用户名: 密码: 验证码:
杂交水稻对土壤Cd、Zn吸收与Cd耐性的基因型差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着农田Cd污染的不断加剧,Cd在土壤-作物-食物中的活跃迁移对人类健康已构成严重威胁,是已知威胁最严重的农田污染物之一。我国南方主要水稻产区的偏酸、低有机碳和Cd污染日益严峻土壤环境因素和人为因素的叠加使控制水稻,尤其是在确保粮食安全前提下广泛推广种植的具有强吸收养分能力的高产杂交稻对土壤Cd的吸收极为复杂,使我们必须正视稻米Cd污染及其严峻的食物安全风险挑战。植物的Cd耐性以及Cd在植株不同部位器官中的积累与分布存在着显著的种间和品种间差异。因此,筛选籽粒低Cd积累品种是进行稻米安全生产的重要途径。同时,Cd对植物造成的毒害作用以及植物对Cd的吸收积累与耐性强度的基因型差异机理尚未明确,限制了作物包括水稻的安全生产。本研究通过对我国南方广泛种植的110个杂交水稻品种进行大田低Cd品种筛选的大田试验研究了杂交水稻对土壤中Cd、Zn吸收积累的基因型差异,筛选出部分低Cd品种,并在此基础上利用筛选出的籽粒高Cd、低Cd品种在采自江西鹰潭的典型红壤上进行全生育期的水稻盆栽试验,更进一步地明确了杂交水稻Cd、Zn的吸收与籽粒积累规律,并运用透射电镜观察、差速离心法等深入探讨了Cd耐性机理的品种差异,如外加Cd下品种细胞超微结构、抗氧化酶系统清除、亚细胞结构、PCs螯合等方面的差异机制,主要研究结果如下:
     一、杂交水稻对土壤中Cd、Zn吸收积累的基因型差异
     通过110个杂交水稻品种籽粒对水稻土中Cd、Zn的吸收积累情况的研究表明,供试杂交水稻籽粒Cd、Zn含量的变化范围分别介于0.004-0.057、10.25-30.06 mg·kg(-1)之间,指示不同水稻品种对同一土壤中Cd、Zn吸收及其在籽粒中积累存在显著差异。本试验还观察到相对于普通杂交稻而言,超级稻品种具有籽粒高Cd低Zn的现象。并且用籽粒Cd和籽粒Cd/Zn关系做图,供试杂交稻的斜率高于常规稻(已报道),表明水稻吸Cd同时对Zn的排斥作用强度依基因型而异,杂交稻吸Cd排Zn的作用更明显。采用国家营养协会推荐的每日膳食中营养素参考摄入量(RNI)衡量,对就地消费者而言存在Cd暴露和“Zn饥饿”的潜在食物安全风险,尤其对南方酸性土壤地区食用超级稻品种更甚。因此,在土壤重金属Cd污染地区,必须密切注意高Cd/Zn品种的大规模栽培,而筛选高Zn低Cd的水稻品种进行品质育种是可能的。
     以大田筛选的籽粒镉积累水平不同的两品种(J196,低积累型,品种C;中浙优1号,高积累型,品种A)为材料,采用添加Cd(2.5 mg·kg~(-1))和不添加Cd处理在红壤性水稻土进行盆栽试验研究了杂交水稻在成熟期对土壤中Cd、Zn的吸收分配及籽粒Cd、Zn积累特点。结果表明,杂交水稻对Cd的吸收及籽粒Cd、Zn积累存在品种基因型差异。外源Cd的添加使水稻籽粒Cd积累成倍提高。本试验结果还显示,在供试土壤条件下尤其是污染条件下,高Cd品种对Cd的吸收与籽粒积累十分强烈,就地消费人群的籽粒Cd暴露风险水平达到数倍于人体安全临界摄入剂量水平,Zn存在相对缺乏的食物安全风险。高Cd品种具有较强的籽粒Cd分配和较弱的籽粒Zn转运能力,而加Cd处理下,低Cd品种对Cd、Zn的根部、茎叶滞留能力更强,这也正是高籽粒含量品种籽粒Cd积累强而Cd/Zn高的植株因素。
     二、外加Cd下水稻Cd耐性机制
     以大田筛选的籽粒镉积累水平不同的两品种(J196,低积累型,品种C;中浙优1号,高积累型,品种A)为材料,在红壤性水稻土上采用盆栽实验,镉处理设0,2.5,5,10,25 mg·kg~(-1)5个水平,在第一吸Cd高峰苗期研究了外加cd处理对水稻抗氧化酶系统、NPT含量的影响变化,结果表明:高Cd水稻品种中浙优1号的耐Cd性强于低Cd水稻品种J196,表现为前者体内的MDA含量低于后者,而SOD、CAT、POD酶活性高于J196;在Cd胁迫下,耐性强的品种中浙优1号的SOD活力、CAT活力随Cd处理浓度增加先增后降,在10mg·kg~(-1)时达到峰值,POD活力则为先降后增,在Cd浓度为5 mg·kg~(-1)时达到峰值;而低Cd品种随着外加Cd增长,3种酶活性在25 mg·kg~(-1)达到峰值,除SOD比对照降低外,CAT和POD分较对照升高38.07%和62.10%,表明本试验中,外加Cd胁迫下,两品种中三种抗氧化酶保护作用不同,高Cd品种CAT的保护性最强,低Cd品种POD的保护作用最强。外加Cd胁迫则显著诱导根内合成NPT-SH,外加Cd及品种差异对水稻体内Cd的吸收具有不同程度的影响,根中NPT-SH的诱导量与水稻根系内Cd的含量变化一致。外加Cd处理下,J196根系内NPT-SH含量均高于中浙优1号,从细胞水平上表明和中浙优1号相比,J196可能具有从根系向茎叶的高转运能力。
     镉处理设0,5,25mg·kg~(-1)3个水平,以差速离心法在第二吸Cd高峰抽穗期研究了外加Cd处理对水稻亚细胞结构的影响变化,结果表明,外加Cd下,两品种根系细胞的Cd大部分存在于细胞壁中,占52.6-83.2%,少部分存在于细胞可溶部分(细胞质),其镉含量分布的百分率为3.0-10.1%,且根系细胞壁中J196的分布率高于中浙优1号。表明J196的根系细胞壁的固定Cd能力较强;和对照相比,外加Cd促使中浙优1号根系细胞内可溶物向地上部移动,且高Cd处理下,Cd在中浙优1号细胞内溶物的分配率增高程度大于J196,增加了前者叶片中Cd由韧皮部运往籽粒的可能性,从而在亚细胞水平上推测了品种中浙优1号为高转运品种的可能机制。
     镉处理设0,25mg·kg~(-1) 2个水平,用透射电镜观察的方法在第二吸Cd高峰抽穗期研究了外加Cd处理对水稻超微结构的影响变化,结果表明Cd处理下两品种的部分根细胞有Cd沉积现象,但不同品种的沉积部位表现不同,高Cd品种主要在液泡边缘而低Cd品种则在细胞壁和细胞间隙。表明不同水稻品种根系的耐Cd机制不同,前者主要表现液泡区室化,而低Cd品种则表现为细胞壁上有特定沉积。和对照相比,外加Cd对茎叶细胞的超微结构造成伤害,主要表现在使叶绿体上淀粉粒消失,叶绿体空泡化,部分线粒体出现肿胀现象,低Cd品种的受害程度强于高Cd品种A,同时也表明水稻叶肉细胞器中叶绿体和线粒体是对Cd胁迫较为敏感的细胞器。
     杂交水稻在籽粒Cd、Zn积累,抗氧化酶清除、细胞超微结构等耐性机制存在显著的基因型差异,因此,在高产水稻育种中必须考虑高耐Cd性、低籽粒Cd/Zn比水稻品种的选育,在推广高产杂交水稻根据其Cd耐性及籽粒Cd、Zn积累特性考虑土壤-品种的合理布局并在食物结构调整上配合膳食结构优化以确保就地人群Cd暴露风险的消除及对Zn的营养摄入。
In China,Cd concentration in croplands and subsequent accumulation in crops has been increased as a result of soil polltuion due to human activities such as mining,emission from industry and application of sewage sludges,which is posing potential public health risk for human through dietary intake.Among the major staple crops,rice(Oryza sativa L.) is the particular food crop with high Cd uptake and accumulation in grains.Rice is produced predominantly in South China where the soils are either high in Cd mobility or deficient in Zn or both.However,for meeting the demand by the increasing population with less available arable lands,high-yielding hybrid rice or super rice cultivars with high Cd affinity are under extension,which may raise serious potential health concerns for Chinese subsistence diet farmers.However,there had been much evidences of differences in Cd accumulation in plants and plant tolerance to between rice species and genotypes.
     For food security,it is imperative to breed cultivars with low Cd accumulation in grains.Meanwhile,Cd tolerance and low Cd accumulation in grains may be used as a strategy for low Cd rice production.However,the mechanisms involved in Cd tolerance and grain accumulation has been not clearly demonstrated.In the dissertation,an experiment of 110 cultivars including super rice and common hybrid rice cultivars was grown on a single paddy soil(Fluventic Stagnic Anthrosol) with a neutral reaction and low in total Cd in 2006 in order to depict the difference in grain Cd and Zn between rice cultivars.Furthermore,a pot experiment with 2 selected cultivars Zhongzheyou 1(high grain Cd accumulation) and J196(high grain Cd accumulation) of hybrid rice was conducted for the whole growing period using acidic red earth derived paddy soil,a Typical Hapludults which was collected from Yingtan City,Jiangxi Province.The up-take, accumulation and distribution of Cd and Zn in plant organs of hybrid rice and the Cd partitioning at sub-cell level were analysed for genotype tolerance of Cd using transmission electron microscopy observation and differential characterization of the antioxidative enzyme elimination,cell ultrastructure,subcellular structure and PCs chelating in response to Cd stress.The main results were as follows:
     1.Genotypic difference on Cd,Zn absorption and accumulation of hybrid rice
     Grain Cd and Zn concentrations of the totally 110 cultivars in the field experiment were determined with GFAAS and AAS respectively.Wider variation of grain Cd was found in a range of 0.004-0.057 mg·kg~(-1) than of Zn in a range of 10.25-30.06 mg·kg~(-1) among the cultivars.Higher Cd but lower Zn concentration in grains of super rice cultivars was observed than of the common hybrid ones.Although a significantly negative linear correlation of grain Cd with grain Zn was found for both super rice and common hybrid cultivars,with much higher slope for the hybrid cultivars than the reported non-hybrid cultivars.Using the RNI value recommended by CFSG,calculated potential risk of food Cd exposure with 'Zn hungry' through subsistence diet intake was prominent with all the studied 110 hybrid rice cultivars,possessing high potential health problems for rice production in South China using the super rice cultivars.Thus,breeding of genotypes of rice cultivars with low grain Cd and low Cd/Zn ratio is needed for rice production in soils of South China where high Cd bioavailability is prevalent with acidic red soils.
     In the pot experiment of Cd and Zn uptake and portioning in organs in maturity with Red earth derived paddy soil was analysed.Cd was spiked at 0(as the control) and 2.5 mg·kg~(-1) of soil,respectively.Two cultivars of hybrid rice,Zhongzheyou 1(high grain Cd cultivar) and J196(low grain Cd cultivar),were harvested and the biomass,Cd and Zn contents,of different organs were determined.Significant genotype differences in Cd,Zn uptake and grain partitioning was observed.A phenomenon of intense Cd accumulation in grains by super rice and,thus,imposing a very high Cd exposure and Zn depletion risk(as several times as the acceptable daily intake,ADI) to subsistence-diet farmers was demonstrated.The low Cd cultivar J196 tended to hamper the up-taken Cd in root and stem while the super rice Zhongzheyou 1 promoted higher partitioning to grain.Furthermore, stronger Cd but weaker Zn transfering to grains by the high grain Cd accumulation cultivars than the low one could be considered as a major plant factor controlling high Cd uptake and accumulation,and the high Cd/Zn ratio in rice grain.
     2.Genotypie difference in Cd tolerance
     The genotypic difference in the changes of three antioxidative enzymes(SOD,POD and CAT) activities and the MDA contents under cd spiking were characterized.The results showed Cd stress altered malondialdehyde(MDA) content and activities of superoxide dismutase(SOD),calase(CAT) and peroxidase(POD) in rice plant.The response to Cd stress differed in terms of MDA contents and antioxidant enzyme activity.Generally,the activities of SOD,CAT firstly ascend then droped with increased Cd level,in contrast to that of POD.While MDA contents was found higher in cultivar J196,but SOD,CAT,POD tend to increase in Zhongzheyou 1.The higher MDA and smaller antioxidant enzyme activity were found in J196,indicating that J196 was more sensitive to Cd stress than Zhongzheyou 1.
     The effect of Cd-spiking treatment on Cd content and nonprotein thiols(NPT) production in rice was also studied using the pot experiment The study demonstrated a phenomenon that Cd stress had significant inhibitory effects on NPT overproduction.The Cd uptake of rice was affected by the Cd-spiking treatment and the difference between genotypes.Furthermore,the Cd content was enhanced under Cd spiking,coinciding with the enhancement of NPT level in root.Root NPT contents of J196 was higher than those of Zhongzheyou-1,suggested that J196 has the higher Cd transfer potential from root to stem compared to Zhongzheyou-1.
     In an effort to understand the process of Cd bioaccumulation,subcelluar partitioning of Cd were characterized with subcelluar distribution of Cd in roots and leaves of rice.The results showed that there was a genotypic difference in cell Cd concentrations between two cultivars.Cd concentrations in different plant parts were as follows:root>leaf;Cd was mainly distributed in the cell wall,about 52.6-83.2%,and less distributed in the fractions of cell soluble component with distribution rate of 3.0-10.1%.The cell wall distribution of Cd by J196 was higher than Zhongzheyou-1,showing a stronger cell wall compartmentation of Cd in J196 than in Zhongzheyou-1;Under Cd-spiking,Cd transfer from root cell soluble component transfering to shoot via xylem by Zhongzheyou-1 was promoted.The increased Cd distribution in cell soluble component by Zhongzheyou-1 compared to by J196 may be account for the lower Cd in stem and more Cd traslocation from shoot to grain via phloem.
     To examine the rice(Oryza sativa L.) genotypic difference in the alternation of cell ultrastructure,comparative electronic microscopic observation was undertaken of cells from the two hybrid rice cultivars(Zhongzheyou 1,high grain Cd accumulation and J196,low grain Cd accumulation) under Cd spiked at 0 and 25 mg·kg~(-1).Under Cd spiking, Cd was presnet in binding to cell wall and accumulating in vacuole in rice root cell of both cultivars.The leaf cell ultrastructure of two rice cultivars presented the similar symptom: Chloroplasts and mitochondria were swelling up;and thylakoids vacuolized apparently. However,Cd toxicity symptom existed in the rice cultivar-J196,making mitochondrion mesenchyme dissolve and mitochondria was on the verge of disorganization.Tolerance of cell ultrastructure of rice cultivar-Zhongzheyou 1 was stronger than that of J196.And it demonstrated a phenomenon of mitochondria and chloroplast of rice mesophyll cells,which were the most sensitive organelles.
     In summary,the significant genotypic difference in the Cd and Zn accumulation and distribution of hybrid rice and Cd tolerance mechanisms existed between the two cultivars. Therefore,it is possible to develop the cultivars with high tolerance and low grain Cd/Zn accumulation in rice breeding forh high yield.It is also suggested the practical measures should be taken such as rational soil-cultivar combination and optimization dietary structure for controling the human Cd food exposure and guarantee Zn nutrition intake by diet.
引文
Ahner B A,Price N M,Morel F M M,et al.Phytochelatin production by marine phytoplankton at low free metal ion concentration:Laboratory studies and field data from Massachusetts Bay[J].Proceedings of the national Academy of Sciences of the United States of America,1994,91:8433-8436
    Amacher M C.Analysis methods of Nickel,cadmium,and lead.In:DL Sparks(Editor-in-chief).Methods of Soil Analysis,Part 3-Chemical Methods[M].SSSA Book Series 5.Soil Science Society of America,Inc.,American Society of Agronomy,Inc.,Madison,Wisconsin,USA,2001,pp.739-768
    Arao T,Ae N.Genotypic variation in cadmium levels of rice grain[J].Soil Science & Plant Nutrtion,2003,49(4):473-479
    Archambault D,Marentes E,Bucldey W,et al.A rapid,seedling-based bioassay for identifying low cadmium-accumulating individuals of durum wheat(Triticum turgidum L.,)[J].Euphytica,2001,117:175-182
    Arthur E,Crews H,Mvorgan C.Optimizing plant genetic strategies for minimizing environmental contamination in the food chain[J].International journal of Phytoremediation,2000,2(1):1-21
    Artzen C J.Bioenergetics of photosynthesis[M].Govvindjee:Academic Press,1975,52
    Baker A J M.Metal tolerance[J].New Phytologist,1987,106:93-111
    Boominathan R,Doran P M.Cadmium tolerance and antioxidative defences in hairy roots of the cadmium hyperaccumulator Thlaspi caerulescens[J].Biotechnology and Bioengineering,2003,83(2):158-167
    Bowler C,van Montagu M,Inze D.Superoxide dismutase and stress tolerance[J].Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:83-116
    Bringeru K,Lichtenberger O,Leopold I.Heavy metal tolerance of Silne vulgaris[J].Journal of Plant Physiology,1999,154:536-546
    Cataldo D A,Garland T R,Wildung R E.Cadmium distribution and chemical fate in soybean[J].Journal of Plant Physiology,1981,68,835-839
    Chancy R L,Ryan J A,Li Y M,et al.Transfer of cadmium through plants to the food chain.In:Syers J K and Golclfeld M,Eds.Environmental Cadmium in the Food Chain:Source,Pathways and Risks.Proceeding of the SCPOPE Workshop.Scientific Committee on Problems of the Environment International Council of Scientific Unions(SCOPE-ICSU).Sep.13-16,2000.Brussels,Belgium.Paris:SCOPE,2001,76-81
    Chaney R L,Angle J S,Mcintosh M S,et al.Using Hyperaccumulator Plants to Phytoextract Soil Ni and Cd[J].Naturforschung Journal of Biosciences,2005,60c:190-198
    Charley R L,Reeves P G,Ryan J A,et al.An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks[J].Biometals:an international journal on the role of metal ions in biology,biochemistry,and medicine,2004,17:549-553
    Chaney R L,Green C E,Filcheva,E,et al.Effect of Fe,Mn,and Zn enriched biosolids compost on uptake of Cd by lettuce from Cd-contaminated soils[A].In C.E.Clapp,W.E.Larson and R.H.Dowdy(eds.) Sewage Sludge:Land Utilization and the Environment[C].American Society of Agronomy,Madison,Wisconsin,USA,1994,pp.205-207
    Chang A C,Pan G X,Page A L,et al.Human Health-related Chemical Guidelines for Reclaimed Water and Sewage Sludge Applications in Agriculture.2002,http://www.envisci.ucr.edu/downloads/chang/WHO_report.pdf
    Clemens S,Kim E J,Neumann D,et al.Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast[J].EMBO Journal,1999,18(12):3325-3333
    Cobbett C T.Phytochelatins and their roles in heavy metal detoxification[J].Plant Physiology,2000,123:825-832
    Cobbett C,Goldsbrough P.Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis[J].Annual review of Plant Biology,2002,53:159-182
    Codex Alimentarius Commission Report of the 37~(th) Session of the Codex Committee on Food Additives and Contaminants,2005.The Netherlands.http://europa.eu.int/comm./food/fs/ifsi/eupositions/ccfac/ccfac.-2005-22-10-en.pdf
    Das P,Samantaray S,Rout G R.Studies on cadmium toxicity in plants:a review[J].Environmental Pollution,1997,98:29-36
    De Kencht J A,Koeviets P L M,Verkleij J A C,et al.Eviendece against a role for phytochelatins in naturally selected increased cadmium tolerance in Silene vulgaris(Moenech) Garcke[J].New Phytologist,1992,122:681-688
    De Knecht J A,Van Baren N,Ten Bookum W M,et al.Synthesis and degradation of phytochelatins in cadmium sensitive and cadmium to lerant Silene vulgaris[J].Plant Scicence,1995,106:9-18
    Di Toppi LS,Gabbrielli R.Response to cadmium in higher plants[J].Environmental and Experimental Botany,1999,41:105-130
    Dixit V,Pandey V,Shayam R.Differential antioxidative response to cadmium in roots and leaves of pea(Pisum sativum L.cv.Azad)[J].Journal of Experimental Botany,2001,52(358):1101-1109
    Dominguez-Solis J R, Gutierrez-Alcala G, Vega J M, et al. The cytosolic O-acetylserine (thiol) lyase gene is regulated by heavy-metals and can faction in cadmium tolerance[J]. Journal of Biochemistry., 2001,276: 9297-9302
    Dudka S, Miller W P. Accumulation of potentially toxic elements in plants and their transfer to human food chain[J]. Journal of Environmental Science and Health. Part. B, 1999,34(4): 681-708
    Dunbar K R, Mclaughlin M J, Reld R J. The uptake and portioning of cadmium in two cultivars of potato (Solatium tuberosum L.)[J]. Journal of Experimental Botany, 2003, 54(381):349-354
    Ewers U, Freier I, Turfeld M. Study of heavy metal load of soils and garden produce from private gardens and Stolberg gardeners in Stolberg[J]. Gesundheiswesen, 1993,55: 318-325
    Florijn P J, Van Beusichem M L. Uptake and distribution of cadmium in maize inbred lines[J], Plant Soil, 1993, 150: 25-32
    Fomazir R F, Ferreira R R, Vitoria A P, et al. Effect of cadmium on antioxidant enzyme activities in sugar cane[J]. Biological Plant, 1999,45(1): 91-97
    Fridovich I. The superoxide radical is an agent of oxygen toxicity: Superoxide dismutases provide an important defense[J]. Science, 1978, 201: 875-880
    Gallego S M, Benavides M P, Tomaro M L. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress[J]. Plant Science, 1996, 121: 151-159
    Gong J M, Lee D A, Schroeder J I. Long-distance root-to shoot transport of phytochelatins and cadmium in Arabidopsis[J]. Proceedings of the national Academy of Sciences of the United States of America, 2003, 100: 10118-10123
    Grant C D, Bailey L D, McLaμghlin M J, et al. Management factors which influence cadmium concentrations in crops[A]. In McLaμghlin M J, Singh B R. (Eds.) Cadmium in soils and plants[C]. Dordrecht & Boston, USA: Kluwer Academic Publishers, 1999
    
    Grant C A, Buckley W T, Bailey L D. Cadimum accumulation in crops[J]. Plant Science, 1998, 78: 1-17
    Grill E, Winnacker E L. Phytochelatins, a class of heavy metal binding peptides from plants, are functionally analogous to metallothioneins[J]. Proceedings of the national Academy of Sciences of the United States of America, 1987, 84: 439-431
    Guo Y, George E, Marschner H. Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants[J]. Plant and Soil, 1996, 184: 195-205
    Guo Y, Marschner H. Uptake, distribution and binding of cadmium and nickel in different plant species[J]. Journal of Plant Nutrition, 1995,18: 2691-2706
    
    Guttormsen G, Singh B R. Cadmium concentration in vegetable crop s grown in a sandy soil as affected by Cd levels in fertilizer and soil pH[J]. Fertilizer Resview,1995,4(1): 27-32
    Haag-Kerwer A, Schafer HJ, Heiss S, et al. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis[J]. Journal of Experimental Botany, 1999, 50(341): 1827-1835
    Hall J L. Cellular mechanisms for heavy metal detoxification and tolerance[J]. Journal of Experimental Botany, 2002, 53(366): 1-11
    Hans J W, Hans J J. Subcellular distribution and chemical form of cadmium in bean plant[J]. Plant Physiology, 1980, 65: 480-482
    Heiss S, Wachter A, Bogs J, et al. Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure[J]. Journal of Experimental Botany, 2003, 54(389): 1833-1839
    Howarth J R, Domingueez-solis J, Rgutierrez-alcala G, et al. The serine acetyltransferase gene family in arabidopsis thaliana and the regulation of its expression by cadmium[J]. Plant Molecular Biology, 2003,51:589-598
    Howden R, Andersen C R, Goldsbrough P B, et al. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana[J]. Plant Physiology, 1995, 107: 1067-1073
    Howden R, Goldsbrough P B, Andersen C R, Cobbet C S. Cadmium sensitive mutants of Arabidopsis thaliana are phytochelatin deficient[J]. Plant Physiology, 1995, 107: 1059-1066
    Hsu Y T Y, Kao C H. Changes in protein and amino acid contents in two cultivars of rice seedings with different apparent tolerance to cadmium[J]. Plant Growth Regulation, 2003,40: 147-155
    Iannelli M A, Pietrini F, Fiore L, et al. Antioxidant response to cadmium in Phragmites australis plants[J]. Plant Physiology and Biochemistry, 2002, 110: 977-982
    Ikeda M, Zhang Z W, Moon C S, et al. Background exposure of genenral Population to cadmium and lead in Tainan City, Taiwan[J]. Archives of Environmental Contamination and Toxicology, 1996, 30: 121-126
    Janssen R P T, L Posthuma R, Baerselman H, et al. Equilibrium, partitioning of heavy metals in Dutch field soils. I. Relationship between metal partition coefficients and soil characteristics [J]. Environmental toxicology, 1997,16(12): 2479-2488
    Jones D L, Darrah P R, Kochian L V. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake[J]. Plant and Soil, 1996, 180: 57-66
    Keltjens W G, Beusichem M L. Phytochelatins as biomarkers for heavy metal toxicity in maize: single metal effects of copper and cadmium[J]. Plant Nutrition, 1998a, 21(4): 635-648
    Keltjens W G, Beusichem M L. Phytochelatins as biomarker for heavy metal stress in maize ( Zea mays L. ) and wheat( Triticum aestivum L. ): Combined effects of copper and cadmium[J]. Plant Soil, 1998b, 203: 119-126
    Khan D H, Duckett J G, Frankland B, et al. An X-ray microanalytical study of the distribution of cadmium in roots of Zea mays L[J]. Plant Physiology, 1984,115,19-28
    Kneer R, Zenk M H. Phytochelatins protect plant enzymes from heavy metal poisoning[J]. Phytochemistry, 1992,31(8) :2663-2667
    Kukier U, Chaney R L. Growing rice grain with controlled cadmium concentrations[J]. Plant Nutrition, 2002, 25:1793-1820
    Lee S, Leustek T. The effect of cadmium on sulfate assimilatory sulfate reduction by cadmium in Zeamays. L [J]. Plant Science, 1999,141:201-207
    Lee S, Moon J S, Ko T S, et al. Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress[J]. Plant Physiology, 2003, 131(2): 656-663
    Leita L, De Nobili M, Ceso S, et al., Analysis of intercellular cadmium forms in roots and leaves of bush bean[J]. J. Plant Nutrition, 1996, 19: 527-533
    Li Y M, Chaney R L, Schneiter A A, et al. Genotypic variation in kernel cadmium concentration in sunflower germplasm under varying soil conditions[J]. Crop Scicience, 1995, 35:147-141
    Li Y M, Chaney R L, Schneiter A A, et al. Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax[J]. European psychiatry, 1997, 94: 24-30
    Li Z W, Li L Q, Pan G X, et al. Bioavailability of Cd in a soil-rice system in China: Soil type versus genotype effects[J]. Plant and Soil, 2005, 271: 165-173
    Liang Y C, Hu F, Yang M C, et al. Antioxidative defenses and water defict-induced oxidative damage in rice(Oryza sativa L.) growing on non-flooded paddy soils with groud mulching[J]. Plant and Soil, 2003a, 257:407-416
    Liang Y C, Chen Q, Liu Q, et al. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley(Hordeum vulgare L.)[J]. Journal of Plant Physiology, 2003b, 160:1157-1164
    Lindsey P A, Lineberger R D. Toxicity, cadmium accumulation and ultrastructural alterations induced by exposure of Phaseolus seedings to cadmium[J]. European Journal of Horticultural Scinece, 1981, 16,434
    Liu J G, Li K Q, Xu J K, et al. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes[J]. Field Crops Research, 2003, 83: 271-283
    Liu J G, Liang J S, Li K. Q, et al. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress[J]. Chemosphere, 2003, 52: 1467-1473
    Liu J G, Zhu Q S, Zhang Z J, et al. Variations in cadmium accumulations among rice cultivars and types and the selection of cultivars for reducing cadmium in the diets[J]. Journal of Scicence Food Agriculture, 2005, 85:147-153
    Loffler S, Hochberger A , Grill E, et al. Termination of the phytochelatin synthase reaction through rough sequestration of heavy metals by the reaction product[J]. FEB S Lett., 1989, 258: 42-46
    Lozano-Rodriguez E, Hernandez L E, Bonay P, et al. Distribution of cadmium in shoot and root tissues of maize and pea plants:physiological disturbances[J]. Journal of Exprimental Botany, 1997, 306, 123-128
    Ma J F, Hiradate S, Matsumoto H. High aluminum resistance in buckwheat II. Oxalic acid detoxifies aluminum internally[J]. Plant Physiology, 1998, 117: 753-759
    Macfie S M, Welbourn P M. The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii(Chloraphyceae)[J]. Archives of Environmental Contamination and Toxicology, 2000, 39: 413-419
    Margoshes M, Vallee B L. A cadmiumprotein from equine kidney corter[J]. Journal of American Chemistry Society, 1957, 79:4813-4814
    Marr K M, Batten G D, Blakeney A B. Relations between minerals in Australian brown rice[J]. Journal of Science Food Agriculture, 1995, 68: 285-291
    Marschner H. Functions of mineral: macronutrients in mineral nutrition of higher plants[M]. 12nd ed. London: Academic press INX, 1995, 265-277
    McLaughlin M J, Parker D R, Clarke J M. Metals and micronutrients food safety issues[J]. Field Crops Research, 1999, 60: 143-163
    Meharg A A. The role of the plasmalemma in metal tolerance in angiosperms[J]. Physiologia Plantarum, 1993, 88: 191-198
    Moon C S, Zhang Z W, Shimbo S, et al. Dietary intake of cadmium and lead among the general population in Korea[J]. Environmental Reasearch, 1995, 71(1): 46-54
    Moon C S, Zhang Z W, Watanabe T. Non-occupational exposure of Malay women in Kuala Lumpur, Malaysia, to cadmium and lead[J]. Biomarkers, 1999, 1: 81-85
    Moreno-Caselles J, Moral A Perez-Esplnosa R, Perez-Murcia M D. Cadmium accumulation and distribution in cucumber plant[J]. Plant Nutrition, 2000,23(2): 243 - 250
    
    Morishita T, Fumoto N, Yoshizawa K. Varietal differences in cadmium levels of rice grains of japonica, indica, javanica and hybrid varieties produced in the same plot of a field[J]. Soil Scicence & Plant Nutrition, 1997, 33: 629-637
    Nedelkoska T V, Doran P M. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens[J]. Biotechnological and Bioengineering, 2000, 67(5): 607-615
    Neller F E C, Noordover E C M, Ten Bookum W M, et al. Quantitative relationship between phytochelatin accumulation and growth inhibition during prolonged exposure to cadmium in Silene vulgaris[J]. Ecotoxicology, 1999, 8(3): 167-175
    Neumann D, Nieden U zur. Silicon and heavy metal tolerance of higher plants[J]. Phytochemistry, 2001, 56: 685-692
    Nishizono H, Ichikawa H. The role of the root cell wall in the heavy metal tolerance of A thyriumy okoscense[J]. Plant Soil, 1987, 101: 15-20
    Nishizono H, Kubota K, Suzuki S, et al. Accumulation of heavy metals in cells of Polygonum cuspidatum roots from metalliferous habitats[J]. Plant Cell Physiology, 1989, 30: 595-598
    Obata H, Umebayashi M. Effects of cadmium on mineral nutrient concentration in plant differing in tolerance for cadmium[J]. Plant Nutrition, 1997, 20: 97-105
    Pawlik-Skowro(?)ska B. Correlations between toxic Pb effects and production of Pb-induced thiol peptides in the microalga Stichococcus bacillaris[J]. Environmental Pollution, 2002, 119: 119-127
    Perfus-Barbeoch L, Leonhardt N, Vavasseur A, et al. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status[J]. Journal of Plant, 2002, 32 (4): 539-548
    Pongsakul P, Attajarusit S. Assessment of heavy metals of soils[J]. Soils Fertilizer, 1999, 21:71-82 (in Thai)
    Poulter A, Collim H A, Thurman D A. The role of cell wall in the mechanism of lead and zinc tolerance in Anthoxonthum odoratumL[J]. Plant Science, 1985, 42: 61-66
    Raboy V. Seeds for a better future: 'Low phytate'grains help to overcome malnutrition and reduce pollution[J]. Trends Plant Science, 2001, 6(10): 458-462
    
    Rama Devi S. Prasad M N V. Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: Response of antioxidant enzymes and antioxidants[J]. Plant Science, 1998, 138: 157-165
    Ramos L, Esteban E, Lucena J J, et al. Cadmium uptake and subcellular distribution in plants of Lactuca sp[J]. Plant Science, 2002,162, 761-767
    Rauser W E, Acker C A. Localization of cadmium in granules within differentiating and mature root cells[J]. Canadian journal of Botany, 1987, 65: 643-646
    
    Rauser W E. Phytochelatins and related peptides[J]. Plant Physiology, 1995, 109: 1141-1149
    Reeves P G and Channey R L. Marginal nutritional status of zinc, iron, and calcium increases cadmium retention in the duodemum and other organs of rats fed rice-based diets[J]. Environmental Research, 2004,96:311-322
    Reeves P G, Chaney R L. Mineral nutrients status of female rats affects the absorption and organ distribution of cadmium from sunflower kernels(Helianthus annuus L.)[J].Environmental.Research,2001,85:215-225
    Reeves P G,Nielsen E J,O'Brien-Nimens C,et al.Cadmium bioavailability from edible sun flower kernels:a long-term study with men and women volunteers[J].Environmental Research Section A,2001,87:81-91
    Roder G.On the toxic effects of tetraethyl lead and its derivatives on the Chrysophyte Poteriooch romonas malhamensis-V Electron microscopical studies[J].Environmental Experimental Botany,1984,24(1):17-301
    Salt D E and Wagner G L.Cadmuim transport across tonoplast of vesicles from oat roots[J].Journal of Biochemistry,1993,268:1297-1302
    Salt D E,Rauser W E.Mg ATP-dependent transport of phytochelatin across the tonoplast of oat roots[J].Plant Physiology,1995,107:1293-1301
    Salt D E,Smith R D,Raskin I.Phytoremediation.Annu.Rev.Plant Physiol[J].Plant Molecular Biology,1998,49:643-668
    Sandalio L M,Dalurzo H C,Gomez M,et al.Cadmium-induced changes in the growth and oxidative metabolism of pea plants[J].Journal of Experimental Botany,2001,52(364):2115-2126
    Satio K.Regulation of sulfate transport and synthesis of sulfate-containing amino acids[J].Current Opinion in Plant Biology.,2000,3:188-195
    Sauve S,Hendershot W,Allen H B.Solid-solution partitioning of metals in contaminated soils:dependent on pH,total metal burden,and organic matter[J].Environment Science Technology.2000,34(7),1125-1130
    Schutaendubel A,Polle A.Plant response to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization[J].Journal of Experimental Botanty,2002,53(372):1351-1365
    Schutzendubel A,Schwanz P,Teichmann T,et al.Cadmium-induced changes in antioxidative systems,hydrogen peroxide content,and differentiation in Scots pine roots[J].Plant Physiology,2001,127(3):887-898
    Shah K,Kumar R G,Verma S,et al.Effect of cadmium on lipid peroxidation,superoxide anion generation and activities of antiosidant enzymes in growing rice seedings[J].Plant Science,2001,161(6):1135-1144
    Sharma R P,Kjellstrom T,Mckenzie J M.Cadmium in blood and urine among smokers and non-smokers with high cadmium intake via food[J].Toxicology,1983,29:163-171
    Shimbo S,Zhang Z W,Watanabe T,et al.Cadmium and lead contents in rice and other cereal products in Japan in 1998-2000[J].The Science of the Total Environment,2001,281(1-3):165-175
    Siedleska A. Some aspects of interactions between heavy metals and plant mineral nutrients[J]. Acta Society Botanical Pollution, 1995, 64: 265-272
    Siekevitz P. Powerhouse of the cell[J]. Scientific American, 1957,197:131-140
    Simmons R W, Pongsakul P, Chaney R L, et al. The relative exclusion of zinc and iron from rice grain in relation to rice grain cadmium as compared to soybean: Implications for human health [J]. Plant and Soil, 2003, 257: 163-170
    Simon L. Cadmium accumulation and distribution in sunflower plant[J]. Plant Nutrition, 1998, 21: 341- 352
    Sneller F E C, Noo rdover E C M, Ten Bookum W M, et al. Quantitative relationship between phytochelatin accumulation and growth inhibition during prolonged exposure to cadmium in Silene vulgaris. Ecotoxicology, 1999, 8(3): 167-175
    Steffens J C. The heavy metal-binding peptides of plants. Annu. Rev. Plant Physio[J]. Plant Molecular Biology, 1990,41:553-575
    Stohs S J, Bagchi D. Oxidative mechanisms in the toxicity of metal ions[J]. Free Radical Biology & Medicine, 1995, 18: 321-336
    Stolt J P, Sneller F E C, Bryngelsson T, et al. Phytochelatin and cadmium accumulation in wheat[J]. Environmental Experimental Botany, 2003,49: 21-28
    Suzuki N, Koizumi N, Sano H. Screening of cadmium responsive genes in Arabidopsis thaliana [J]. Plant Cell & Environment, 2001, 24: 1177-1188
    Tsukaha T, Ezaki T, Moriguchi J, et al. Rice as the most influential source of cadmium intake among general Japanese population[J]. The Science of the Total Environment, 2003, 305(1-3): 41-51
    Verougstraete V, Lison D, Hotz P. A systematic review of cytogenetic studies conducted in human populations exposed to cadmium compounds[J]. Mutation Research, 2002, 511(1):15-43
    Wang H, Stuanes A O. Heavy metal pollution in air-water-soil-plant system of Zhuzhou City, Hunan Province, China[J]. Water, Air, Soil Pollution, 2003,47: 79-107
    Wang J. Computer simulated evaluation of possible mechanisms for quenching heavy metal ion activity in plant vacuoles[J]. Plant Physiology, 1991, 97: 1154-1160
    Wang Q, Cui Y, Liu X, et al. Soil contamination and plant uptake of heavy metals at polluted sites in China[J]. Journal of Environmental Science, 2003, 38(5): 823-838
    Wang X L, Sato T, Xing B S, et al. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish[J]. Science of the Total Environment, 2005, 350:28-37
    Wang Z H, Zhai F Y, He Y N, et al. Analysis on the changes trend of dietary Zn ingestion in China[J]. Journal of Hygiene Research, 2006, 35(4): 485-486
    Wanger G J.Accumulation of cadmium in crop plants and its consequences to human health[J].Advances in Agriculure,1993,51,173-212
    Weigel H J,Jger H J.Subcellular distribution and chemical form in bean plants.Plant Physiology[J].1980,65,480-482
    WHO Water,Sanitation and Health.Guidelines for Drinking Water Quality 2~(nd) ed.Vol 2 Health Criteria and Other Supporting Information Geneva:http://www.who.int/water-sanitation-health /GDWQ/Summary-tables/Sumtab.htm 1999,281-283
    Wilkins D A.A technique for the measurement of lead to lerance in plants[J].Nature,1957,180:37-38
    Wojcik M,Tukendorf A.Cd-tolerance of maize,rye and wheat seedings[J].Acta Physiology Plant,1999,21:99-107
    Wu F B,Zhang G P.Genotypic differences in effect of Cd on growth and mineral concentrations in barley seedlings[J].Bulletin of environmental contamination and toxicology,2002,69:219-227
    Wu F B,Zhang G P.Genotypic variation in kernel heavy metal concentrations in barley and affected by soil factors[J].Plant Nutrition,2002,25:1163-1173
    Wu F B,Zhang G P,Diominy P.Four barley genotypes respond differently to cadmium:lipid peroxidation and activities of antioxidant capacity[J].Environmental and Experimental Botany,2003,50:67-77
    Yazgan A,Ozcengiz G.Subcellular distribution of accumulated heavy metals in saccharomyces cerevisiae and Kluyveromyces marxianus[J].Biotechnology Letters,1994,16(8):871-874
    Yu H,Wang J L,Fang W,et al.Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars office[J].Science of the Total Environment,2006,370:302-309
    Zenk M H.Heavy metal detoxification in high plants[J].Gene,1996,179:21-30
    Zhang G P,Fukami M,Sekimoto H.Influence of Cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seeding stage[J].Field Crops Research,2002,77:93-98
    Zhang Z W,Moon C S,Watanabe T,et al.,Background exposure of urban Populations to lead and cadmium:comparision between China and Japan[J].International Archieves of occupational and Environmental Health,1997,69:273-281
    Zhang Z W,Shimo S,Watanabe T,et al.Non-occupational lead and cadmium exposure of adult women in Bangkok,Thailand[J].The Science and the Total Environment,1999,226:65-74
    Zhang Z W,Subida R D,Agetano M G;et al.Nonoccupational exposure of adult women in Manila,the Philippines,to lead and cadmium[J].The Science and the Total Environment,1998,215:157-165
    Zhu Y M,Zhou Q X..Soil pollution and agro-environmental protection in China.In:Cao Z H.ed. International Symposium on Soil,Human and Environment Interactions[M].Beijing:China Science& Technology Press,1998,237-244
    Zoran R,Davies D C.Chloroplast structure after water and high temperature stress in two lines of maize that differ in endogenous levels of abscisic acid[J].International journal of Plant Sciences,1992,153(2):186-192
    安志装,王校常,严蔚东等.植物鏊合肽及其在重金属胁迫下的适应机制[J].植物生理学通讯,2001,37(5):463-467
    蔡保松,雷梅,陈同斌等.植物鳌合肽及其在抗重金属胁迫中的作用[J].生态学报,2003,23(10):2125-2132
    曹仁林,贾晓葵,张建顺.镉污染水稻土防治研究[J].天津农林科技,1999,12(6):12-17
    查燕,杨居容,刘虹等.污染谷物中重金属的分布及加工过程的影响[J].环境科学,2000,21(3):52-55
    陈朝明,龚惠群,王凯荣.Cd对桑叶品质生理生化特性的影响及其机理研究[J].应用生态学报,1996,7:417-423
    陈家梅,董克虞,邓小荣.含镉污泥施肥标准的研究[J].农业环境保护,1982,(1):19-24
    程旺大,张国平,姚海根,等.晚粳稻籽粒中As、Cd、Cr、Ni、Pb等重金属含量的基因型与环境效应及其稳定性[J].作物学报,2006,32(4):573-579
    程旺大.水稻籽粒有毒重金属含量的基因型和环境效应研究[D].2004,博士学位论文
    川上润一郎著.郭学兴译.重金属对水稻的影响[J].国外农业科技,1982,8:17-21
    邓明,罗春,杨扬,李国倜.汞、镉在城郊农业环境中的行为及影响研究[J].农业环境保护,1989,8(2):20-24
    冯保民,麻密.植物络合素及其合成酶在重金属抗性中的功能研究进展[J].应用与环境生物学报,2003,(6):657-661
    冯德福.镉污染与防治[J].沈阳化工,2000,29(1):44-45
    高粱.土壤污染及其防治措施[J].农业环境保护,1992,11(6):272-273
    龚伟群,潘根兴.中国水稻生产中Cd吸收及其健康风险的有关问题[J].科技导报,2006a,24(5):43-47
    龚伟群,李恋卿,潘根兴.杂交水稻对Cd的吸收与籽粒积累.土壤和品种的交互影响[J].环境科学,2006b,27(8):1647-1653
    龚子同,黄标.关于土壤中“化学定时炸弹”及其触爆因素的探讨[J].地球科学进展,1998,13(2):184-191
    何电源,王凯荣,胡荣桂.农田土壤污染对作物生长和产品质量影响的研究[J].农业现代化研究,1991,12:21-28
    华珞,陈世宝.有机肥对镉、锌污染土壤的改良效应[J].农业环境保护,1998,17(2):55-59
    黄会一,李书鼎.木本植物对Cd~((115+ 115m))的吸收及其在体内的分配[J].生态学报,1982,2(2):139-145
    黄永源,周秀达,柯世超等.多种金属污染环境对健康的影响[J].环境与健康杂志,1987,4(2):14-16
    江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99
    姜理英,杨肖娥,石伟勇等.植物修复技术中有关土壤重金属活化机制的研究进展[J].土壤通报.2003,34(2):154-157
    蒋彬,张慧萍.水稻精米中铅镉砷含量基因型差异的研究[J].云南师范大学学报,2002,22(3):37-40
    金亮,李恋卿,潘根兴等.苏北地区土壤-水稻系统重金属分布及其食物安全风险评价[J].生态与农村环境学报,2007,23(1):33-39
    李德明,朱祝军.镉在不同品种小白菜中的亚细胞分布[J].科技通报,2004,20(4):278-282
    李合生.植物生理生化实验原理和技术[M].2001,北京:高等教育出版社
    李花粉,张福锁,李春俭,毛达如.Fe对不同品种水稻吸收Cd的影响[J].应用生态学报,1998,9(1):110-112
    李继强,陈锡永,唐意佳等.环境镉污染及其对人群健康影响的研究[J].中国公共卫生,2001,17(3):196-198.
    李坤权,刘建国,陆小龙等.水稻不同品种对镉吸收及分配的差异[J].农业环境科学学报,2003,22(5):529-532
    李恋卿,潘根兴,张平究等.太湖地区水稻土表层土壤10年尺度重金属元素积累速率的估计[J].环境科学,2002,23(3):119-123
    李荣春.Cd、Pb及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响[J].植物生态学报,2000,24(2):238-242
    李文学,陈同斌.超富集植物吸收富集重金属的生理和分子生物学机制[J].应用生态学报,2003,14(4):627-631
    李正文,张艳玲,潘根兴等.不同水稻品种籽粒Cd、Cu和Se的含量差异及其人类膳食摄取风险[J].环境科学,2003,24(3):112-115
    李正文.镉处理下不同水稻品种对两种土壤中铅、镉的吸收及其生育期动态[D].博士学位论文,南京农业大学,2003
    廖敏,黄昌勇,谢正苗.pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报,1999,19(1):81-86
    廖自基.环境中微量重金属元素的污染危害与迁移转化[M].北京:科学出版社,1989.75-78
    林琦,陈怀满,郑春荣.根际和非根际土中镉、铅行为及交互作用的研究[J].浙江大学学报,2000, 26(5):527-532
    刘洪莲,李恋卿,潘根兴.苏南某些水稻土中CuPbHgAs的剖面分布及其影响因素[J].农业环境科学学报,2006,25(5):1221-1227
    刘立群.赣南土壤镉污染的防治途径[J].资源开发与市场.1990,6(2):100-102
    刘敏超,李花粉,夏立江等.不同基因型水稻吸镉差异及其与根表铁氧化物胶膜的关系[J].环境科学学报,2000,20(5):592-596
    刘敏超,李花粉,夏立江等.根表铁锰氧化物胶膜对不同品种水稻吸镉的影响[J].生态学报,2001,21(4):598-602
    刘文菊,张西科,张福锁.根表铁氧化物和缺铁根分泌物对水稻吸收镉的影响[J].土壤学报,1999,36(4):463-469
    刘文菊,张西科,张福锁.根分泌物对根际难溶性镉的活化作用及对水稻吸收、运输镉的影响[J].生态学报,2000,20(3):448-451
    鲁如坤.土壤农业化学分析方法[M].北京:科学出版社,2000,205-226
    罗立新,孙铁衍,靳月华.镉胁迫对小麦叶片细胞膜脂过氧化的影响[J].中国环境科学,1998,18(1):72-75
    毛昌祥,万宜珍,马国辉等.中国杂交水稻发展现状分析[J].杂交水稻,2006,21(6):1-5
    孟凡乔,史雅娟,吴文良我国无污染农产品重(类)金属元素土壤环境质量标准的制定与研究进展[J].农业环境保护,2000,19(6):356-359
    倪才英,李华,骆永明,陈英旭.铜、镉及其交互作用对泡泡草细胞超微结构的影响[J].环境科学学报,2004,24(2):343-348
    潘根兴,Chang A C,Page A L.土壤-作物系统污染物迁移分配及其食物安全评价模型及其应用[J].应用生态学报,2002,13(7):854-858
    庞金华.上海粮食中元素的含量及土壤的安全值[J].长江流域资源与环境,1997,6(2):149-154
    彭呜,王焕校.镉、铅诱导的玉米(Zeamays L.)幼苗细胞超微结构的变化[J].中国环境科学,1991,11(6):426-431
    邵国胜,Muhammad Jaffar Hassan,章秀福等.镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响[J].中国水稻科学,2004,18:239-244
    施国新,杜开和,解凯彬等.汞、镉污染对黑藻叶细胞伤害的超微结构研究[J].植物学报,2000,42(4):373-378
    孙琴,王晓蓉,袁信芳等.有机酸存在下小麦体内Cd的生物毒性和植物络合素(PCs)合成的关系[J].生态学报,2004,24(12):2804-2809
    孙琴,袁信芳,王晓蓉.环境因子对小麦体内镉的生物毒性和植物络合素合成的影响[J].应用生态学报,2005,16(7):1360-1365
    谭万能,李志安,邹碧.植物对重金属耐性的分子生态机理[J].植物生态学报,2006,30(4):703-712
    谭周镃.稻米重金属污染的调查研究及其对策思考[J].湖南农业科学,1999(5):26-28
    汤春芳,刘云国,曾光明等.镉胁迫对萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的影响[J].植物生理与分子生物学报,2004,30(4):469-474
    万敏,周卫,林葆.镉积累不同类型的小麦细胞镉的亚细胞和分子分布[J].中国农业科学,2003,36(6):671-675
    王贵民,陈国祥,王习达等.水稻两优培九与汕优63苗期Cd毒害下抗性差异的研究[J].农业环境科学学报,2004,23(2):2 17-220
    王宏镔,王焕校,文传浩等.镉处理下不同小麦品种几种解毒机制探讨[J].环境科学学报,2002,22(4):523-528
    王凯荣,龚惠群.两种基因型水稻对环境镉吸收与再分配差异性比较研究[J].农业环境保护,1996,15(4):145-149
    王凯荣,郭焱,何电源等.重金属污染对稻米品质影响的研究[J].农业环境保护,1993,12(6):254-257
    王凯荣,龚惠群.两种基因型水稻对环境镉吸收与再分配差异性比较研究[J].农业环境保护,1996,15(4):145-149,176
    王新,吴燕玉.改性措施对复合污染土壤重金属行为影响的研究[J].应用生态学报,1995,6(4):440-444.
    王逸群,郑金贵,陈文列等.Hg~(2+)、Cd~(2+)污染对水稻叶肉细胞伤害的超微观察[J].福建农林大学学报(自然科学版),2004,33(4):409-413
    魏海英,尹增芳,方炎明等.Pb、Cd污染胁迫对大羽藓超微结构的影响[J].西北植物学报,2003,23(2):2066-2071
    邬飞波.大麦镉积累和耐性基因型差异的机理研究[D].博士学位论文,浙江大学,2002
    吴鹏鸣主编.环境监测原理与应用[M],化学工业出版社,1991,22-52
    吴启堂,陈卢,王广寿.水稻不同品种对Cd吸收累积的差异和机理研究[J].生态学报,1999,19(1):104-107
    吴燕玉,陈怀满.Cd,Pb,Cu,Zn,As复合污染在农田生态系统的迁移动态研究[J].环境科学学报,1998,18(4):407-412
    夏增禄.土壤环境容量及其应用[M].北京:气象出版社,1988
    肖思思,李恋卿,潘根兴等.持续淹水和干湿交替预培养对2种水稻土中Cd形态分配及高丹草吸收Cd的影响[J].环境科学,2006,27(2):351-355
    徐勤松,施国新,杜开和等.Cd~(2+)处理对菹草叶片保护酶活性和细胞超微结构的毒害影响[J].水生生物学报,2003,27(6):584-588
    徐秋曼,陈宏,程景胜等.镉对油菜叶细胞膜的损伤及细胞自身保护机制初探[J].农业环境保护,2001,20(4):235-237
    杨春刚,廖西元,章秀福等.不同基因型水稻籽粒对镉积累的差异[J].中国水稻科学,2006,20(6):660-662
    杨丹慧.重金属离子对高等植物光合膜结构与功能的影响[J].植物学通报,1991,8(3):26-29
    杨居荣,鲍子平,张素芹.Cd、Pb在植物细胞内的分布及其可溶性结合形态[J].中国环境科学,1993,13(4):263-268
    杨居荣,贺建群,张国祥等.不同耐性作物中几种酶活性对Cd胁迫的反应[J].中国环境科学,1996,16(2):113-117
    杨居荣,贺建群.Cd污染对植物生理生化的影响[J].农业环境保护,1995,14:193-197
    杨居荣.污染稻、麦子实中Cd、Cu、Pb的分布及其存在形态初探[J].中国环境科学,1999,19(6):500-504
    杨肖娥,龙新宪,倪吾钟.超积累植物吸收重金属的生理及分子机制[J].植物营养与肥料学报,2002,8(1):8-15
    叶旭君,王兆骞.农村社会营养评价与食物结构优化研究[J].中国公共卫生,200l,17(7):577-580
    依纯真,傅桂平.不同钾肥对水稻吸收和运移的影响[J].中国农业大学学报,1996,l(3):65-70
    愈海,黄季鲲,Scott Rozelle.中国东部地区耕地土壤肥力变化趋势研究[J].地理研究,2003,22(3):380-388
    宰学明,吴国荣,陆长梅等.Ca~(2+)对花生幼苗耐热性和活性氧代谢的影响[J].中国油料作物学报,2001,23(1):46-50
    张芬琴,孟红梅,沈振国等.镉胁迫下绿豆和箭舌豌豆幼苗的抗氧化反应[J].西北植物学报,2006,26(7):1384-1389
    张福锁.环境胁迫与植物根际营养[M].北京:中国农业出版社,1998,PP:211-237
    张金彪,黄维南.镉对植物的生理生态效应的研究进展[J].生态学报,2000,20(3):514-523
    张军,束文圣.植物对重金属镉的耐受机制[J].植物生理与分子生物学学报,2006,32(1):1-8
    张玲,王焕校.镉胁迫下小麦根系分泌物的变化[J].生态学报,2002,22(4):496-502
    章家琪,吴燕玉编.镉污染与农业[M].科学普及出版社,1989
    章士炎.我国农业土壤污染状况及其防治对策.中国土壤学会第八次全国代表大会论文摘要集.1995,327
    赵其国,周炳中,杨浩等.中国耕地资源安全问题及相关对策思考[J].土壤,2002,6:293-302
    中国农业年鉴编辑委员会,中国农业年鉴[M].中国农业出版社,2001,11
    周启星,高拯民.作物子实中Cd与Zn的交互作用及其机理的研究[J].农业环境保护,1994,13(4): 148-151
    周卫,汪洪,林葆.钙对胁迫下玉米镉的亚细胞分布及叶绿体超微结构与光合作用酶活性的影响[J].植物营养与肥料学报,1999,5(4):335-340
    朱德峰,林贤青,张玉屏.超级稻生产集成技术示范及其效应[J].中国稻米,2002,2:8-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700