项目投资决策中的应用[J].节水灌溉,2000,4:11~13.
    [129]杨青华,高尔明,马新明,等.不同土壤类型玉米根系生长发育动态研究[J].华北农学报, 2000,15,(3):88~93.
    [130]于天仁,王振权土壤分析化学[M].北京:科学出版社,1988,224~301.
    [131]余松烈,沈煜清,顾慰连等.作物栽培学(北方本)[M].北京:中国农业出版社,1995,169~259.
    [132]杨培岭,罗远培,石元普.土壤―植物系统的水分运输(综述)[J].北京农业大学学报,1993,19,(2):25~30.
    [133]于振文.作物栽培学各论(北方本)[M].北京:中国农业出版社,2003,92~139.
    [134]由懋正,袁小良,王新元.发展节水型农业、提高水资源利用率[C].北京,水利水电出版社,2000:288~292.
    [135]张斌,雍歧东,肖芳淳.模糊物元分析[M].北京:石油工业出版社,1997,23~25.
    [136]张宏.毛乌素沙地禾草杂类草草地根系生物量动态及能量效率研究[J].中国沙漠,1999,19,(2),151~155.
    [137]张爱良,苗果园.作物根系与水分的关系[J].作物研究,1997,3,(2):4~6.
    [138]张国盛,王林和,李玉灵,等.毛乌素沙地臭柏根系分布及根量[J].中国沙漠,1999,19,(4):378~383.
    [139]张建新.膜下滴灌改造盐(化)土荒地大田试验的效益分析[J].新疆农垦经济,2001,增刊:45.
    [140]张宇清,齐实,文妙霞.梯田埂坎植物根系营养空间及伸展模式初步研究[J].中国水土保持科学,2003,1,(3):31~36.
    [141]张宇清,朱清科,齐实,等.梯田埂坎立地植物根系分布特征及其对土壤水分的影响[J].生态学报,2005,25,(3):500~506.
    [142]张志新编著.滴灌[M].新疆:新疆科技卫生出版社,1992,41~43.
    [143]赵淑银,郭元贞,等.膜下滴灌对保护地黄瓜产量及病害的影响[J].内蒙古农牧学院学报,1994,3,(15):95~98.
    [144]郑旭荣,胡晓棠,等.棉花膜下滴灌田间耗水规律的试验研究[J].节水灌溉,2000,5:13~15.
    [145]周建伟,程鸿,等.棉花膜下滴灌试验初报[J].新疆农垦科技,2000,5:25-27.
    [146]朱亚环,杜萍,张凤荣.膜下滴灌技术的应用前景[J].农业机械化与电气化,2003,3:42.
    [147] Annandale J.G., Stockle C.O. Pluctuation of crop evaportranspiration coefficients with weather a sensitivity analysis [J]. Irrig. Sci., 1994, 15:1~7.
    [148] Barth H.K. Sustainable and effective irrigation through a new subsoil irrigation system [J]. Agric.Wat.Manage.1999,10:207~220.
    [149] Bazzaz F A. Plant in Changing Environments: Linking Physiological,Population,and Community Ecology.Cambridge:Cambridge University Press,1996.
    [150] Belmonte, A. C., Gonzalez, J.M., Mayorga, A.V. et al. GIS tools applied to the sustainable management of water resources.Application to the aquifer system. Agricultural water management, 1999, 40:207~220.
    [151] Ben-Asher J., Lomen D.O., Warrick A.W.Linear and nonlinear models of infiltration from a point source[J]. J.Soil Sci. Soc.Am. 1978,42:13~17.
    [152]Brandt A, et al.Infiltration fromatrickle source: I. Mathematica lmodels. Soil Sci. Soc.Amer.Proc., 1971, 35: 675~682.
    [153] Boast C.W, Robertson T.M .A microlysimeter method for determining evaporationfrom a bare soil: description and laboratory evaluation [J]. J.Soil Sci Soc Am.1982,46:689~696.
    [154] Bouwer H. Integrated water management: emerging issues and challenges [J]. Agric. Wat.Manage., 2000, 45:217~288.
    [155] Burt C.M. Is buried drip the future with permanent crops [J]. Irrig.Business Technol, 1995,3(1):20~22.
    [156] Burt C.M, Clemmens A.J, Strelkoff T.S, et al..Irrigation performance measures: efficiency and uniformity[J]. Journal of Irrigation and Drainage Engineering,1997,123,(6):423~442.
    [157] Caldwell D.S., et al.Frequency of irrigation for subsurface drip irrigation corn [J]. Transactions of the ASAE,1994, 37(6):1099~1103.
    [158]Caldwell M M, Pearcy R W.Exploitation of Environmental Herterogeneity by Plants:Ecophysiological Processes Above and Below Ground.San Diego: Academic Press, 1994.
    [159] Carruthers I., Rosegrant M.W., Seckler D. Irrigation and food security in the 21 century.Irrigation and Drainage Systems[J]. 1997,11:83~101.
    [160] Chang Y, Corapcioglu M.Y. Effect of roots on water flow in unsaturated soil [J]. Irrig. And Drain.Engrg., 1997, 123(3):202~209.
    [161] Charles B, Christopher L., Monica M. Simple microirrigation techniques for improving irrigation efficiency on vegetable gardens [J]. Agricultural water Management, 1996, 32:37~48.
    [162] Charles B.Improving water use efficiency as part of integrated catchment management[J]. Agricultural Water Management, 1999, 40:249~263.
    [163] Chu S T. Green-Ampt analysis of wetting patterns for surface emitters.J.of Irrig.and Drain Engrg., 1994, 120: 414~421.
    [164] Clemmens A.J, Burt C.M. Accuracy of irrigation efficiency estimates [J]. Journal of Irrigation and Drainage Engineering,1997,123(6):443~453.
    [165]Clemens. A. J, Solomon K H. Estimation of irrigation distribution uniformity [J]. Journal of Irrigation and Drainage Engineering, 1997, 123(6):454~461.
    [166] Copley J.Ecology goes underground [J]. Nature,2000,406:452~454.
    [167] Dalsgaard J. P.T., Official R.T.A .quantitative approach for assessing the productive performance and ecological contributions of smallholder farms[J]. Agricultural Systems, 1997,55,(4):503~533.
    [168] Doorembos J. Pruitt W.O. Crop water requirements[R].Irrigation and Drainage Paper,1997,24:1~4.
    [169] El-Gindy A.M.Vegetable crop response to surface and subsurface drip irrigation under calcareous soil.[C].Proc.Int`l Conf.On Evapotranspiration and Irrigation Scheduling.ASAE, 1996,102~108.
    [170] Emmott A.J. Precision farming a transferable technology [J]. Agric.Progress. 1997, 72:15~24.
    [171] Enciso-Medina J., Martin D, Eisenhauer D. Infiltration model for furrow irrigation [J]. J.Irrig.and Drain.Engrg., 1998, 124(2):73~80.
    [172] Fangmeier D.D, Voltman W.F., Eftekharzadeh S.Uniformity of LEPA irrigation systems with furrow drops[J]. Trans.ASAE, 1990,33(6):1907~1912.
    [173] Gale M R, Grigal D E.Vertical root distribution of northern tree species in relation to succesional status[J]. Can J For For,1987,17:829~834.
    [174] Gardner W R.Some steady state solution softheun saturated moisture flow equation with application to evaporation from water table.Soil Sci, 1958, 85:228~232.
    [175] Geroge E, Seith E, Schaefer C,et al.Response of picea pinus and pseudotsuga root to heterogeneous nutrient distribution in soil[J]. Tree physiol,1997,17:39~45.
    [176] Ghali G.S. Multi-dimensional analysis of soil moisture dynamics in trickle irrigated fields.II Model testing [J]. Water Resour.Res., 1989, 32(3):35~47.
    [177] Green D.A.G. Perspectives from agricultural economics on research methodology for sustainable agricultural development[J]. Journal of Sustainable Agriculture,1994, 14(4):101~113.
    [178] Grimble R.J.Economic instruments for improving water use efficiency:theory and practice[J]. Agricultural Water Management, 1999, 40:77~82.
    [179] Grime J P, Campbell B D, Mackey J I.Root plasticity,nitrogen capture and competitive ability[A].In:Atkinson A ,eds.Plant Root Growth:An Ecological Perspective[C].Oxford:Blackwell Scientific Press.1991:381~397.
    [180] Hall A.W.Priorities for irrigated agriculture[J]. Agricultural Water Management, 1999, 40:25~29.
    [181] Huston M A, Smith T M.Plant succession:Life history and competition[J]. Am.Nat.1987,130:168~198.
    [182] Ikerd J.E.The need for a system approach to sustainable agriculture[J]. Agriculture,Ecosystems and Environment, 1993, 46:147~160.
    [183] Jackson R B, Canadell J, Mooney H A.A global analysis of root distribution for terrestrial biomes [J]. Oecologia,1996,180:389~411.
    [184] Jackson R.D, Reginato R.J, Idso S.B.Wheat canopy temperature:a practical tool for evaluating water requirements[J]. Water Resour.Res.1997.13:651~656.
    [185] Janden U, Danielle V. Mechenieal resistance by an ectorganic soil layer on root development of seeding Pinus sylvestris [J]. Plant and Soil,1997,197:209~217.
    [186] Jastrow J D, MiUer R M.Neighbor influences on root morphology and mycorrhizal fungus colonization in tallgrass prairie plants[J]. Ecology,1993,72:561~569.
    [187] Jensen M.E.Irrigated agriculture on the crossroads.In:Pereira,L.S.,Feddes,R.A.,Gilley,J.R., and Lesaffre,B.Sustainability of irrigated agriculture.Kluwer Academic Publishers,Dordrecht,1996:19~33.
    [188] Jeznach J. Reliability of drip irrigation systems under different opration conditions in Poland [J]. Agric. Wat. Manage, 1998,35:261~267.
    [189] Joubert A.R, Leiman, A, et al.Analysis fynbos (fine bush) vegetation and the supply of water: a comparison of multicriteria decision analysis and costbenefit analysis [J]. Ecological economics,1997 ,22:123~140.
    [190] Kang S, Cai H, Zhang J. Estimation of maize evapotranspiration under water deficits in a semiarid region[J]. Agric. Wat.Manage., 2000, 43:1~14.
    [191] Kang S, Liang Z., Pan Y,et al. Alternate furrow irrigation for maize production in an arid area[J]Agric.Wat.Manage. 2000 ,45(5):267~274.
    [192] Kang Z.S, Hu W, Zhang J.Water use efficiency of controlled alternate irrigation in root-divided maize plants[J]. Agric.Water Manage,1998,38:69~76.
    [193] Kang Y, Nishiyama S. Analysis and design of micro-irrigation laterals[J]. J.Irrig.and Drain. Engrg, ASCE,1996,122(2):75~81.
    [194] Karrou M.Observations on effect of seeding pattern on wateruse efficiency of durum wheat in semi-arid of Morocco[J]. Field Crops Research, 1998, 59:175~179.
    [195] Khan A.A, Yitayew M, Warrick A.W.Field evaluation of water and solute distribution from a point source[J]. J.Irrig.and Drain.Engrg.,1996,122(4):221~227.
    [196] Kiniry J.R, Blanchet R, Gassman P W, et al.A general,Processoriented model for two competing plant species[J]. Trans.ASAE,1992.35:801~801.
    [197] Koeijer T J.Environmental-economic analysis of mixed crop-livestock farming[J]. Agricultural Systems, 1995, 48(5):515~530.
    [198] Li F M, Gan A.H, Wei H. Effects of clear plastic film mulch on yield of spring wheat[J]. Field Crops Research, 1999 ,63:79~86.
    [199] Li J. Modeling crop yield as affected by uniformity of sprinkler irrigation system[J]. Agric. Wat. Manage, 1998, 38.135~146.
    [200] Li P, Zhao Z H.Vertical root distribution character Robinia pseudoacacia on the loess plateau in China[J]. Journal of Forestry Research, 2004,15,(4):87~92.
    [201] Lloret F, Casanovas C, Penuelas J.Seeding survival of Mediterranean shrubland species in relation to root: shoot ratio seed size and water and nitrogen use[J]. Functional Ecology,1999,13:210~216.
    [202] Lubana P S, Narda N K.Soil water dynamics model for trickle irrigated tomatoes[J]. Agric.Wat Manage., 1998, 37:145~161. Lynch J, Niebert K L.Simlution of root system architecture[M]. Plant roots:the hidden half,Second edition 1996,247~250.
    [203] Marten G G. Productivity stability sustainability equitability and autonomy as properties for agroecosystem assessment[J]. Agricultural Systems,1998,26:291~316.
    [204] Matthias A.D, Salehi R., Warrick A.W. Bare soil evaporation near a surface point~source emitter [J]. Agric.Water Manage., 1986, 11:257~277.
    [205] Meshkat M,Warner R.C, Walton,L.R.Lysimeter design construction and instrumentation for assessing evaporation from a large undistributed soil monolith[J]. J.Appl.Engrg.in Agric, 1999,15,(4):303~308.
    [206] Meshkat,M.,Warner,R.C.,and Workman ,S.R.Modeling of evaporation reduction in trip irrigation system[J]. J.of irrig.and Drain.Engrg.,ASCE,1999,125,(6):315~323.
    [207] Milan k.Distribution of root hiomass and length in Picea abies ecosystem under different immission regions[J]. Plant and Soil,1994,167:173~179.
    [208] Milly P.C.D.A simulation analysis of thermal from soil[J]. Water Resour.Res.,1984,20(8):1657~1663.
    [209] Moreno F, Cayuela J A.,et al.Water balance and nitrate leaching in an irrigated maize crop in SW Spain[J]. Agric.Wat.Manage., 1996, 32:71~83.
    [210] Oizer-Lafontaine H, Lafolie F, Bruckler L, et al. A modelling competition for water in intercrops:theory and comparison with field expertiments[J]. Plant and Soil,1998,204:183~201.
    [211] Paul S., Panda S.N., Kunmar D.N.Optimal irrigation allocation:a multilever approach[J]. J.Irrig. Drain.Engrg., 2000, 126(3):149~156.
    [212] Pereira L.S, Higher performance through combined improvements in irrigation methods and scheduling:a discussion[J]. Agricaltural water Management,1999,40:153~169.
    [213] Pereira L.S, Perrier A., Allen R.G, et al. Evapotranspiration:concepts and future trends[J]. J.Irrig. and Drain.Engrg.1999, 125(2):45~51.
    [214] Prajamwong S., Merkley G.P., Allen R.G. Decision support model for irrigation water management[J]. J Irrig.And Drain., ASCE,1997,123,(2):106~113.
    [215] Pu Mou, Mitohell R J, Jones R H.root distribution of two tree species under a heterogeneous nutrient environment[J]. J.Appli.Eco,1997, 34:545~558.
    [216] Quinones P.H, Unland H.et al.Transfer of irrigation scheduling technology in Mexico[J]. Agricultural Water Management,1999,40:333~339.
    [217] RaatsPAC.Steady infiltration from sources cavities and basins.Soil Sci.Soc.Amer.Proc.,1971, 35:689~694.
    [218] Raghuwanshi N.S, wallender W W. Field-measured evapotranspiration as a stochastic process[J]. Agric.Wat.Manage.,1997, 32:111~129.
    [219] Santos F.L.Evaluation of alternative irrigation technologies based upon applied water and simulated yields[J]. Journal of Agricultural Engineering Research,1998,69: 73~83.
    [220] Schneider A.D, Howell T.A. LEPA and supply irrigation for grain crops[J]. J.Irrig, Drain.Engrg.,1999,125,(4):167~172.
    [221] Stewart B.A.,et al.A management system for the conjunctive use of rainfall and limited irrigation of graded furrows [J]. Soil Sci.Am, J,1981,45(2):413~419.
    [222] Su D.R, Tian Y, Gao, Q.Z..Microirrigation submain unit with pressure reducting pipes [J]. Journal of Irrigation and Drainage Engineering (in press).2001.123~125.
    [223] Tyagei N K, Sharma D.K, Luthra S.K. Evapotranspiration and crop coefficients of wheat and sorhum [J]. J.Irrig.and Drain.Engrg., 2000,126(4):215~222.
    [224] Valiantzas J.D. Analytical approach for direct drip lateral hydraulic calculation[J]. J.Irrig.and Drain.Engrg., 1988,124(6):300~305.
    [225] Warrick A W, Shani U. Soil-limiting flow from subsurface emittersⅡ: effect on uniformity [J]. J.Irrig.and Drain.Engrg., 1996, 122,(5):296~300.
    [226] Warrick A.W, Yitayew M.Trickle lateral hydraulics.I:Analytical solution[J]. J.Irrig.and Drain.Engrg., 1988, 114(2):281~288.
    [227] Wang Z., Zerihun D, Feyen J. General irrigation efficiency for water management [J]. Agricultural Water Management,1996,30:123~132.
    [228] Willey R.W.Intercropping:its importance and research needs,part I.Competition and yield advantages.[J]. Field Crop Abstracts, 1979,32(1):1~10.
    [229] Wu I.P. Energy gradient line approach for direct hydraulic calculation in drip irrigation design[J]. Irrig.Sci, 1992, 13:21~29.
    [230] Wu I.P. An assessment of hydraulic design of micro-irrigation system [J]. Agric Wat.Manage., 1997,32:275~284.
    [231] Yiridoe E.K, Weersink A. review and evaluation of agroecosystem health analysis: the role of economics [J]. Agricultural System,1997,55(4):601~626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700